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Introduction: Paratuberculosis is a granulomatous intestinal infection that affects

ruminant animals worldwide. The disease is often detected when most animals

are already infected due to the long incubation period and the high

transmissibility of the infectious agent. The lack of a comprehensive method to

diagnose Paratuberculosis is a global challenge. Therefore, a non-destructive,

fast, and cost-effective diagnostic method for early detection of Paratuberculosis

is crucial.

Methods: Near-infrared spectroscopy (NIRS) and Aquaphotomics have the

potential to diagnose the disease by detecting changes in biological fluids. This

study aimed to investigate the diagnostic ability of NIRS and Aquaphotomics for

Paratuberculosis in dairy cattle by monitoring and data mining of saliva. The

diagnostic models were developed according to saliva spectra of dairy cattle in

the NIR range and 12 water absorbance bands from 100 to 200 days after calving

in two groups: positive and negative, based on the same results of seven ELISA

tests of blood plasma, as a reference test.

Results: Both NIRS and Aquaphotomics methods had high diagnostic accuracy.

Using QDA and SVM models, 99% total accuracy, 98% sensitivity, and 100%

specificity were achieved in internal validation. The total accuracy in external

validation was 90%. This study presents two novel approaches to diagnosing

Paratuberculosis in dairy cattle using saliva.

Discussion: The study found that changes in water absorbance spectral patterns

of saliva caused by complex physiological changes, such as the amount of

antibody related to Paratuberculosis in dairy cattle as biomarkers, are crucial in

detecting Paratuberculosis using NIRS and Aquaphotomics.
KEYWORDS

Aquaphotomics, Johne’s disease, Mycobacterium avium subspecies Paratuberculosis,
Near-Infrared spectroscopy, saliva
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1 Introduction

Paratuberculosis, also known as Johne’s disease, is a bacterial

infection caused by Mycobacterium avium subspecies

Paratuberculosis (MAP). This type of bacteria is acid-fast and

Gram-positive, and it often leads to disease outbreaks in

ruminants, affecting the entire herd (OIE Terrestrial Manual

2021- PARATUBERCULOSIS (JOHNE’S DISEASE) 2021.pdf,

2021; Pickrodt et al., 2023). Johne’s disease can be transmitted

through horizontal and vertical transmission. In horizontal

transmission, the bacteria is mainly transmitted through fecal

contamination of the udder or pasture, water, food, colostrum,

and sometimes through aerosol (Lee et al., 2023). In vertical

transmission, MAP is transmitted from the infected dam to the

embryo through the placenta. Although the infection starts locally,

it can turn into a systemic pattern and cause chronic granulomatous

enteritis, which can lead to animal death (Marquetoux et al., 2019;

Correa-Valencia et al., 2021).

Paratuberculosis has both direct and indirect economic costs.

The direct economic effects of the disease include reduced growth

rate, lower meat and milk production, premature culling of dairy

cows, higher mortality, and increased costs due to compensation.

The invisible effects include reduced fertility or infertility, disease

control costs, diagnostic test costs, abortions, infected calves born,

susceptibility to other diseases, and veterinary costs. The indirect

economic impacts of this disease include the cost of disease control,

revenue foregone due to restricted market access, export losses,

losses to other sectors in the supply chain and consumers, impact

on animal health and welfare, marketing, and public health-related

issues, productivity reduction, loss of business and market, decrease

in market value, and food insecurity (Barratt et al., 2019). Johne’s

disease has a long incubation period; as a result, it can remain

hidden in the herd for a long time, and for this reason, it is classified

into four stages: silent, subclinical, clinical, and advanced (Hussain

et al., 2016). Calves can be affected from the embryonic period to the

first months of birth, although the clinical symptoms may not be

revealed for years. During this period, other animals can be exposed

to contamination through feces, environment, food, and milk of

infected animals (Fecteau, 2018).

Infection prevention and control systems are essential for

preventing the spread of diseases. Unfortunately, identifying

infections in a herd often occurs after the bacterial strain has

already spread (Karuppusamy et al., 2021). Therefore, it is

essential to promptly identify and isolate infected animals, and

vaccinate the herd to control the spread of the infection. It is crucial

to note that introducing infected animals into a herd can

significantly increase the risk of bacterial transmission (Chaubey

et al., 2016). Although Johne’s disease has a vaccine, it is not widely

available in many countries and does not provide complete

immunity. In addition, there are concerns about using this

vaccine because it is difficult to diagnose tuberculosis in dairy

cattle. Therefore, it is crucial to prevent the disease at the farm

level and reduce its transmission from one generation of dairy cattle
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to another. Currently, Mycobacterium avium subspecies

Paratuberculosis (MAP) continues to be prevalent, especially in

dairy cattle breeding systems, due to factors such as the long-term

pre-clinical shedding stage, poor management practices, suboptimal

laboratory tests, and the environmental persistence of the bacteria

(Garvey, 2020). It is crucial to use appropriate diagnostic tests and

approaches for the rapid identification of MAP infection and its

spread (McGregor et al., 2015). The primary diagnostic tests for

MAP infection are to identify the strains of bacteria and the host’s

immune response to the bacteria infection. Two techniques

commonly used to diagnose Paratuberculosis strains are bacterial

culture and polymerase chain reaction (PCR) tracking of molecular

components (Assessment of surveillance and control of Johne’s

disease in farm animals in GB, 2002).

The enzyme-linked immunosorbent assay (ELISA),

complement fixation test (CFT), and agar gel immunodiffusion

(AGID) are commonly used molecular techniques to evaluate the

immune response of the host (Sardaro et al., 2017). However,

the accuracy and sensitivity of each test are different. Therefore,

in the advanced stages of the disease, it is recommended to use a set

of tests. However, the choice of tests can be influenced by factors

such as cost and logistics (Rieger et al., 2021). It is important to note

that the molecular tests mentioned are highly effective in early

screening and tracking, and histopathological studies provide a

definitive and accurate diagnosis of the disease. ELISA is the most

cost-effective tool, but the PCR or FC test is preferred to reduce

prevalence, and both are considered more sensitive for low-

shedding animals (Robins et al., 2015; Smith et al., 2017).

Detecting infection in primary samples using the right

diagnostic test is the first step in controlling the spread of

infection. This provides rapid identification of infected animals,

which is of great economic importance in predicting the disease

state (Chaubey et al., 2016). Several diagnostic tests are available,

and their accuracy, sensitivity, and cost-effectiveness must be

considered. Some experts believe using ELISA and PCR methods

together would be most cost-effective (Aly et al., 2012). However, it

is worth noting that the lack of a non-invasive, accurate, fast, and

available diagnostic method for Johne’s disease, in each of the four

stages, affects the economic importance of infection control.

Because of the lack of early and accurate diagnostic tests and the

inherent resistance of MAP to antibiotics and disinfectants,

controlling infections has become extremely challenging. This has

turned Paratuberculosis into a global issue. Therefore, there is an

urgent need to develop an accurate diagnostic method that can

distinguish between healthy and infected animals based on the

disease agent that produces antibodies. This method should also

show the animal’s condition at each stage of the disease. Nowadays,

modern physical methods, such as lasers and spectroscopy, are

being used to diagnose and treat various diseases in humans, plants,

and farm animals. This is due to their fast, accurate, non-invasive,

portable, and minor side effects.

Near-infrared (NIR) spectroscopy is a non-invasive and

physical method that has been increasingly applied for the last 50
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years. This technique does not require any sample preparation or

chemical pollution and it is based on measuring molecular bond

vibration. It is widely used to assess the quality of agricultural and

pharmaceutical products by studying the interaction of

electromagnetic waves with biological materials. Recently, NIR

spectroscopy has been applied to the structural analysis of water,

making it an even more valuable tool (Munćan et al., 2019).

NIR spectroscopy is a method that can estimate multiple

components in a sample at once. To do this, calibration equations

are developed. In most cases, the reproducibility of sample analysis

is equal to or better than that of chemical methods. Additionally,

since this method requires small sample sizes and is non-

destructive, the sample can be recovered and used for other

purposes. A multivariate analysis model, NIR spectroscopy can

predict the chemical composition of unknown samples. This model

describes the relationship between the NIR absorption (or

transmittance) spectrum and the chemical constituents of interest,

using Bir-Lambert’s law. This allows the composition of unknown

samples from the same population to be predicted, named

chemometric (Tsenkova et al., 2018). Other advantages of using

the NIR spectroscopy method are continuous manitoring during

milking. Recent research on diagnosing Johne’s disease has explored

modern physical methods like monitoring gene expression patterns

in salivary glands (Sanjay Mallikarjunappa et al., 2019) and other

methods (Le Puil et al., 2006; Norby et al., 2006; Yakes et al., 2008;

Roussel, 2011; Smith, 2016; Tooloei et al., 2016; Mathie, 2017;

Agrawal et al., 2020; Karuppusamy et al., 2021). However, despite

these studies, developing a non-invasive, accurate, fast, available,

and cost-effective method to diagnose all four stages of Johne’s

disease, particularly in its early stages, remains a global challenge.

Hydrogen bonds in water can cause issues in infrared (IR)

spectroscopy due to high absorbance and interference with the

absorption of other components. NIR spectroscopy is preferred as

it reduces these problems. In 2005, a new approach called

Aquaphotomics was developed. It examines water absorbance

bands and their changes as a biomarker, using water memory

and mirroring principles (Tsenkova et al., 2018). This approach

provides a unique opportunity to describe the complex state of

water using its multidimensional NIR spectra (Munćan et al.,

2019). Over the years, studies focused on water structures and

proving the memory and mirror-like principles of water have been

widely conducted in various fields, for example, diagnosis of

diabetes (Li et al., 2020) and Alzheimer’s disease in humans

(Tsenkova, 2007), diagnosis of pneumonia (Santos-Rivera et al.,

2021) and mastitis (Tsenkova, 2007), the detection of estrus in

dairy cattle (Kinoshita et al., 2015; Unalan, 2016; Iweka et al.,

2020), the detection of adulteration in powdered milk (Santos et

al., 2013) and honey (Yang et al., 2020), the detection of quality

and freshness of meat (Mileusnić et al., 2017), and the

investigation of quantitative and qualitative traits of transgenic

organisms (Sohn et al., 2021).

The Water Matrix Absorbance Coordinates (WAMACs) are

spectral ranges, where specific water absorbance bands related to

specific water molecule conformations (water species and water

molecular structures) are found with the highest probability. For the
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first overtone of water (1,300–1,600 nm), 12 WAMACs have

been experimentally discovered and confirmed by overtone

calculation. The changes in water absorbance spectral pattern

(WASP) can be seen in the aquagram (Muncan and Tsenkova,

2019). NIR spectroscopy and Aquaphotomics are used to diagnose

Paratuberculosis in dairy cattle by blood plasma (Behdad et al.,

2024b) and inflammatory bowel disease (IBD) in humans; its types

include Crohn’s disease (CD) and ulcerative colitis (UC) by blood

plasma and saliva samples, with high accuracy (Behdad

et al., 2024a).

This study aims to use NIR spectroscopy and Aquaphotomics to

detect WASP changes in the saliva of dairy cattle for biomonitoring

and bio-diagnosis of Paratuberculosis. Figure 1 displays the abstract

of this study.
2 Materials and methods

This research was approved by the SRBIAU-Institution of

Animal Science (SRB-11-3997) and complied with institutional,

national, and international ARRIVE guidelines.
2.1 Animals

The study involved using second- and third-lactation stage

Holstein dairy cows to test for Johne’s disease. Since the ELISA

test for Johne’s disease is not 100% accurate and results can vary at

different stages, the test is not able to accurately diagnose the disease

in cows in their first year of lactation. Therefore, to obtain the

maximum number of samples, cows in their second and third

lactation stages were chosen, as they represent the largest

population in dairy cow herds.

Out of 150 second- and third-lactation cows, those that

consistently scored below an index of 20 in the 1-year-old blood

plasma ELISA tests, three weekly ELISA tests before the start of the

experiment, and three simultaneous ELISA tests with blood and

saliva sampling (totaling seven tests) were classified as healthy,

while those with an index of more than 100 were classified as

infected animals.

Additionally, the selected cows were free of any other diseases.

Only cows with no history of disease since birth, as documented in

their health files, were chosen. Furthermore, the veterinarian

examined the cows before each sampling day to ensure their

health or confirm the absence of any other diseases. Finally, 10

animals were selected for the study (Table 1).
2.2 Blood plasma and saliva collection

The animals used in this study were not isolated from the herd.

The farm had a routine program for monitoring Paratuberculosis, and

the blood samples were taken by the staff for ELISA tests. The blood

sample tubes were collected for cows whose ELISA test index of less

than 20 and more than 100 was confirmed during 3 weeks (n = 50)
frontiersin.org
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and then blood samples were taken three times from selected cows

that had the same results three times within 3 weeks (n = 10). The

blood plasma was used for the ELISA test with an IDEXX kit.

The IDEXX kit, as an ELISA kit, has an enzyme immunoassay

for the detection of antibodies directed against MAP in bovine

individual serum, plasma, and milk samples. First, coated plates

were obtained and the sample position was recorded. The Negative

Control (NC) was diluted 1:20 in the dilution buffer N.12 and

dispensed in one well. The Positive Control (PC) was diluted 1:20 in

the dilution buffer N.12 and dispensed in two wells. Plasma samples

were diluted 1:20 in the dilution buffer N.12. After homogenizing

contents using a microplate shaker, they were incubated for 15 min

to 2 h at 18–26°C and then 100 μL was transferred from each well to

the preplate to appropriate wells of the coated microplate.
Frontiers in Cellular and Infection Microbiology 04
Afterwards, the contents of the wells were homogenized by a

microplate shaker and were covered with the aluminum cover of

the kit and incubated for 45 min at 18–26°C. Then, the solution was

removed and each well was washed three to five times with

approximately 300 μL of wash solution. Then, 100 μL of

conjugate was dispensed into each well, covered, and incubated

for 30 min. The solution was removed and each well was washed

three to five times with approximately 300 μL of wash solution.

Then, 100 μL of TMB substrate N.9 was added into each well and

incubated for 10 min at 18–26°C away from direct light. Next, 100

μL of stop solution N.3 was dispensed into each well. The optical

density values of samples and controls were measured and recorded

at 450 nm. For calculation of controls, Equation 1 is applied, and for

plasma samples, Equation 2 is applied (IDEXX Paratuberculosis
TABLE 1 Characteristics of saliva samples from dairy cattle and spectra for the detection of Paratuberculosis in the 1,300–1,600 nm range, including
12 water absorbance bands, over a 3-week period.

Contents
Total

number
of cows

Number of cows
according to the blood plasma

ELISA test
Number of spectra

Positive Negative Positive Negative

100–200 days after calving
(first week)

10 7 3 21 9

100–200 days after calving
(second week)

10 7 3 21 9

100–200 days after calving
(third week)

10 7 3 21 9

Total 10 7 3 63 27
FIGURE 1

The abstract of the study “Saliva NIR spectroscopy and Aquaphotomics: A novel diagnostic approach to Paratuberculosis in dairy cattle”.
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screening 06-07130-27 manual):

Control : PC�X   =
  PC1(450) + PC2(450)

2
(1)

Validity criteria :
PC�X
NC

 A(450) ≥ 3:00 and PC�X ≥ 0:350 (2)

Interpretation for plasma samples:

(Sample=Control)S=P% = 100*
sample A(450) − NC A(450)

PC�X − NC A(450)

Negative : S=P% < 45%

Suspect : 45% < S=P% < 55%

Positive : S=P% ≥ 55%

In this study, the accuracy of the reference test was increased by

ensuring that the animals had consistent results of (sample/control)

S/P in seven tests, with results ≥100 considered positive and results

≤20 considered negative. Ten animals meeting these criteria were

selected for the saliva study.

Saliva samples were collected under the supervision of the farm

veterinarian by attaching a sterile nylon to the animal’s lower jaw

after restraining its neck. The collected saliva was filtered to remove

any food particles and stored in two 30-mL sterile containers. The

first container was sent to the laboratory for ELISA and PCR

analysis. From the second container, six 2-mL microtubes were

prepared and stored in a −23°C freezer for spectrometry. Three of

the microtubes were used for the spectrometry.

The samples were transferred to the spectroscopy on ice and

warmed for 1 min before spectrophotometry. For each cuvette

spectrophotometry, samples were taken from one of the

microtubes, and three replicates were taken from each cuvette.
2.3 Reference test

In this study, to evaluate the accuracy of NIR spectroscopy and

Aquaphotomics models, a reference test method was used. The

reference test involved using identical blood ELISA test results from

the first year of birth, three consecutive weeks before the test, and

three consecutive weeks during the test. Animals with an index of

less than 20 were considered healthy, while those with an index

greater than 100 were considered infected. Since the ELISA test is

used for blood and milk samples, saliva samples were sent for PCR

testing. However, the PCR test was unable to differentiate between

these samples. As a result, seven identical blood ELISA test results

were selected as the reference test.
2.4 NIR spectral signature collection

NIR absorbance spectra of saliva were measured using a

spectrophotometer (UV-VIS-NIR 3600, Shimadzu CO. Japan)

equipped with a quartz cuvette having a 1-mm optical path
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length (n = 90). The samples were defrosted over ice for 15 min

and then warmed between the hands for about a minute before

collecting NIR spectra. The NIR spectrum was collected in the

1,280–1,630 nm range (interval = 0.5 nm; single scan; very slow).

The 1,300–1,600 nm range was used for monitoring and model

development. Before collecting saliva spectra, a reference spectrum

was taken from two empty cuvettes and then from one empty

cuvette and a cuvette containing distilled water. Three independent

spectral signatures were collected per sample by replacing the

cuvette with saliva between each replicate.
2.5 Multivariate analysis

Chemometrics-based multivariate analysis (MVA) was

performed using Unscrambler X v.10.5 on the first overtone

region of the NIR spectrum, specifically on the vibrational

combination band between 1,300 and 1,600 nm. The dataset was

pre-treated using various mathematical techniques, such as linear

baseline correction, standard normal variate (SNV) with detrending

(polynomial order and a first derivative; symmetric Savitzky–Golay

smoothing, points = 12), smoothing, normalize, multiplicative

scatter correction (MSC), and spectroscopic (absorbance to

transmittance). This preprocessing was applied to all databases,

including saliva spectra from 10 cattle. A balanced dataset was

created by spectral signatures for each category, which were healthy

or negative and infected or positive (Table 2). Principal component

analysis (PCA) was used to reduce the dimensionality of the dataset

and identify patterns in spectral behavior. This was achieved by

ignoring data labels and detecting excluded data (Ghasemi et al.,

2013). A calibration set was created for discriminant analysis, which

involved quadratic discriminant analysis (QDA) and support vector

machine (SVM) as supervised methods. QDA is a qualitative

classification method that can classify new and unknown samples

based on models made separately for each group. It helps interpret

the differences between groups when the variability of each group

does not have the same structure (unequal covariance matrix) and

the shape of the curve separating the groups is not linear (Hastie

et al., 2009). The QDA method was used to describe the non-linear

relationship between groups in the raw data and transformed

spectra in 1,300–1,600 nm and 12 water absorbance bands

separately. SVM is a supervised learning algorithm that helps find

an optimal hyperplane or classifier to classify objects of different

classes as accurately as possible. The algorithm tries to maximize the

distance between the hyperplane and the points of both groups

while leaving the largest possible fraction of points on the same side.

This ensures that the algorithm is not overfitting the data and is

effectively avoiding the problem of misclassification on the training

set. Because of these advantages, SVM is widely used in binary

classification problems (Ghasemi et al., 2013). The SVM analysis

was used to classify two groups of saliva samples, positive and

negative for Paratuberculosis. After that, Aquaphotomics analyses

were performed, which included repeating all the above steps only

for 12 water absorbance bands in the range of 1,300–1,600 nm.

Then, the changes of water bands in infected and healthy saliva

samples were drawn as an aquagram. To test mathematical
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preprocessing and modeling bias against the null hypothesis (no

biological signature can differentiate between saliva samples from

two classes) in the supervised analysis, datasets were created by

positive and negative groups. The samples were randomly divided

into a calibration subset for the internal validation set (75%) and a

test subset used as the external validation set (25%). This calibration

equation was obtained from different sample sets: all samples

according to the results of the blood plasma ELISA test as a

reference test include a calibration set of positive (>100) and a

calibration set of negative samples (<20).
Frontiers in Cellular and Infection Microbiology 06
2.6 Evaluation of classification methods

To assess the performance of a classification method, certain

quality parameters such as accuracy, sensitivity, and specificity are

used. Sensitivity measures the model’s ability to correctly identify

true positives of a particular disease, as described by the formula: TP

(True Positive)/(TP + FN) (False Negative). It is important to have a

high sensitivity (>90%) when using prediction models to identify

severe but treatable diseases. On the other hand, specificity

measures the model’s ability to correctly identify uninfected or
TABLE 2 Results of saliva samples from dairy cattle for the detection of Paratuberculosis in the 1,300–1,600 nm range and 12 water absorbance
bands using QDA and SVM models with raw data and pretreatments.

Model Area Contents

Predicted model

Full data—
full validation

Calibration—
full validation

Test—
cross-

validation

QDA

1,300–1,600 nm

Negative
100%
(25/25)

100%
(19/19)

67%
(4/6)

Positive
98%

(62/63)
98%

(48/49)
100%
(14/14)

Total accuracy 99% 98.5% 90%

Pretreatment
Raw data—

all pretreatments
Raw data—

all pretreatments
Smoothed

PC 17 15 15

12 water
absorbance bands

Negative
100%
(25/25)

100%
(19/19)

67%
(4/6)

Positive
98%

(62/63)
98%

(48/49)
100%
(14/14)

Total accuracy 99% 98% 90%

Pretreatment
Raw data—

all pretreatments

Raw data—all
pretreatments

(except smoothed)
MSC—smoothed

PC 16-18 13-15 14

SVM

1,300–1,600 nm

Negative
100%
(25/25)

100%
(19/19)

83%
(5/6)

Positive
98%

(62/63)
98%

(48/49)
93%

(13/14)

Total accuracy 99% 98.5% 90%

Pretreatment All pretreatment Raw data—normalized Raw data

R2–RMSEC 95%–0.1 96%–0.1

12 water
absorbance bands

Negative
100%
(25/25)

100%
(19/19)

83%
(5/6)

Positive
98%

(62/63)
98%

(48/49)
93%

(13/14)

Total accuracy 99% 98.5% 90%

Pretreatment
Raw data—smoothed

—spectroscopic
Raw data—smoothed

—spectroscopic
Raw data—smoothed

—spectroscopic

R2–RMSEC 95%–0.1 96%–0.1
PC, number of principal components; R2, coefficient of determination and RMSEC, root mean square error of calibration.
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healthy samples. True negative is calculated using the formula: TN

(True Negative)/(TN + FP) (False Positive), and the total accuracy is

shown by Equation 5.

Sensitivity% = (TP=TP  +  FN) *100 (3)

Specificity% = (TN=TN +  FP)*100 (4)

Total accuracy %  

=  (((TN ∗ (TN=TN  +  FP))  +  (TP ∗ (TP=TP 

+  FN)))= (TN  +  FP  +  TP  +  FN)) ∗ 100 (5)
2.7 Aquaphotomics

In this research, the contribution of water absorbance bands

was investigated to the detection of Positive and Negative saliva

groups in Paratuberculosis separately. Therefore, two stages of

analyses are all about wavelengths of saliva samples in the range

of 1,300–1,600 nm (first overtone of water) and then the wavelength

of only 12 water absorbance bands in this range was characterized

as follows:

C1, 1,336–1,348 (2n3:H2O asymmetric stretching vibration); C2,

1,360–1,366 [OH-·(H2O)1,2,4: water solvation shell], C3, 1,370–1,376

(n1 +n3: H2O symmetrical stretching vibration and H2O,

asymmetric stretching vibration); C4, 1,380–1,388 [OH-·(H2O)

1,4: water solvation shell, O2-·(H2O) 4: hydrated superoxide

clusters, 2n1: H2O symmetrical stretching vibration]; C5, 1,398–

1,418 [water confined in a local field of ions (trapped water), S0: free

water, water with free OH-]; C6, 1,421–1,430 (water hydration band,

H-OH bend and O-H … O); C7, 1,432–1,444 (S1: water molecules

with one hydrogen bond); C8, 1,448–1,454 [OH-·(H2O)4,5: water

solvation shell]; C9, 1,458–1,468 (S2: water molecules with two

hydrogen bonds, 2n2 +n3: H2O bending and asymmetrical

stretching vibration); C10, 1,472–1,482 (S3: water molecules with

three hydrogen bonds); C11, 1,482–1,495 (S4: water molecules with
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four hydrogen bonds); C12, 1,506–1,516 (n1: H2O symmetrical

stretching vibration, n2: H2O bending vibration, strongly bound

water) (Munćan et al., 2019).

Finally, the results of the study on water absorbance bands are

shown by the aquagram according to Equation 6

A0l = (Al−µl)=sl   (6)

where A’l is the normalized absorbance value displayed on the

radar axis; Al is absorbance after scatter correction (multiplicative

scatter correction using the mean of the dataset as a reference spectrum

or standard normal variant transformation); μl is the mean of all

spectral; sl is the standard deviation of all spectral; and l are the

selected wavelengths from WAMACS regions corresponding to the

activated water absorbance bands (Munćan et al., 2019).
3 Results

3.1 Raw absorbance spectra of saliva

The bovine saliva contained up to 99% water and 1% inorganic

(sodium, potassium, phosphates, chloride, calcium, and

magnesium) and organic components, which are divided into

two: proteins and non-proteins (Carpenter, 2013).

According to the characteristics of the spectra obtained in the

NIR range, machine learning methods called chemometrics were

used to obtain hidden information (Tsenkova et al., 2018).

One of the main data preparation operations is data cleaning, which

includes smoothing noises, identifying and removing outliers, and

resolving inconsistencies. In this research, no noise was observed in the

saliva spectra. The studied range was determined to be 1,300–1,600 nm,

and to be sure, the spectra were taken from the range of 1,280 to 1,630 nm.

The raw NIR absorbance spectra of saliva samples in the

analyzed range 1,300–1,600 nm are presented in Figure 1. These

spectra seem identical in this spectral region, whose main feature is

a dominant absorbance band approximately 1,450 nm attributed to

the first overtone of OH stretching vibration (Vitalis et al., 2023).
FIGURE 2

Saliva absorbance NIR spectra of dairy cattle: (A) Raw data. (B) Mean of data (n = 90). Negative (blue) and positive (red).
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Since bovine saliva is made up of 99% water, the spectra of saliva are

similar to the water spectra.

To enhance the subtle changes at specific water absorbance

bands in the spectra of samples, means and spectral subtraction

were performed in the initial evaluation (Tsenkova et al., 2018). The

mean absorption spectrum of saliva in the raw data was consistent

with the pattern of the original data, and at 1,450 nm, the highest

absorption rate of both groups was observed (Figure 2A). The mean

of absorption for the negative group was higher than the positive

group, and this difference was evident in Figure 2B. To enhance the

subtle differences, the average spectra of the second derivation of the

positive and negative groups were subtracted from the total average

of all spectra (Figure 3A). Another way to enhance the differences is

to calculate the difference spectrum between the average spectra of

the second derivation of positive and negative groups (Figure 3B).

This spectral subtraction enhanced the differences between the two
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groups in the second derivation spectral subtraction; all 12 water

absorbance bands are active and the differences are so obvious.
3.2 Principal Component Analysis–
exploratory analysis of Paratuberculosis
effects on spectra of saliva

The PCA is an unsupervised multivariate analysis that reduces

the dimensionality of datasets, explains the variation in the data by

ignoring the data label, helps in the detection of patterns in the

spectral behavior, and finds excluded data (Ghasemi et al., 2013).

The results of PCA were presented as scores and loading plots. In

the PCA score plot, the similarity and differences in chemical

complexes that contain OH, CH, and NH bonds interact with

NIR light in transformed spectra of bovine saliva in 1,300–1,600 nm
FIGURE 3

Subtraction spectra of positive and negative groups of saliva. (A) Subtraction spectra of second derivative data from positive (red) and negative (blue)
groups of saliva from the total mean spectra in Paratuberculosis. (B) Subtraction spectra of second derivative data of positive and negative groups of
saliva from each other in paratuberculosis.
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range can be observed in Figure 4. Based on this, by performing

PCA on all data, in accordance with the established criteria, the

samples that were outside the Hotling T2 ellipse with an accuracy of

95% were recognized as outliers and were removed from the

calculated data category. From the total of 90 independent spectra

obtained from both healthy and diseased classes, two spectra related

to one animal (2.2% of all samples) were recognized as outliers and

removed from the dataset. Subsequent analyses were performed on

the remaining 88 samples.

According to the scores chart of the raw data, the first three

principal components describe all the variance of the total data, so

that PC1 is 95% and the share of the other two PCs is 3% and 1%,

respectively. Figure 4A shows the distribution of samples in both

healthy and infected classes of raw data obtained in the PC1–PC2

space. As can be seen, despite some mixing between healthy and

infected samples in the PC1–PC2 space, these two groups were
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separated from each other to the acceptable extent expected from a

non-learning analysis such as PCA. While the healthy samples

tended to be placed in the second quadrant of the PC1–PC2 space,

the infected samples were more scattered in the first to fourth

quadrants of this space. According to the descriptive variance by the

first two components and the separation algorithm, it is expected

that the discernment analysis such as QDA can better separate these

two groups of samples. PCA was performed also with various pre-

processing techniques. In the normalized pre-processing, PC1 and

PC2 describe 93% and 7% of the variance of the total data,

respectively. The healthy samples were located in the second and

third quadrants, while the infected samples were mostly scattered in

the first, second, and third quadrants. After applying smoothing to

the data, the separation improved, with healthy samples clustered in

the second quadrant. PC1 and PC2 then described 91% and 6% of

the total data variance, respectively (Figure 4B).
FIGURE 4

The principal components analysis (PCA) method in two healthy and infected groups. (A) Raw data. PC1: 95% and PC2: 3%. The samples that were
outside the Hotling T2 ellipse with an accuracy of 95% were recognized as outliers and were removed from the calculated data category. (B) The
smoothed data after excluded the two outline samples. PC1: 91% and PC2: 6%, which cover 97% of the differences between the two groups.
Negative (blue) and positive (red).
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3.3 Quadratic Discrimination Analysis for
the detection of dairy cattle response to
Paratuberculosis of saliva

QDA as a discriminant analysis, when the variability of each

group does not have the same structure (unequal covariance

matrix) and the curve shape of separating groups is not linear,

will provide a better classification model (Hastie et al., 2009).

QDA in the range of 1,300–1,600 nm had sensitivity and

specificity in internal validation for the total wavelength of raw

data, and all pretreatments were 100% and 96%; only 1 sample out

of 63 infected samples was misdiagnosed, and for calibration, data

were 100% and 95%, respectively, with only one misdiagnosis. In

external validation, the positive and negative groups were separated

by 100% sensitivity, 67% specificity, and 90% accuracy in smoothing

pretreatment (Table 2).

QDA inWAMACs in saliva in internal validation has 100% and

100% sensitivity and 96% and 95% specificity for full data and

calibration, respectively. In external validation, smoothed or MSC

pretreatment accrued to 90% total accuracy, 100% sensitivity, and

67% specificity in Paratuberculosis detection. The similar results of

two ranges, 1,300–1,600 nm and 12 water absorbance bands, show

that the water bonds had a main role in the detection of healthy and

infected animals by saliva samples.
3.4 Support Vector Machine analysis for
the detection of cattle response to Johne’s
disease of saliva

SVM has been used to detect healthy and infected groups as a

powerful supervised method. According to SVM analysis, the

prediction equations obtained from the raw data and all

pretreatment models, which were the result of internal validation
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of full data and calibration, contained 99% and 100% total accuracy,

100% specificity with 98% and 100% sensitivity, and the total

accuracy, sensitivity, and specificity for external validation were

90%, 93%, and 83%, respectively. In the separation of negative and

positive groups, these models yielded a high coefficient of

determination (R²) of 94% and 100%, and low root mean square

error of calibration (RMSEC) of 0.11% and 0.05% (Table 2).

This time, SVM was performed based on Aquaphotomics. In

comparison to the data obtained from SVM by WAMACs with the

results obtained from all wavelengths in the range of 1,300–1,600

nm, in internal validation models with raw data and smoothed or

spectroscopic (absorbance to transmittance) pretreatments, full

data and calibration had 99% total accuracy, 98% sensitivity, and

100% specificity. The coefficient of determination, R² = 94% and

95%, and RMSEC = 0.1 were obtained in separating the negative

and positive groups.

External validation shows that in the model with raw data or

smoothed or spectroscopic (absorbance to transmittance)

pretreatment, total accuracy in separating positive and negative

groups was 90%, sensitivity was 93%, and specificity was 83%.

Internal and external validations show that in the models with

raw data, smoothed and spectroscopic pretreatments achieved the

same total accuracy of 90% in separating positive and negative

groups for Paratuberculosis, demonstrating the high contribution of

water bands in the results of the SVM models in the 1,300–1,600

nm range.

These findings demonstrate that by observing the spectral

profile of dairy cow saliva in the 1,300–1,600 nm range using NIR

spectroscopy, Aquaphotomics, and data mining, it is possible to

detect changes in functional groups and active water absorbance

bands in response to the perturbation—Johne’s disease. This

method accurately diagnosed and classified healthy and infected

groups that were selected according to the results of seven blood

plasma ELISA tests (Table 2).
FIGURE 5

Aquagram. The changes in 12 water absorbance bands of dairy cattle saliva - normalized using multiplicative scatter correction (MSC)- visualized the
differences in Water Absorbance Spectral Patterns (WASPs) between positive (green) and negative (blue) groups of Paratuberculosis. (A) Radar
aquagram. (B) Linear aquagram. The axes represent the 12 water absorbance bands, marked in yellow.
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3.5 Aquagrams

The study aimed to determine the difference in water structure

between the saliva of individuals infected with Johne’s disease and those

who are not. The aquagram, which displays normalized absorbance

values from MSC pretreatment at water bonds, was used to investigate

the water absorbance bands that responded strongly to Johne’s disease.

By comparing the aquagram for the positive and negative groups, the

relationship between healthy and infected individuals with WASP was

estimated. Based on the results of the mean spectrum difference, all

WAMACs wavelengths distinguish between positive and negative

groups and are thus used in drawing the aquagram. According to

the diagram, active water bands include C2: water solvent shell, C3:

water bands with symmetric and asymmetric stretching vibration, C4:

hydrated superoxide clusters and symmetrical stretching vibration, C5:

containing free water, C6: free OH bands and hydrated water, and C7:

bands with a hydrogen bond were same approximately. However, in

C1: water with asymmetric stretching vibration, C8: water solvation

shell, C9: water molecules with two hydrogen bonds, C10 with three

hydrogen bonds, and C11 with four hydrogen bonds, positives are

increased, but C12 with stronger bonds decreased. In other words, the

effect of changes in antibody blood plasma causing Johne’s disease can

be observed in WASPs of saliva, where the free water proportion,

hydrated, and having a hydrogen bond in the saliva of negative and

positive are about the same, but asymmetric stretching vibration bond

and water molecules with two, three, and four hydrogen bonds are

increased in positive samples, and water that is strongly bound and

with symmetrical stretching vibration is significantly reduced.

Moreover, as the amount of antibodies in Johne’s disease in blood

plasma changed, the proportion of active water bonds or WAMACs in

saliva was also changed (Figure 5).
4 Discussion

Saliva is a biofluid that, like a mirror, reflects the state of body

health or perturbation. Vibrational spectroscopy, Raman, and

infrared can provide a detailed salivary fingerprint that can be used

to discover biomarkers for disease diagnosis (Derruau et al., 2020). A

recent study investigated the use of NIR spectroscopy and

Aquaphotomics to diagnose Paratuberculosis in dairy cattle 100–

200 days after calving, using saliva samples. Separate datasets were

created for the positive and negative groups, and the study tested the

null hypothesis that no biological signature can distinguish between

saliva samples from these two groups. The current study used NIR

spectroscopy and Aquaphotomics to perform unsupervised and

supervised analysis in two ranges, 1,300–1,600 nm and only in 12

water absorbance bands in this range. In other words, this study

aimed to investigate the ability of biomonitoring and diagnosis of

NIR spectroscopy and Aquaphotomics in detecting spectral changes

and 12 water absorbance bands of saliva due to Paratuberculosis.

Data mining for the study was done based on multivariate

classification analysis. The initial classification of two healthy and

infected groups for supervised modeling was done based on the
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results of seven ELISA tests, in the first year of birth, and six

consecutive weekly tests, as a reference method.

NIR spectroscopy is a useful tool for analyzing raw materials

like milk, particularly on portable instruments that can be used

directly on the dairy farm (Takemura et al., 2015). It can also be

used to detect genetically modified organisms, and Aquaphotomics

is a novel field that has the potential to monitor them (Sohn et al.,

2021). By profiling the physiological and metabolic changes in dairy

cattle, NIR spectroscopy can distinguish between healthy and

infected animals, and it can be used to detect and monitor

infections like Johne’s disease. Multivariate analysis and the

Aquaphotomics approach can be used to examine the

biochemical changes that cause differences between the blood

plasma of healthy and infected animals, and the profile of NIR

spectra can reflect the animal’s immune response to the disease

agent (Meilina et al., 2009; Morita et al., 2013; Ramirez-Morales

et al., 2021; Santos-Rivera et al., 2021).

Infrared and NIR spectroscopy were even used in 2012 to detect

Mycobacterium tuberculosis. In 2024, NIR spectroscopy and

Aquaphotomics were used to diagnose Paratuberculosis in dairy

cattle by blood plasma sample (Behdad et al., 2024b) and IBD in

humans by blood plasma and saliva sample (Behdad et al., 2024a)

with 100% accuracy, which show the strong ability of NIR

spectroscopy and Aquaphotomics in the diagnosis of disease.

This study used PCA, QDA, and SVM to analyze saliva spectra,

which provide information about biochemical imbalances resulting

from diseases that affect the composition of saliva. These changes in

saliva’s structure affect the water present in saliva, characterized by

the reuse of PCA, QDA, and SVM in the range of 12 bands of water

that can be viewed in the aquagram. The raw data spectrum and the

average of negative and positive groups confirmed the high

proportion of water in saliva compounds, with a peak at 1,450

nm. The PCA, in raw data, separated the positive and negative

groups as expected from the unsupervised method, with the positive

and negative classes on the right and left of the graph, respectively.

By normalized pretreatment, the first two PC loadings explained

93% and 7% of the dataset variance, respectively. Previous studies

have used PCA methods to diagnose mastitis in dairy cattle by

identifying NIR features of milk, blood plasma, and urine

(Tsenkova et al., 2001; Morita et al., 2013; Ramirez-Morales et al.,

2021; Muncan et al., 2022).

In the QDA model, the results of full data and 12 water

absorbance bands were the same in internal and external

validation. In the internal validation, the raw data in the full range

and all pretreatments achieved 99% and 95.5% total accuracy, 100%

and 100% sensitivity, and 96% and 95% specificity, respectively. In

addition, in external validation, the total accuracy, sensitivity, and

specificity were 90%, 100%, and 67%, respectively. These results

demonstrate the decisive role of water in separating the two groups.

The prediction equation was obtained from the raw data and

pretreating models in internal full data and calibration, and external

validation for the SVM analysis. This model provided 100%

specificity with 98% and 100% sensitivity in the internal

validation of full data and calibration. The external validation
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resulted in a total accuracy of 90%, a sensitivity of 93%, and a

specificity of 83%. In separating negative and positive groups, these

models have a high coefficient of determination (R2) of 99.9% and a

low error coefficient (RMSEC) of 0.05%. Following that, the SVM

models were used in internal validation models of full data in water

bands (WAMACs) with the same results in the 1,300–1,600 nm

range, in the separation of negative and positive groups. In the

internal validation of the calibration model, 100% specificity and

98% sensitivity were achieved. External validation shows the same

results to 1,300–1,600 nm in separating positive and negative

groups for Paratuberculosis. This result indicates a high

contribution of water bands of saliva in the results of the SVM

models in the 1,300–1,600 nm range. The combination of NIR

spectroscopy with aquaphotomics is effective for developing an

accurate and rapid early diabetes diagnosis model. In this study,

according to the SVM model, accuracy was 97.22%, and specificity

and sensitivity were 95.65% and 100%, respectively, in the first-

derivative pretreatment (Li et al., 2020).

It seems that, because of the amount of water in saliva, the

changes and response to the disturbances resulting from Johne’s

disease are evident and all the factors that separate the two groups

are summarized in the changes of water bands. The same results of

the developed models in a total range of 1,300–1,600 nm and only

12 water absorbance bands show the critical role of water bonds in

diagnosing Johne’s disease according to the water comprehensive

mirror and biomarker approach in aquaphotomics. The 12 water

absorbance bands reduce the dimensionality of datasets and

increase the accuracy of developed models.

NIR spectroscopy and artificial neural network (ANN), with

fecal culture and serum test ELISA as a reference test, were used to

diagnose Paratuberculosis in dairy cattle, but it is unclear which

parameters or substances in the serum the NIR spectroscopy

discriminates (Norby et al., 2006).

In the current study, the total accuracy of using NIR

spectroscopy to diagnose Johne’s disease in dairy cattle with a

95% confidence margin is 99%, 100%, and 90% in full data,

calibration, and test, respectively. The method’s sensitivity was

100%, which is comparable to the sensitivity of the current

diagnostic models, such as the ELISA test (7%–94%), fecal culture

(20%–74%), and PCR (4%–100%). The best model uses saliva

spectra from QDA in the 1,300–1,600 nm range or only WAMACS.

Water, as a comprehensive biomolecule, strengthens all small

and unobservable changes in this range and makes it measurable. In

addition, the changes of water absorbance bands in response to the

disturbances resulting from Johne’s disease in the body provide a

rich layer of information to researchers to enable the diagnosis of

Johne’s disease as an accurate and rapid biomarker, along with

other available diagnostic methods.

The study had several limitations. Firstly, livestock farms had a

routine ELISA testing program for Johne’s disease and a history of

testing for all livestock. Secondly, there were issues with

inconsistent test results, which led to repeated testing (seven

times) and the exclusion of many animals with fluctuating

positive results. Thirdly, the test accuracy was very low in the first
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year, and although its accuracy improved in the fourth and fifth

years, the total number of animals in the herd at this age was lower.

The researchers are encouraged to validate the method outlined

in this study by using alternative common diagnostic methods, such

as fecal culture or PCR, in addition to the ELISA test as a reference

test. This validation should be performed on a larger sample size of

animals. The aquagram obtained should be documented for each

reference test method, breed, and physiological stage of the animal.

This documentation is important for the global registration of an

aquaphotome—the collection of aquagrams in different conditions

—for Johne’s disease.

Facilities such as aquaphotomics and advanced diagnostic

equipment such as NIR spectroscopy improve the accuracy and

quality of diagnosis diseases such as Johne’s disease in cattle. These

facilities assist breeders in detecting diseases in the early stages and

providing appropriate treatment by using saliva as a suitable and

non-invasive sample. These methods are used for the diagnosis of

Johne’s disease in dairy cattle by blood sample (Behdad et al.,

2024b) and IBD in humans by blood plasma and saliva samples

(Behdad et al., 2024a) with high accuracy. The results of the current

study, by using a saliva sample as a non-invasive and simple sample,

agree with those findings.
5 Conclusion

The study separated dairy cows into two groups based on their

results of the first year of birth and six consecutive weekly ELISA

blood plasma tests. The healthy group had an index of less than 20,

while the infected group had an index of greater than 100. The

researchers developed three classification models that used the

blood plasma index and the spectral changes in saliva caused by

the disease, focusing specifically on the structure of the water

absorbance bands of saliva. These models were able to diagnose

Paratuberculosis and distinguish between the healthy and infected

groups with a total accuracy of 99%, a sensitivity of 98%, a

specificity of 100% in internal validation, and a total accuracy of

90% in external validation. The same results of developed models in

a total range of 1,300–1,600 nm and only 12 water absorbance

bands show the critical role of water bonds in diagnosing diseases

according to the water comprehensive mirror and biomarker

approach in aquaphotomics. The 12 water absorbance bands

reduce the dimensionality of datasets and increase the accuracy of

developed models. Additionally, the researchers obtained an

aquagram showing the changes in the 12 water absorbance bands

of saliva in healthy and infected groups.

The results of this study suggest that NIR spectroscopy and the

aquaphotomics approach can accurately diagnose Paratuberculosis

in dairy cattle using saliva samples in a non-invasive and timely

manner. The researchers recommend conducting a global study on

a higher number of animals and using other reference tests to

validate this method. They also suggest studying the four stages of

paratuberculosis separately, as this method could become the

standard for diagnosing paratuberculosis.
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