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Background: Coronavirus disease 2019 (COVID-19) has been widespread for

over four years and has progressed to an endemic stage. Accordingly, the

evaluation of host immunity in infected patients and the development of

markers for prognostic prediction in the early stages have been emphasized.

Soluble immune checkpoints (sICs), which regulate T cell activity, have been

reported as promising biomarkers of viral infections.

Methods: In this study, quantitative values of 17 sICs and 16 cytokines (CKs) were

measured using the Luminex multiplex assay. A total of 148 serum samples from

100 patients with COVID-19 were collected and the levels were compared

between survivors vs. non-survivors and pneumonic vs. non-pneumonic

conditions groups. The impact of these markers on overall survival were

analyzed using a machine learning algorithm.

Results: sICs, including sCD27, sCD40, herpes virus entrymediator (sHVEM), T-cell

immunoglobulin and mucin-domain containing-3 (sTIM-3), and Toll-like receptor

2 (sTLR-2) and CKs, including chemokine CC motif ligand 2 (CCL2), interleukin-6

(IL-6), IL-8, IL-10, IL-13, granulocyte-macrophage colony-stimulating factor (GM-

CSF), and tumor necrosis factor-a (TNF- a), were statistically significantly increased

in the non-survivors compared to those of in the survivors. IL-6 showed the

highest area under the receiver-operating curve (0.844, 95% CI = 0.751–0.913) to

discriminate non-survival, with a sensitivity of 78.9% and specificity of 82.4%. In

Kaplan-Meier analysis, patients with procalcitonin over 0.25 ng/mL, C-reactive

protein (CRP) over 41.0 mg/dL, neutrophil-to-lymphocyte ratio over 18.97, sCD27

over 3828.8 pg/mL, sCD40 over 1283.6 pg/mL, and IL-6 over 21.6 pg/mL showed

poor survival (log-rank test). In the decision tree analysis, IL-6, sTIM-3, and sCD40

levels had a strong impact on survival. Moreover, IL-6, CD40, and CRP levels were

important to predict the probability of 90-d mortality using the SHapley Additive

exPlanations method.
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Conclusion: sICs and CKs, especially IL-6, sCD27, sCD40, and sTIM-3 are

expected to be useful in predicting patient outcomes when used in

combination with existing markers.
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1 Introduction

As the SARS-CoV-2 pandemic has been prevalent for more than

four years, it is progressing to the endemic stage, where SARS-CoV-2

variants occur and the number of re-infected patients increases

(Markov et al., 2023; Nesteruk, 2023; Nguyen et al., 2023). To

respond to this ongoing endemic stage of coronavirus disease 2019

(COVID-19), control of the infection from a long-term perspective

has been emphasized and the importance of host immunity in each

patient has increased. In addition, laboratory tests are important not

only for the detection of SARS-CoV-2 infection but also for the

screening and prognosis prediction of severe patients (Carabelli et al.,

2023; Lim, 2023; Puhach et al., 2023). Many studies have been

conducted on infection markers in SARS-CoV-2 patients (Kermali

et al., 2020). C-reactive protein (CRP), white cell count, and cytokines

(CK) such as interleukin-6 (IL-6), IL-8, and IL-10 have been

investigated as factors associated with the diagnosis or severity of

COVID-19 (Han et al., 2020; Kermali et al., 2020). CRP is a plasma

protein generated in the liver in response to inflammatory mediators

and is associated with disease severity during SARS-CoV-2 infection.

Regarding white blood cells (WBC), in patients with severe COVID-

19, there is a pattern where the neutrophil count is dominant and the

lymphocyte count decreases, leading to the expectation that the

neutrophil-to-lymphocyte (N-to-L) ratio could serve as a potential

biomarker for the early detection of severe features. In particular, IL-

6, which functions as a pleiotropic CK with both pro- and anti-

inflammatory functions, displays hyperinflammation beyond

homeostatic levels, inducing CK release syndromes, such as a CK

storm (REMAP-CAP Investigators, 2021). The elevation of IL-6 in

both serum and alveoli serves as an indicator of hyperinflammation
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and is utilized as an unfavorable prognostic factor (REMAP-CAP

Investigators, 2021). In addition, soluble immune checkpoints (sICs)

are emerging factors for understanding SARS-CoV-2 infection and

progression (Cai et al., 2020; Sun et al., 2022). Previous studies have

reported the importance of sICs as potential biomarkers of viral

infections (Cai et al., 2020; Aghbash et al., 2021; Morrell et al., 2022).

sICs are expressed on immune cells to regulate T cell activity and

primarily act as immune evasion mechanisms (Marin-Acevedo et al.,

2018; Zahavi and Weiner, 2019; Cai et al., 2020; Joseph et al., 2021;

Sun et al., 2022; Yu et al., 2023). Specifically, in SARS-CoV-2

infection, up-regulation of T-cells has been reported in several

studies; sICs are implicated in mediating T-cell exhaustion and

inducing T-cell lymphopenia, critical factors contributing to the

pathogenesis of severe COVID-19 (Cai et al., 2020). However, few

studies have quantitatively evaluated the effectiveness of sICs as

prognostic markers in clinical practice for patients with SARS-

CoV-2 infection (Gambichler et al., 2020; Gatto et al., 2020;

Awadasseid et al., 2021). Additional research is required to

concurrently assess various biomarkers, determine markers related

to host immunity, and predict prognosis in the early stages of SARS-

CoV-2 infection.

In a previous study, the authors compared the quantitative values

of sICs and CKs in SARS-CoV-2 infected patients in the survivor and

non-survivor groups (Lee et al., 2022). However, this study has some

limitations. The number of target patients was low, and some

specimens fell below the limit of detection (LoD), making it

challenging to measure CK levels accurately. In the current study,

we aimed to enhance the robustness of our findings by implementing

several methodological enhancements. Firstly, we doubled the total

number of patients with SARS-CoV-2 and focused on samples

collected within one week of SARS-CoV-2 diagnosis. The focus on

the first week was paramount as it represented a critical period for

patient management. Furthermore, we took measures to ensure

adequate sample volume from all patients, thereby reducing

instances of the samples falling below the LoD. Additionally, our

study enrolled patients during the period when the Omicron variant

was prevalent. The variant exhibited distinct clinical characteristics,

including different mortality rates, compared to the Wuhan strain

variant in the previous study. Secondly, infection markers, including

WBC, N-to-L ratios, and CRP (Ponti et al., 2020; Bedel and Korkut,

2021; Agarwal, 2022), were added and analyzed in an integrated

manner along with sICs and CK. Furthermore, co-infection with
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fungi, bacteria, and viruses in patients with SARS-CoV-2 infection

has a poor prognosis, and the microbial community interacts with

immune responses related to prognosis (Jeong et al., 2022). Jeong

et al. reported that SARS-CoV-2 infection is related to multidrug

resistance (Jeong et al., 2022). Therefore, this study sought to examine

the relationship between sICs and multidrug-resistant bacteria.

Finally, we utilized a machine learning (ML) algorithm to

efficiently evaluate the importance of various types of biomarkers

in prognosis prediction.

In particular, this study emphasizes the utilization of sICs and

CKs in clinical practice and seeks to identify a process that can be

applied to actual patient management. As it is not always possible to

measure all sICs and CK in actual medical practice, their

importance must be evaluated and a process must be established

to select these markers and to best utilize them. In this study, we

implemented ML algorithms and comprehensively analyzed the

prognostic prediction abilities of various clinical biomarkers,

including sICs, CK, and infection biomarkers.
2 Materials and methods

2.1 Characteristics of study population

FromMay 2022 to September 2022, 148 specimens were collected

from individuals (N = 100) diagnosed with SARS-COV-2 and had a

history of hospitalization. The inclusion criteria were as follows: (i)

serum sample within one week after admission, (ii) hospitalization,

and (iii) detection of SARS-CoV-2 RNA from nasopharyngeal/throat

swabs using real-time reverse transcription-polymerase chain

reaction (RT-PCR). The CFX96 real-time PCR (Bio-Rad, Hercules,

CA, USA) was used for detection of SARS-CoV-2 RNA. Pediatric

patients and those with insufficient serum sample volumes were

excluded. Among the 148 collected specimens, 100 were drawn

during the first week after admission. These specimens were used

for comparing non-survivors and survivors, as well as for evaluating

differences between pneumonic and non-pneumonic conditions,

conducting survival analysis, and ML analysis, including decision

tree analysis. Additionally, values from the second week were

measured in 48 patients, comprising of 42 survivors and 6 non-

survivors. The trend of sICs and CK values between the first and

second weeks was analyzed. This study was approved by the

Institutional Review Board of Kangnam Sacred Heart Hospital at

Hallym University. The requirement for informed consent was

waived to maintain personal information anonymity (HKS. 2020-

08-004-003).
2.2 Assessments of sIC regulators, CKs, and
laboratory tests

Residual serum samples collected from the chemistry tests were

aliquoted into microtubes and stored at -70°C for sIC and CK

evaluation. The quantitative values of serum sICs and CKs were

measured using a Luminex 200 Bio-Plex instrument (Bio-Rad,

Hercules, CA, USA), following the manufacturer’s protocols.
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Measurements of sICs and CK were conducted using the methods

described in a previous study (Jeong et al., 2022; Lee et al., 2022).

Briefly, using a color-coded multiplexing method, Luminex 200

Bio-Plex simultaneously detects analytes through capture

ant ibodies on beads, fol lowed by fluorescence-based

measurements for high-throughput immune profiling. In this

study, we included 17 types of sICs and 16 types of CK that were

previously measured in the literature (Lee et al., 2022). Laboratory

data obtained on the same date as the measurement date for sIC and

CK were retrospectively collected from medical records. It included

procalcitonin (PCT), CRP, total WBC, absolute neutrophil, and

lymphocyte counts. In addition, multidrug-resistant bacteria such

as methicillin-resistant S.aureus (MRSA), carbapenem-resistant

Acinetobacter baumannii (CRAB), and carbapenem-resistant

Enterobacteriaceae (CRE) were investigated.
2.3 Statistical analysis

The Mann-Whitney U test was used to evaluate the statistically

significant differences in survivors vs. non-survivors and

pneumonic vs. non-pneumonic conditions groups. The area

under the receiver-operating characteristic curve (AUC) of

receiver operating characteristic (ROC) was used to evaluate the

performance of each biomarker. The cutoff for the continuum value

was calculated using the Youden index, and its sensitivity and

specificity were evaluated. Pearson’s correlation coefficient was used

to assess the linear relationship between various sICs, CKs, and

infection markers (e.g., CRP, PCT). Cumulative overall survival

curves for each sIC, CK, and laboratory biomarker were calculated

using the Kaplan-Meier analysis and examined using the log-rank

test. Cluster analysis was performed to comprehensively evaluate

the factors affecting the prognosis of SARS-CoV-2 infected patients.

K-means clustering algorithms were selected for clustering and the

optimal number of clusters (K) was determined. A prognostic

analysis was performed for each cluster. Paired samples from the

1st and 2nd weeks were compared using paired t-tests. Differences

were considered statistically significant at P < 0.05. All statistical

analyses were performed using MedCalc software version 12.0

(MedCalc Software, Mariakerke, Belgium).
2.4 ML

ML, based on a decision-tree algorithm, was used for survival

and prognosis prediction. A decision tree is a data classification

technique that is constructed in various ways as branch-like

fragments. It consists of a root node, leaf node, and decision

(internal) node, which indicate the node at the top, the class to be

assigned to patients, and the tree corresponding to the features,

respectively. The sICs, CK, and laboratory test data were all

included as parameters and selected for survival and prognosis,

prioritizing items that were statistically significant in the Mann-

Whitney U analysis. Before training, patient identification

information was removed from the raw data for preprocessing,

and categorical variables were encoded using one-hot encoding to
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facilitate processing by the decision tree algorithm. The decision to

split the dataset into 80% training and 20% testing was based on

standard ML practices to balance learning capability and validation

accuracy. Google Colaboratory, a Colabcloud-based service, was

utilized (Hoyos-Rivera et al., 2006) to perform the ML operations.

Training and prediction were performed using a decision tree

classifier, the structure of the tree was visualized by drawing a

plot, and information corresponding to the node was obtained. The

decision tree classifier was configured with a maximum depth of 10

to prevent overfitting. The significance of each variable was

analyzed through seaborn barplot and the accuracy and AUC of

ROC curve were examined. In addition, to evaluate significance of

the features for survival prediction and interpret the ML results, we

utilized the SHapley Additive exPlanations (SHAP). SHAP values

were calculated to quantify the contribution of each feature to the

prediction outcome, providing a clearer picture of model decisions.

This allowed us to identify which features were most influential and

how they interacted to affect survival predictions. The code utilized

in this study can be accessed online (https://github.com/

Nurilee822/sICsandCK_COVID19).
3 Results

3.1 Patients

Of the 100 patients enrolled in the study, 19 died and 81

survived. Among the 100 patients, 49 were diagnosed with

pneumonia and the remaining 51 patients showed mild
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symptoms. The average age was 82.0 and 73.0 years for non-

survivors and survivors, respectively, and 80.0 and 72.0 for

pneumonic and non-pneumonic conditions patients, respectively

(Table 1). Fourteen patients had cancer, 50 had hypertension, 32

had diabetes mellitus (DM), 16 had cardiovascular disease, 36 had

other diseases, and 20 had no relevant medical history. CRAB, CRE,

and MRSA infections were present in six, one, and six patients,

respectively. No statistically significant differences were exhibited in

age, sex, underlying disease, and bacterial infections, such as CRAB,

CRE, and MRSA between the non-survivors and survivors. In

patients with pneumonia, no statistically significant disparity was

observed in age or sex between the pneumonic and non-pneumonic

conditions patients. Among the underlying diseases, cardiovascular

diseases and CRAB bacterial infections were statistically noticeably

increased in the pneumonic patients compared to those in the non-

pneumonic conditions patients. WBC count, N-to-L ratio, PCT,

and CRP were statistically significantly increased in the non-

survivors and pneumonic patient groups compared to the

survivors and non-pneumonic conditions patients.
3.2 sIC regulators and CKs

Among sICs, soluble clusters of differentiation (sCD)27, sCD40,

soluble herpes virus entry mediator (sHVEM), soluble T-cell

immunoglobulin and mucin-domain containing-3 (sTIM-3), and

soluble Toll-like receptor 2 (sTLR-2) were significantly increased in

the non-survivors compared to those in the survivors. Soluble B-

lymphocyte and T-lymphocyte attenuator (sBTLA) and soluble
TABLE 1 Demographics and characteristics of patients with SARS-CoV-2 infection.

Variables

Death Pneumonia

Survivors
(N = 81)

Non-survivors
(N = 19)

P† Non-pneumonic
(N = 51)

Pneumonic
(N = 49)

P

Age, year 73.0 (60.0 – 83.5) 82.0 (72.3 – 84.8) 0.1218 72.0 (58.3 – 84.5) 80.0 (68.5 – 84.3) 0.1248

Gender (Male: Female) 39:42 11:8 0.4467 23:28 27:22 0.3196

Underlying disease (%)
Cancer
Hypertension
Diabetes mellitus
Cardiovascular disease
Others*
None

12 (14.8%)
40 (49.4%)
27 (33.3%)
11 (13.6%)
29 (35.8%)
18 (22.2%)

2 (10.5%)
10 (52.6%)
5 (26.3%)
5 (26.3%)
7 (36.8%)
2 (10.5%)

0.6295
0.7998
0.5571
0.1751
0.9326
0.2537

5 (9.8%)
27 (52.9%)
17 (33.3%)
4 (7.8%)
19 (37.3%)
14 (27.5%)

9 (18.4%)
23 (46.9%)
15 (30.6%)
12 (24.5%)
17 (34.7%)
6 (12.2%)

0.2196
0.5504
0.7717
0.0239
0.7907
0.0586

CRAB (Yes: No) 4:77 2:17 0.3584 0:51 6:43 0.0117

CRE (Yes: No) 0:81 1:18 0.1900 0:51 1:48 0.3076

MRSA (Yes: No) 4:77 2:17 0.3584 2:49 4:45 0.3743

White blood cell count (× 109/L) 5.92 (4.62 – 8.75) 11.01 (7.14 – 17.77) 0.0007 5.17 (4.31 – 7.84) 8.02 (6.22 – 13.2) 0.0007

Neutrophil to lymphocyte ratio 5.02 (2.29 – 9.19) 21.13 (10.42 – 32.14) 0.0002 3.33 (1.95 – 7.68) 11.0 (5.58 – 20.4) <0.0001

Procalcitonin (ng/mL) 0.13 (0.07 – 0.23) 3.66 (0.18 – 17.83) 0.0003 0.12 (0.04 – 0.21) 0.22 (0.11 – 2.12) 0.0047

C-reactive protein (mg/dL) 30.7 (7.6 – 52.9) 69.8 (45.4 – 246.7) 0.0001 17.6 (3.40 – 46.7) 49.2 (33.6 – 94.5) <0.0001
Values are presented as median (IQR).
*Others include dyslipidemia (N=15), chronic kidney disease (N=15), pulmonary tuberculosis (N=6), hepatic disease (N=2), and epilepsy (N=1).
†The p-values indicate the statistical significance of the difference between survival and non-survival in the first and second weeks.
CRE, carbapenem-resistant Enterobacteriaceae; CRAB, carbapenem-resistant Acinetobacter baumannii; MRSA, methicillin-resistant S.aureus.
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lymphocyte-activation gene 3 (sLAG-3) showed significantly lower

values in the non-survivors compared to those in the survivors.

Among CKs, chemokine CC motif ligand 2 (CCL2), granulocyte-

macrophage colony-stimulating factor (GM-CSF), interleukin 6

(IL-6), IL-8, IL-10, IL-13, and tumor necrosis factor-a (TNF-a)
were significantly increased in the non-survivors compared to those

in the survivors. In the case of pneumonia, sBTLA and sLAG-3

among sICs were significantly lowered in the pneumonic patients

compared to those in the non-pneumonic conditions patients, and

sCD40 and sTIM-3 were statistically substantially increased in the

pneumonic patients than those in the non-pneumonic conditions

patients. CK, GM-CSF, and IL-6 levels were higher in pneumonic

patients than in non-pneumonic conditions patients (Table 2,

Figure 1). Figure 1 includes the top three markers (existing

inflammatory markers, sICs, and CK) used in this study. These

markers are ranked based on their P-value, with inclusion only

when the P-value was significant at <0.05.

In correlation analysis showed that CRP has a positive correlation

with sCD40 (r2 = 0.414, P<0.0001), sHVEM (r2 = 0.359, P=0.0002),

TIM-3 (r2 = 0.446, P<0.0004), while showing a significant negative

correlation with sLAG-3 (r2=-0.367, P=0.0002). PCT also shows a

statistically significant positive correlation with sCD40 (r2 = 0.370,

P=0.0014), sHVEM (r2 = 0.318, P=0.0064), and sTIM-3 (r2 = 0.397,

P=0.0006). In case of CK, 11 CKs including CCL2, CCL4, GM-CSF, IL-

1, IL-4, IL-6, IL-9, IL-10, IL-12, and TNF-a showed moderate

correlation with CRP, and/or PCT (Supplementary Table 1).
3.3 Survival analysis

The AUC, cutoff value, sensitivity, and specificity of each

indicator to discriminate non-survivors in patients with COVID-

19 infection are presented in Table 3. The area under the curve for

each indicator ranged from 0.652 to 0.844. IL-6 showed the highest

AUC value (0.844, 95% CI = 0.751 – 0.913), with a sensitivity of

78.9% and specificity of 82.4% at a cut off 21.59 set by the Youden

index (Table 3). When Kaplan-Meier 90-d survival analysis was

performed, patients with factors as follows showed poor prognosis

with statistical significance (Figure 2, Supplementary Figure 1): PCT

over 0.25 ng/mL, CRP over 41.0 mg/dL, WBC over 6.32 × 109/L, N-

to-L ratio over 18.97, sBTLA below 153.86 pg/mL, sCD27 over

3828.8 pg/mL, sCD40 over 1283.61 pg/mL, sTIM-3 over 10230.28

pg/mL, sLAG-3 under 43475.3 pg/mL, sTLR-2 over 857.67 pg/mL,

CCL-2 over 297.51 pg/mL, GM-CSF over 5.28 pg/mL, IL-6 over

21.59 pg/mL, IL-10 over 69.1 pg/mL, IL-13 over 22.05 pg/mL, and

TNF-a over 7.65 pg/mL. Figure 2 includes items that demonstrated

significance in the Kaplan-Meier analysis. The most important

features identified in this analysis were further scrutinized in the

decision tree analysis.

K-means clustering was conducted and the optimal number was

determined to be three. Among clusters 1, 2, and 3, cluster 2

exhibited the poorest prognosis, whereas cluster 3 showed the

most favorable prognosis. Cluster 2 showed statistically significant

final cluster centers with PCT 14.7 ng/mL, CRP 161.52 mg/dL,

N-to-L ratio 43.6, sCD27 37248.92 pg/mL, sTIM-3 17070.16 pg/mL,
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sCD40 6520.67 pg/mL, GM-CSF 14.74 pg/mL, IL-6 1232.37 pg/mL,

and TNF-a 17.32 pg/mL and these values corresponded to the

highest among the three clusters (Supplementary Figure 2).
3.4 ML application for predicting prognosis

The enrolled individuals diagnosed with SARS-CoV-2 were

analyzed utilizing decision tree analysis. Decision tree analysis

was performed based on sICs and CKs, with significantly different

levels between the survivors and non-survivors. The decision tree

and feature importance are shown in Figure 3. According to these

rules, IL-6 was the root node with the largest information gain when

applying the built-in sklearn analysis. In the second layer of the leaf

nodes, the sTIM-3 and sCD40 values were the classification

standards. The conditions where IL-6 exceeded 22.68 and both

sCD40 surpassed 1508.725 and sBTLA was below 315.745, were

classified as non-survivors. Additionally, when the value of IL-6 was

22.68 or below, it was classified as survivors based on sTIM-3 being

below 13015.83 and sCD27 below 927.965. The survival prediction

AUC of the decision tree was 0.803, with an accuracy of 0.9. When

the significance of each variable in the decision tree was analyzed

using a Seaborn bar plot, IL-6, sTIM-3, sCD40, and sBTLA had a

high impact on the model (Figure 3). Furthermore, we used the

SHAP method to identify the most important features of the

enrolled patients and visually explain how these variables affected

the mortality rate. The top 15 most important features of this study

and the SHAP values for each biomarker in the model output are

presented in Figure 4. IL-6, sCD40, and CRP are the top three

important biomarkers associated with a higher predicted 90-d

mortality in patients diagnosed with SARS-CoV-2. In addition,

sTLR-2, GM-CSF, TIM-3, CD27, CCL-2, TNF-a, PCT, N-to-L
ratio, sBTLA, IL-8, IL-10, and IL-13 have been selected as

significant top 15 features (Figure 4).
3.5 Comparing paired samples between 1st

and 2nd weeks with SARS-CoV-2 infection

Among all patients, the sICs and CK values in the 1st and 2nd

weeks were compared pairwise in 48 patients (Table 4; Figure 5).

Among the sICs, the sCD27, sCD28, sCD40, sHVEM, sLAG-3, and

sTIM-3 levels were significantly higher in the 2nd week than those in

the initial week. Among the CKs, CCL2, CCL3, CCL4, IL-8, and IL-

13 showed statistically significant increases in the 2nd week in

comparison with those in the 1st week. On the other hand, IFN-a
significantly decreased in the 2nd week than that in the 1st week. IL-6

did not show a significant statistical variation in values between the

1st and 2nd weeks, and it displayed increased values in the initial

week (12.4 pg/mL, 95% CI: 5.01–32.0) as well as in the 2nd week

(15.4 pg/mL, 95% CI: 4.95–62.7). In addition, IL-10 and GM-CSF

levels did not show statistical significance between the 1st and 2nd

week. All sIC and CK data exhibiting a statistically significant

difference between the values in the two weeks are included in the

supplemental data (Supplementary Figure 3).
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TABLE 2 Levels of soluble type immune checkpoint regulators (sICs) and cytokines (CKs) in patients with SARS-CoV-2 infection .

Pneumonia

monic
1)

Pneumonic
(N = 49)

P

– 399.0) 191.5 (115.6 – 283.9) 0.0429

– 8295.3) 6379.3 (3557.3 – 11818.0) 0.054

– 2904.9) 2285.2 (1619.6 – 3241.3) 0.8496

1194.8) 1283.6 (837.2 – 2148.7) 0.0055

81.5) 40.8 (26.9 – 63.3) 0.2467

74.2) 36.7 (29.9 – 72.7) 0.7101

9.16) 6.13 (4.13 – 8.60) 0.3929

98.6) 45.4 (27.0 – 92.6) 0.4598

134.7) 81.6 (23.1 – 137.5) 0.4443

– 5858.0) 4768.5 (3609.9 – 6799.7) 0.1937

– 911.6) 383.0 (227.0 – 829.0) 0.1081

– 69643.6) 43475.3 (27070.0 – 60494.2) 0.0474

– 531.5) 340.6 (268.0 – 478.7) 0.6391

80.0) 50.9 (35.2 – 68.2) 0.1996

– 16015.4) 12354.4 (9826.5 – 14105.5) 0.0692

– 7850.8) 7328.6 (4653.7 – 10976.7) 0.0142

1250.4) 1015.3 (819.9 = 1378.8) 0.3868

248.1) 157.7 (101.9 – 324.5) 0.2509

9.17) 8.38 (4.46 – 16.13) 0.3760

60.7) 64.8 (31.4 – 113.5) 0.0582

105.8) 50.9 (26.7 – 131.0) 0.9588

4.63) 3.82 (2.32 – 11.12) 0.0354

2.28) 1.38 (0.52 – 4.05) 0.7565

7.53) 1.09 (0.83 – 2.84) 0.1259

68.3) 38.7 (17.7 – 117.3) 0.0789

(Continued)

Le
e
e
t
al.

10
.3
3
8
9
/fcim

b
.2
0
2
4
.13

9
72

9
7

Fro
n
tie

rs
in

C
e
llu

lar
an

d
In
fe
ctio

n
M
icro

b
io
lo
g
y

fro
n
tie

rsin
.o
rg

0
6

Variables

Death

Survivors
(N = 81)

Non-survivors
(N = 19)

P† Non-pneu
(N =

sICs
(pg/ml)

sBTLA 247.2 (153.9 – 372.2) 153.9 (96.7 – 245.6) 0.0247 247.2 (163.3

sCD27 4231.8 (2385.2 – 9699.4) 7384.6 (4347.1 – 15410.6) 0.0112 3860.6 (2390.2

sCD28 2233.5 (1619.6 – 3041.7) 1873.8 (1632.3 – 3072.8) 0.8056 2211.7 (1632.3

sCD40 919.1 (767.6 – 1276.6) 1950.3 (1303.6 – 5466.7) 0.0001 885.6 (691.5

sCD80/B7-1 48.8 (30.4 – 76.9) 34.5 (17.9 – 55.8) 0.1188 50.8 (33.4

sCD86/B7-2 43.5 (26.6 – 72.9) 36.7 (18.9 – 70.7) 0.3891 43.5 (23.0

sCTLA-4 6.35 (4.57 – 8.66) 7.25 (4.24 – 8.77) 0.6958 6.56 (5.41

sGITR 61.4 (30.3 – 98.4) 43.1 (23.4 – 83.1) 0.4154 73.2 (31.1

sGITRL 89.7 (42.8 – 148.2) 49.9 (21.4 – 98.8) 0.0621 87.6 (42.4 –

sHVEM 4230.7 (3257.3 – 5818.1) 5846.8 (4121.1 – 12682.2) 0.0456 4099.0 (3219.8

sICOS 513.1 (315.0 – 867.8) 294.6 (164.2 – 718.3) 0.0548 577.2 (316.9

sLAG-3 49161.3 (37125.3 – 69626.4) 36111.1 (19124.2 – 59842.4) 0.0402 55818.7 (36559.

sPD-1 356.3 (260.2 – 492.8) 389.7 (316.6 – 663.8) 0.3449 373.9 (276.7

sPD-L1 52.3 (37.8 – 76.0) 54.5 (36.9 – 68.4) 0.9930 59.2 (41.6

sPD-L2 13443.0 (10609.1 – 14858.1) 12368.7 (10861.3 – 15605.3) 0.8460 13800.6 (10906.

sTIM-3 5637.0 (3977.6 – 8142.7) 11749.4 (6674.2 – 14169.8) 0.0002 5301.3 (3791.2

sTLR-2 944.4 (675.6 – 1208.9) 1121.7 (907.1 – 1801.9) 0.0251 992.9 (622.8

CKs
(pg/ml)

CCL2 128.0 (84.0 – 235.8) 298.5 (112.9 – 556.9) 0.0163 123.8 (83.4

CCL3 6.06 (3.15 – 11.3) 5.53 (3.0 – 26.5) 0.5683 4.78 (2.30

CCL4 45.2 (28.6 – 72.9) 84.6 (34.1 – 155.7) 0.0630 42.7 (25.5

CXCL10 51.6 (27.2 – 98.3) 83.9 (28.8 – 189.1) 0.1189 56.8 (30.6 –

GM-CSF 2.69 (1.13 – 4.63) 9.66 (4.63 – 14.84) 0.0013 2.36 (0.94

IFN-a 0.85 (0.49 – 2.86) 2.05 (1.37 – 4.02) 0.1766 0.93 (0.63

IFN-g 1.48 (0.77 – 4.32) 1.02 (0.87 – 1.46) 0.3707 1.60 (0.80

IL-10 27.6 (12.1 – 59.7) 83.0 (28.7 – 233.0) 0.0023 29.0 (12.1
5

–

–

–

–

–

0

–

9

–

–

–

–

–

–

–

–
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TABLE 2 Continued

Death Pneumonia

Non-survivors
(N = 19)

P† Non-pneumonic
(N = 51)

Pneumonic
(N = 49)

P

3.47 (2.43 – 7.60) 0.1074 3.06 (2.43 – 3.47) 3.06 (2.18 – 4.12) 0.8348

22.4 (13.5 – 24.8) 0.0199 13.5 (10.0 – 21.5) 16.9 (13.5 – 22.1) 0.1967

2.96 (1.63 – 4.33) 0.0697 1.97 (1.32 – 3.24) 2.31 (1.63 – 3.36) 0.1949

0.69 (0.34 – 1.47) 0.3495 0.53 (0.34 – 0.91) 0.53 (0.32 – 0.96) 0.7892

0.22 (0.06 – 0.30) 0.4442 0.12 (0.07 – 0.20) 0.12 (0.06 – 0.29) 0.5675

72.8 (23.8 – 392.5) <0.0001 6.32 (1.73 – 18.6) 16.4 (9.25 – 67.8) 0.0042

24.8 (12.7 – 187.5) 0.0033 12.0 (7.63 – 22.6) 16.4 (9.51 – 28.6) 0.1410

8.89 (5.31 – 16.0) 0.0082 5.31 (2.85 – 8.33) 7.62 (3.74 – 10.8) 0.0346

non-survival in the first and second weeks.
T-lymphocyte-associated protein 4; GITR, glucocorticoid-induced TNFR-related protein; GITRL, ligand for receptor TNFRSF18/AITR/GITR; HVEM, herpes virus entry mediator;
mmed cell death protein 1; PD-L1, programmed death-ligand 1; TIM-3, T-cell immunoglobulin and mucin-domain containing-3; TLR-2, Toll-like receptor 2; CCL, chemokine CC
e colony-stimulating factor; IFN, Interferon; IL, Interleukin; TNF, tumor necrosis factor.
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Variables Survivors
(N = 81)

IL-12p70 3.06 (2.23 – 3.47)

IL-13 15.8 (12.7 – 19.8)

IL-1a 2.09 (1.42 – 2.97)

IL-1b 0.53 (0.29 – 0.91)

IL-4 0.12 (0.06 – 0.20)

IL-6 8.28 (1.82 – 16.9)

IL-8 11.8 (7.85 – 20.1)

TNF-a 5.28 (2.85 – 8.56)

Values are presented as median (IQR).
*Total number of patients available for measurement of cytokine levels.
†The p-values indicate the statistical significance of the difference between survival and
BTLA, B- and T-lymphocyte attenuator; CD, cluster of differentiation; CTLA-4, cytotoxi
ICOS, inducible T-cell costimulator; LAG-3, lymphocyte-activation gene 3; PD-1, progr
motif ligand; CXCL, C-X-C motif chemokine ligand; GM-CSF, Granulocyte-macropha
c
a
g
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4 Discussion

In this study, several sICs and CKs were measured among those

with SARS-CoV-2 diagnosed patients and the values in the

survivors and non-survivors, and pneumonic and non-pneumonic

conditions groups were compared. In addition, the clinical value of

sICs and CKs was analyzed as additional markers useful for

predicting prognosis along with existing clinical indicators. In

addition to basic statistical analysis, ML analysis was used to

screen factors of high importance. Assessing the significance of

different biomarkers in predicting prognosis and assigning priority

orders has considerable clinical relevance. During the extended

period of SARS-CoV-2 infection, various studies have analyzed the

prognostic prediction of several infection factors, including CRP,

PCT, and CKs. However, few studies have comprehensively

analyzed these markers and explored their relationships. Hence,

in this study, the simultaneous measurement of various infection

markers, sICs, and CKs was conducted, and the significance of each

marker in predicting the prognosis of individuals affected by SARS-

CoV-2 was analyzed.

WBC, N-to-L, PCT, and CRP, which have previously been

noted to be significant in predicting the prognosis of patients

diagnosed to SARS-CoV-2 (Ponti et al., 2020; Bedel and Korkut,
Frontiers in Cellular and Infection Microbiology 08
2021; Agarwal, 2022), were significantly higher in the non-survivors

and pneumonic patients compared to those in the survivors and

non-pneumonic conditions patients in this study. Among the sICs,

sCD27, sCD40, sHVEM, and sTIM-3 showed considerably elevated

values in the non-survivors than those in the survivors and sLAG-3

showed markedly reduced values in the non-survivors compared to

those in the survivors. In case of CKs, CCL-2, GM-CSF, IL-6, IL-8,

IL-10, IL-13, and TNF-alpha were statistically noticeably raised in

the non-survivors compared to those in the survivors. All of these

factors, except sLAG-3, showed worse prognosis in patients with

elevated values than in those with decreased values in the Kaplan-

Meier analysis. In the case of sLAG-3, the prognosis was worse in

patients with lower values than in those with higher values. sICs

play an important role in immune-mediated infection control by

inducing immune responses that activate effector functions across

diverse immune cells during viral infections (Bullock, 2017;

Remedios et al., 2019; Deng et al., 2021; Joseph et al., 2021).

Among the sICs, CD27 and CD40, which were identified as

factors with high prognostic power through ML analysis in this

study, play important roles in promoting the survival and effector

functions of natural killer/T cells in viral infection, IFN-I response,

and inhibition of its signaling (Yao et al., 2016; Bullock, 2017;

Remedios et al., 2019; Deng et al., 2021). CD27 supports the initial
FIGURE 1

Comparison of clinical markers, sICs, CKs in mild symptom (N=48), pneumonia (N=33), and death (N=19) in patients infected with SARS-CoV-2 by
Mann-Whitney U test.
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activation and proliferation of T-cells, effectively enhancing their

cytolytic and cytokine functions of cells (Bullock, 2017). The

increase in sCD27 has been reported to play a crucial role in

augmenting the appropriate immune cell response while

inhibiting T cell proliferation (Penatzer et al., 2022). CD40,

expressed on CD4+ T cells, also plays a significant role in

stimulating T cells and promoting the formation of germinal

centers and antibody class switching. Additionally, CD40 is

associated with various cellular immune processes, such as T and

B cell activation and apoptosis. It has been documented to function

as a proinflammatory mediator in inflammatory diseases and may

serve as an indicator for sepsis mortality (de Freitas E Silva and von

Stebut, 2021; Liu et al., 2022). While we measured CD40, we could

not include CD40L due to the unavailability of a commercial kit.

CD40L, expressed on activated T cells, interacts with CD40 on

various cell types, playing a crucial role in immune responses. The

soluble form of CD40L (sCD40L) can exacerbate inflammation and

contribute to the cytokine storm seen in severe SARS-CoV-2

infection (Hashem et al., 2014; Soong et al., 2014). Without

CD40L data, our understanding of the CD40-CD40L interaction

and its effects on immune activation is incomplete. Future studies

should measure both CD40 and CD40L to fully elucidate their roles

in immune modulation and severe COVID-19 outcomes. Including

these measurements will provide deeper insights into the

pathophysiology of the disease and inform better therapeutic

strategies. Furthermore, a recent study investigating immune
Frontiers in Cellular and Infection Microbiology 09
checkpoint molecules and the expression of CD39 demonstrated

that the co-expression of TIM-3 and CD39 was a significant

predictor of severe COVID-19 (Gambichler et al., 2024). These

cellular expressions could serve as important prognostic markers.

Additionally, TIM-3 and LAG-3 are indicators of CD8+ T cell

exhaustion and are associated with the overexpression of immune

inhibitory factors due to T cell exhaustion during SARS-CoV-2

infection (Wherry and Kurachi, 2015; Diao et al., 2020). Through

this study, which expanded the number of patients infected with

SARS-CoV-2, we were able to confirm that sICs, such as CD27,

CD40, and TIM-3, have survival prediction significance. These

results are expected to provide supporting evidence for the

potential use of sICs as diagnostic and prognostic factors for viral

infections, including those caused by SARS-CoV-2. One important

consideration is that the sample collection period for this study

coincided with the subsequently emerging omicron variant, which

has higher transmissibility than the delta variant, is associated with

lower clinical severity (Shrestha et al., 2022; Wolf et al., 2023).

SARS-CoV-2 infection evolves depending on the timing of

infection, exhibiting different host innate immune responses for

each variant with distinct characteristics (Wolf et al., 2023). The

values of sICs and CKs analyzed in this study may also show

differences in quantification compared to those of patients collected

during different infection periods. Therefore, further research is

required to longitudinally compare the sICs and CKs values for each

time period. Furthermore, the 14 and 50 patients included in this
TABLE 3 Area under the Receiver Operating Characteristic (ROC) curve, 95% confidence interval, cut-off point, sensitivity, specificity, p-value to
discriminate non-survival in patients with COVID-19 infection.

Indicator Area under the ROC curve
(95% CI)

Cut-
off point

Sensitivity
(%)

Specificity
(%)

P-value

White blood cell count (× 109/L) 0.750 (0.653 – 0.831) 6.32 89.5 51.9 <0.001

Neutrophil to lymphocyte ratio 0.822 (0.733 – 0.891) 18.97 63.2 91.4 <0.001

Procalcitonin (ng/mL) 0.797 (0.686 – 0.883) 0.25 68.8 78.6 <0.001

C-reactive protein (mg/dL) 0.791 (0.698 – 0.866) 41.0 84.2 66.7 <0.001

sBTLA (pg/ml) 0.666 (0.564 – 0.758) 153.86 57.9 72.5 0.015

sCD27 (pg/ml) 0.687 (0.587 – 0.776) 3828.8 89.5 45.7 0.005

sCD40 (pg/ml) 0.787 (0.694 – 0.863) 1283.61 78.9 76.5 <0.001

sLAG-3 (pg/ml) 0.652 (0.550 – 0.744) 43475.3 68.4 64.2 0.0342

sTIM-3 (pg/ml) 0.776 (0.682 – 0.854) 10230.28 63.2 90.1 <0.001

sTLR-2 (pg/ml) 0.666 (0.564 – 0.757) 857.67 89.5 43.2 0.016

CCL2 (pg/ml) 0.678 (0.577 – 0.768) 297.51 52.6 88.9 0.033

GM-CSF (pg/ml) 0.767 (0.660 – 0.854) 5.28 73.3 80.3 <0.001

IL-6 (pg/ml) 0.844 (0.751 – 0.913) 21.59 78.9 82.4 <0.001

IL-8 (pg/ml) 0.717 (0.619 – 0.803) 23.88 52.6 84.0 0.003

IL-10 (pg/ml) 0.726 (0.627 – 0.811) 69.1 57.1 80.0 <0.001

IL-13 (pg/ml) 0.699 (0.583 – 0.799) 22.05 57.1 85.5 0.023

TNF-a (pg/ml) 0.704 (0.595 – 0.799) 7.65 61.1 72.7 0.007
BTLA, B- and T-lymphocyte attenuator; CD, cluster of differentiation; LAG-3, lymphocyte activation gene 3; TIM-3, T-cell immunoglobulin and mucin-domain containing-3; TLR-2, Toll-like
receptor 2; CCL, chemokine CC motif ligand; CXCL, C-X-C motif chemokine ligand; GM-CSF, Granulocyte-macrophage colony-stimulating factor; IL, Interleukin; TNF, tumor necrosis factor.
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paper have cancer and hypertension respectively, as an underlying

disease. We compared the sICs values based on cancer and/or

hypertension status to exclude the impact of their sICs values on the

analysis of COVID-19. Statistical analysis using the Mann-Whitney

test showed no significant differences in any of the sICs. Although

the clinical utility of sICs is currently limited due to constraints such

as testing costs and turnaround time, it is anticipated that the use of

sICs in clinical practice for viral infections as disease progression

and/or prediction markers will expand in the future.

In this study, ML was used to more clearly and comprehensively

investigate the clinical significance and prognostic impact of these

markers. To the best of our knowledge, only a few studies have
Frontiers in Cellular and Infection Microbiology 10
discriminated the significance of sICs and CKs using ML. Various

artificial intelligence algorithms, including ML, are expected to be

used in various ways as decision-making tools in the medical field

(Wang K. et al., 2021; Wang L. et al., 2021; Feng et al., 2022; Hu

et al., 2022; Shehab et al., 2022; Sorayaie Azar et al., 2022). In this

study, we utilized K-means clustering to handle high-dimensional

data, simplifying the analysis and further stratifying patient cohorts.

This approach indirectly enables the identification of the most

informative markers, as the centroids of the clusters represent the

average characteristics of the data points within each cluster

(Shehab et al., 2022). Moreover, the ML algorithms DT and

SHAP were used as auxiliary prediction tools for patients
FIGURE 2

Kaplan-Meier curves of soluble immune checkpoints (sICs) and cytokines for the overall survival in patients infected with SARS-CoV-2. The green
and blue lines represent patient groups divided based on the Youden index for each item. The green line represents patients with an unfavorable
prognosis in the Kaplan-Meier analysis, while the blue line indicates a patient group showing a relatively favorable prognosis. Increased level of sICs,
including sCD27, sCD40, and sTIM-3, were significantly associated with poor prognosis in the log-rank test. Decreased level of sBTLA was correlated
with poor prognosis. In case of cytokines, increased levels of IL-6 and IL-13 were associated with a poor prognosis.
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diagnosed with SARS-CoV-2 infection. DT is a supervised learning

method that can predict and classify large datasets using simple

logic (Lundberg et al., 2020; Sorayaie Azar et al., 2022; International

BR, 2023). SHAP also provides consistent interpretability, helps

elucidate the decision-making process, and determines the

significance of each feature in the prediction (The Lancet

Respiratory M, 2018; Watson et al., 2019). ML analysis has the

advantage of not only accurately classifying and predicting

specimens through learning from observations and logic, but also

enabling decision-making, excluding subjective factors. In this

study, IL-6 showed the highest importance in predicting mortality
Frontiers in Cellular and Infection Microbiology 11
using both the DT and SHAP methods. This aligns with the

outcomes of the ROC curve analysis, which showed that IL-6 had

the highest AUC value among all factors, including existing

infection markers such as CRP and PCT. It has been reported

that IL-6 induces disease, is related to CK storm, and is helpful in

predicting survival prognosis (Copaescu et al., 2020; Gubernatorova

et al., 2020; Majidpoor and Mortezaee, 2022). The results of this

study, which included a larger number of individuals with SARS-

CoV-2 infection than previous studies and utilized both ML and

performance analyses, further support the value of IL-6 in clinical

practice. Additionally, through DT and SHAP, it was observed that
FIGURE 3

Decision tree analysis for predicting the survival in patients infected with SARS-CoV-2. (A) In each node, gini represented the quantified value of
purity in the node, and a sample is the number of patients. The color demonstrate represents the class that encompasses the majority of samples
within each node, and orange color for survivors and blue for non-survivors. In the prediction processing, at the root node, the patients were divided
into two groups, with IL-6 value ≤22.68 or not. Then, the divided patients were classified by the second layer leaf node with sTIM-3 or sCD40.
(B) The survival prediction AUC of the decision tree was 0.803 and (C) IL-6, sTIM-3, sCD40, sBTLA, and IL-13 were shown to be most important
features among sICs and CKs.
FIGURE 4

The top 15 risk factors evaluated by the average absolute SHAP value. The SHAP value (x-axis) is a unified index that responds to the influence of a
mortality in the model, and the feature ranking (y-axis) indicates the importance of the predictive model. All patients’ attributes for the outcome are
plotted in rows, as colored dots, where red and blue dots represent the high risk values and low risk values, respectively.
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sCD27, sCD40, and sTIM-3 among sICs and IL-13 and TNF-alpha

among CKs were highly important in survival prediction. In the

future, for the prediction of mortality from SARS-CoV-2 infection,

the use of sICs and CKs, in addition to existing infection markers,
Frontiers in Cellular and Infection Microbiology 12
could be helpful. IL-6 is expected to be the most effective marker for

survival prediction.

In addition, in this study, it was possible to perform a paired t-test

analysis on the difference in values between the 1st and 2nd weeks in
TABLE 4 Comparison of differences in median values according to measurement time of paired samples using Wilcoxon-rank test.

Variables
Paired samples

1st week (N = 48) 2nd week (N = 48) P

sICs
(pg/ml)

sBTLA 228.7 (138.4 – 352.6) 217.4 (170.4 – 331.8) 0.0845

sCD27 4912.4 (2812.8 – 10300.7) 6685.6 (3653.4 – 12317.0) 0.0048

sCD28 1989.0 (1556.5 – 3198.1) 2702.3 (2110.5 – 3927.3) 0.0001

sCD40 986.7 (814.9 – 1454.0) 1181.6 (825.0 – 1674.6) 0.0042

sCD80/B7-1 45.2 (25.9 – 76.5) 44.3 (28.4 – 92.4) 0.3051

sCD86/B7-2 67.9 (32.5 – 92.7) 50.4 (20.1 – 92.3) 0.5538

sCTLA-4 8.14 (5.96 – 10.3) 3.91 (2.55 – 6.56) 0.1250

sGITR 54.2 (27.0 – 89.5) 63.3 (47.6 – 89.9) 0.2078

sGITRL 72.4 (28.3 – 163.8) 86.7 (46.1 – 145.2) 0.0528

sHVEM 4337.1 (3326.9 – 6123.6) 4958.6 (4166.0 – 6873.9) 0.0074

sICOS 555.8 (316.9 – 932.2) 528.3 (334.0 – 847.0) 0.4157

sLAG-3 44645.1 (28294.2 – 64357.4) 59051.5 (41215.4 – 77281.5) 0.0042

sPD-1 323.0 (241.4 – 479.7) 375.5 (269.9 – 497.0) 0.5797

sPD-L1 50.0 (42.8 – 62.0) 51.9 (37.5 – 72.1) 0.2146

sPD-L2 12358.0 (9977.8 – 14492.0) 13138.3 (10454.2 – 14641.9) 0.6666

sTIM-3 5834.6 (4043.1 – 9295.0) 7469.1 (5029.4 – 9410.2) 0.0001

sTLR-2 917.3 (670.9 – 1229.6) 837.2 (619.3 – 1161.0) 0.0131

CKs
(pg/ml)

CCL2 129.8 (80.9 – 216.8) 227.9 (132.3 – 296.7) 0.0007

CCL3 16.0 (4.03 – 33.0) 44.4 (26.5 – 58.0) 0.0002

CCL4 34.2 (26.1 – 91.4) 113.7 (37.2 – 380.5) 0.1250

CXCL10 68.1 (25.0 – 108.9) 56.1 (27.7- 105.1) 0.1142

GM-CSF 3.09 (1.38 – 6.36) 4.17 (1.85 – 6.17) 0.7802

IFN-a 4.40 (0.64 – 30.9) 0.86 (0.09 – 2.46) 0.0105

IFN-g 1.44 (0.67 – 4.00) 2.09 (1.20 – 5.12) 0.5570

IL-10 32.8 (15.5 – 81.8) 26.8 (11.8 – 52.4) 0.1756

IL-12p70 3.06 (2.43 – 3.47) 3.06 (1.26 – 4.12) 0.7350

IL-13 16.9 (13.5 – 20.5) 24.5 (19.4 – 36.3) 0.0008

IL-1a 2.30 (1.63 – 2.99) 2.46 (1.32 – 3.82) 0.0723

IL-1b 0.53 (0.36 – 0.91) 0.53 (0.20 – 1.62) 0.2134

IL-4 0.15 (0.06 – 0.24) 0.29 (0.11 – 0.47) 0.0987

IL-6 12.4 (5.01 – 32.0) 15.4 (4.95 – 62.7) 0.0951

IL-8 14.4 (8.90 – 22.3) 20.4 (13.1 – 28.1) 0.0041

TNF-a 6.26 (2.85 – 9.21) 5.45 (3.67 – 10.8) 0.2865
BTLA, B- and T-lymphocyte attenuator; CD, cluster of differentiation; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; GITR, glucocorticoid-induced TNFR-related protein; GITRL,
ligand for receptor TNFRSF18/AITR/GITR; HVEM, herpes virus entry mediator; ICOS, inducible T-cell costimulator; LAG-3, lymphocyte-activation gene 3; PD-1, programmed cell death
protein 1; PD-L1, programmed death-ligand 1; TIM-3, T-cell immunoglobulin and mucin-domain containing-3; TLR-2, Toll-like receptor 2; CCL, chemokine CC motif ligand; CXCL, C-X-C
motif chemokine ligand; GM-CSF, Granulocyte-macrophage colony-stimulating factor; IFN, Interferon; IL, Interleukin; TNF, tumor necrosis factor.
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the expanded patient group and discriminate sICs and/or CKs that

significantly increased or decreased in the second week. sICs, such as

sCD27, sCD40, aTIM-3, and sLAG-3, and CKs, such as IL-13, which

were found to have a high correlation with prognosis in this study,

showed significant differences over time. In contrast, IL-6 levels did

not show a significant difference between the first and second weeks,

and increased to high levels even in the early stages of infection. IL-6

has been previously reported as an early increase marker (Waje-

Andreassen et al., 2005), and is widely recognized for its pivotal role

in severe inflammatory responses, including the cytokine storm

(Grebenciucova and VanHaerents, 2023). Additionally, sCD27 and

sCD40 have been shown to play significant roles in immune

responses in conditions such as sepsis and viral infections (Lee

et al., 2022), while sTIM-3 has been linked to T cell exhaustion,

particularly in chronic viral infections and cancers (Paranga et al.,

2024). However, despite the substantial research on their clinical

relevance, there are limited reports on the temporal dynamics of IL-6

elevation during SARS-CoV-2 infection. The results of this study

suggest that IL-6 is a valuable prognostic marker that increases

significantly even in the early stages of infection.

The limitations of this study were as follows. First, it was affected by

a selection bias owing to its retrospective nature. If the predictive model

is validated in a multicenter cohort in future follow-up studies, the

predictive ability of the ML algorithm is expected to become more

reliable. Second, as a comparison with healthy controls was not possible

for the measurement of sICs and CKs, a more objective evaluation

would be possible if additional comparisons with healthy controls were
Frontiers in Cellular and Infection Microbiology 13
conducted in future research. In addition, most non-survivors in this

study (16 of 19) were classified as pneumonia-related deaths and the

analysis of the prognosis among patients with pneumonia was limited

compared to that of deceased patients. Furthermore, the overall

number of non-survivors is relatively low compared to the number

of survivors. This disparity may be partially attributed to the clinical

manifestations associated with the Omicron variant. It is necessary to

conduct follow-up studies involvingmore non-survivor patients. Third,

we aimed to elucidate the relationship between co-infection with

viruses, bacteria, and fungi in COVID-19 and sIC. However, it was

challenging to determine statistical significance because of the limited

number of patients infected with multidrug-resistant bacteria. We

intend to continue this research in follow-up studies.

In conclusion, this study simultaneously measured various sIC

and CK levels along with previous infection markers in hospitalized

patients with SARS-CoV-2 infection and designed a process that

could be used in actual clinical practice by utilizing the ML algorithm.

sICs and CKs are expected to be more actively used in the future for

the prognostic prediction of viral infections, including SARS-CoV-2.

This study is expected to be helpful as a basis for the appropriate

selection of factors for use as markers in medical practice among the

numerous types of sICs and CKs in patients with severe form of

SARS-CoV-2. Further research is essential, particularly increasing the

sample size to enhance the study’s robustness and statistical power.

Larger cohorts will improve reliability and allow precise evaluation of

the clinical utility of various sICs and CKs, advancing prognostic

predictions for viral infections in clinical practice.
FIGURE 5

Comparison of sIC and CK levels between the first and second weeks after SARS-CoV-2 infection by paired Wilcoxon-rank test. sCD27 showed
median level of 4912.4 pg/mL in first week and increased to 6685.6 pg/mL in the second week (P = 0.0048). sCD40 showed median level of 986.7
pg/mL and 1181.6 pg/mL, in first and second weeks respectively (P = 0.0042). sHVEM (P = 0.0074), CCL2 (P = 0.0007), and IL-13 (P = 0.0008) also
displayed significantly increased values at second week compared to those in the first week. IFN-a showed a significantly lower value in the second
week (0.86 pg/mL) compared to that in the first week (4.40 pg/mL, P = 0.0105).
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