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Microbial signatures predictive
of short-term prognosis in
severe pneumonia
Shen-Shen Huang1†, Jia-Yong Qiu1,2†, Shuang-Ping Li1†,
Ya-Qing Ma1, Jun He1, Li-Na Han1, Long-Long Jiao1,
Chong Xu1, Yi-Min Mao1* and Yong-Mei Zhang1*

1Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of
Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 2Department of
Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University,
Shijiazhuang, China
Objective: This retrospective cohort study aimed to investigate the composition

and diversity of lung microbiota in patients with severe pneumonia and explore

its association with short-term prognosis.

Methods: A total of 301 patients diagnosed with severe pneumonia underwent

bronchoalveolar lavage fluid metagenomic next-generation sequencing (mNGS)

testing from February 2022 to January 2024. After applying exclusion criteria,

236 patients were included in the study. Baseline demographic and clinical

characteristics were compared between survival and non-survival groups.

Microbial composition and diversity were analyzed using alpha and beta

diversity metrics. Additionally, LEfSe analysis and machine learning methods

were employed to identify key pathogenic microorganism associated with

short-term mortality. Microbial interaction modes were assessed through

network co-occurrence analysis.

Results: The overall 28-day mortality rate was 37.7% in severe pneumonia. Non-

survival patients had a higher prevalence of hypertension and exhibited higher

APACHE II and SOFA scores, higher procalcitonin (PCT), and shorter

hospitalization duration. Microbial a and b diversity analysis showed no

significant differences between the two groups. However, distinct species

diversity patterns were observed, with the non-survival group showing a higher

abundance of Acinetobacter baumannii, Klebsiella pneumoniae, and

Enterococcus faecium, while the survival group had a higher prevalence of

Corynebacterium striatum and Enterobacter. LEfSe analysis identified 29

distinct terms, with 10 potential markers in the non-survival group, including

Pseudomonas sp. and Enterococcus durans. Machine learning models selected

16 key pathogenic bacteria, such as Klebsiella pneumoniae, significantly

contributing to predicting short-term mortality. Network co-occurrence

analysis revealed greater complexity in the non-survival group compared to

the survival group, with differences in central genera.
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Conclusion: Our study highlights the potential significance of lung microbiota

composition in predicting short-term prognosis in severe pneumonia patients.

Differences in microbial diversity and composition, along with distinct microbial

interaction modes, may contribute to variations in short-term outcomes. Further

research is warranted to elucidate the clinical implications and underlying

mechanisms of these findings.
KEYWORDS

severe pneumonia, lung microbiota, short-term prognosis, microbial diversity,
pathogenic bacteria, machine learning
1 Introduction

Pneumonia represents a significant global health burden,

contributing substantially to morbidity and mortality worldwide

(Ventola, 2015; Liu et al., 2016; Diseases and Injuries, 2020). Severe

pneumonia-related mortality is a significant cause of in-hospital

death among patients. It is estimated that approximately 100,000

pneumonia patients require admission to the intensive care unit

(ICU) for mechanical ventilation (MV) annually (Spindler and

Ortqvist, 2006; Mandell et al., 2007). Among severe pneumonia

patients admitted to the ICU, the risk of mortality is highest, with

approximately 20-50% of ICU pneumonia patients succumbing to

the illness (Rodriguez et al., 2009; Valles et al., 2014; Walden et al.,

2014; Lee et al., 2020). Timely and accurate determination of the

etiology of pneumonia is imperative for initiating targeted therapeutic

interventions effectively. However, conventional microbiological tests

currently used often exhibit limitations in terms of sensitivity, speed,

and the breadth of detectable pathogens (Jain et al., 2015). For

instance, even with optimal clinical diagnostics, only 38% of adults

with community-acquired pneumonia have a contributory pathogen

detected, primarily due to the limitations of culture-based methods

and the restricted spectrum of microbes detectable by serologic and

polymerase chain reaction assays (Jain et al., 2015; Song et al., 2016).

In the absence of a definitive microbiologic diagnosis, clinicians may

resort to empiric treatments, such as corticosteroids, potentially

exacerbating occult infections (Cilloniz et al., 2021). Moreover,

concerns about falsely negative results often lead to the continued

use of empiric antibiotics, contributing to antibiotic resistance and

increasing the risk of secondary infections (Antimicrobial Resistance

Collaborators, 2022). Despite early antimicrobial treatment and

support measures, mortality due to severe pneumonia is still very

high and new approaches in respiratory therapy are being sought to

try to improve their outcomes (Prina et al., 2015).

Recent advancements in genome sequencing offer promise in

addressing these diagnostic challenges by enabling culture-

independent assessment of microbial genomes from minute

clinical samples (Chiu and Miller, 2019). Meta-genomic next-

generation sequencing (mNGS) has emerged as a valuable tool for

the rapid and actionable diagnosis of complicated infections,
02
including pulmonary infectious (Li et al., 2020; Shi et al., 2020) or

distinguished noninfectious diseases (Peng et al., 2021). Several

studies have demonstrated the utility of mNGS in improving the

diagnosis of pulmonary infectious by identifying a broader range of

pathogens than conventional methods, including bacteria, viruses,

fungi, and atypical organisms (Chen et al., 2021; Jin et al., 2022;

Meng et al., 2023). For example, a recent multicenter study reported

that mNGS detected pathogens in approximately 80% of cases

where conventional methods failed to yield a diagnosis,

highlighting its superior sensitivity compared to traditional

approaches (Xie et al., 2021). Moreover, mNGS has shown

promise in guiding antimicrobial therapy decisions by providing

rapid and comprehensive pathogen identification, thereby

facilitating targeted treatment strategies and potentially reducing

the unnecessary use of broad-spectrum antibiotics (Xu et al., 2023).

Beyond its role in pathogen detection, mNGS offers valuable

insights into the lung microbiome, which plays a critical role in

maintaining respiratory health and modulating immune responses

(Budden et al., 2019; Natalini et al., 2023). Emerging evidence

suggests that dysbiosis of the lung microbiome, characterized by

alterations in microbial composition and diversity, may contribute

to the pathogenesis of pneumonia and influence disease outcomes

(Montassier et al., 2023). Furthermore, changes in the lung

microbiome have been observed in various disease states,

including chronic obstructive pulmonary disease (COPD) (Wang

et al., 2016), asthma (Hufnagl et al., 2020), and cystic fibrosis

(Cuthbertson et al., 2020), underscoring the importance of

understanding microbial dynamics in respiratory health

and disease.

Machine learning (ML) techniques have also been increasingly

applied to microbiome data to predict disease outcomes and guide

clinical decisions. ML algorithms can integrate complex datasets,

identifying key molecular or microbiome signatures, improving

diagnostic accuracy and unfavorable clinical outcomes (Li et al.,

2022). These predictive models can enhance the speed and precision

of pneumonia diagnosis, enabling personalized therapeutic

interventions (Montassier et al., 2023).

Given the potential of mNGS to provide comprehensive

insights into both pathogen detection and lung microbiome
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composition, there is growing interest in exploring its role

in predicting disease outcomes and guiding personalized

therapeutic interventions. However, the relationship between

microbial dysbiosis and clinical outcomes in severe pneumonia

remains poorly understood. Therefore, the aim of this study is to

investigate the association between changes in the lung microbiome

and 28-day mortality in patients with severe pneumonia using

mNGS technology. By analyzing microbial composition data

obtained through mNGS alongside clinical parameters, we seek to

identify microbial biomarkers associated with disease severity and

patient outcomes. Insights gained from this research could

contribute to the development of personalized management

strategies and enhance the prognostic accuracy of severe

pneumonia, ultimately leading to improved patient outcomes.
2 Materials and methods

2.1 Study design

This retrospective study enrolled critically ill pneumonia patients

admitted to the Respiratory Intensive Care Unit (RICU) of the First

Affiliated Hospital of Henan University of Science and Technology

from February 1, 2022, to January 30, 2024. The Inclusion Criteria

included; (1) Patients were included if they met the diagnostic criteria

for severe community-acquired pneumonia (CAP) according to the

American Thoracic Society and Infectious Diseases Society of America

(ATS/IDSA) guidelines (Metlay et al., 2019) for the diagnosis and

treatment of adult community-acquired pneumonia; (2) The enrolled

patients had bronchoalveolar lavage fluid (BALF) samples collected for
Frontiers in Cellular and Infection Microbiology 03
mNGS testing; (3) Patients with complete clinical data. While, the

Exclusion Criteria: patients under the age of 18, those with repeated

tests of mNGS (only the first result was chosen), those with incomplete

clinical data or medical history, samples that failed to pass the quality

control of mNGS, and patients who died due to treatment

abandonment were excluded. All patients diagnosed with severe

CAP receive empirical antimicrobial therapy according to the

guidelines upon admission. Furthermore, comprehensive assessments

including blood routine tests, procalcitonin (PCT), C-reactive protein

(CRP) levels, microbiological analysis, microculture, and chest imaging

examinations are promptly conducted. Treatment strategies are

adjusted based on the results microculture and mNGS results.

Bashed on the mortality of 28 days after admission to hospital,

the enrolled patients were divided into two groups, that is survival

group and non-survival group. The flowchart of patient enrollment

is illustrated in Figure 1.
2.2 Clinical data and outcomes collection

Baseline clinical characteristics and outcomes were collected

retrospectively for each enrolled patient upon admission. This

included gender, age, acute physiology and chronic health

evaluation II (APACHE II) score, sequential organ failure

assessment (SOFA) score, presence of comorbidities (such as

hypertension, diabetes mellitus, coronary artery disease, chronic

obstructive pulmonary disease[COPD], stroke, cancer, etc.),

laboratory parameters (including white blood cell count, neutrophil

count, platelet count, CRP, PCT, etc.), length of hospital stay,

duration of ICU stay, duration of MV, and 28-day survival status.
FIGURE 1

Flowchart.
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2.3 Sample collection

BALF samples were obtained by respiratory physicians via

bronchoscopy guided by the pulmonary imaging findings of the

patients within two days after administration. A minimum of 2-3

mL of BALF was collected and stored in sterile containers for

subsequent mNGS analysis.
2.4 DNA extraction and mNGS
sequencing procedure

BALF specimens (1.2 mL) were mixed with 12 mL of BALF in 2

mL centrifuge tubes and subjected to cell lysis using a sample

oscillation disruptor (BSP-100, Hangzhou Jieyi Biotechnology Co.,

Ltd., China). Subsequently, the samples were centrifuged at 12000

rpm for 3 minutes (LX-200, Haimen Qilin Bell Instrument Co., Ltd.,

China), and 400 mL of the supernatant was transferred to a genomic

DNA extraction or purification kit (MD013, Hangzhou Jieyi

Biotechnology Co., Ltd., China), with additional corresponding

reagents added as required. The samples were then processed in

an automated nucleic acid detection reaction system

(NGSmasterTM library preparation, MAR002, Hangzhou Jieyi

Biotechnology Co., Ltd., China) for nucleic acid extraction

(RNA reverse transcription), enzymatic digestion, end repair, end

adenylation, adapter ligation, and library construction. Quantitative

analysis and pooling of the established DNA libraries were

performed using real-time PCR (KAPA method). The quantified

DNA libraries were subjected to high-throughput sequencing on

the Illumina Nextseq system (Nextseq 550, Illumina, Inc., USA),

generating approximately 20 million 50-base pair single-end reads

for each library.
2.5 Bioinformatic process

The sequencing data underwent initial demultiplexing to isolate

the sequence reads of each sample in fastq format. Subsequently,

high-quality sequencing data was obtained by filtering out short reads

(<35 bp), low-quality reads, and reads with low complexity. The

sequence reads of each sample were then aligned to the human

reference genome (GRCh38.p13) to eliminate human sequences by

using bowtie2 (Langmead et al., 2019). Microbial species

identification was conducted based on the analysis of clean reads

using Kraken2 (Wood et al., 2019). Alpha diversity metrics including

Shannon’s index and Chao1, along with beta diversity metrics,

principal coordinate analysis (PCoA), were calculated using R

(version 4.3.0). Furthermore, linear discriminant analysis effect size

(LEfSe) was employed to identify the features most likely responsible

for the differences between the groups (Segata et al., 2011).

Based on species identified by kraken2 alignment, we employed

five machine learning methods to construct predictive models
Frontiers in Cellular and Infection Microbiology 04
(Jaafari et al., 2022; Yu et al., 2022): random forest (RF), support

vector machine (SVM), generalized linear model (GLM),

multivariate adaptive regression splines (MARS), and regularized

random forest (RRF). We then utilized the “DALEX” package in R

to analyze the five models and their residual distributions, and

plotted receiver operating characteristic (ROC) curves to determine

the best-performing model. Subsequently, the selected best model

was used to identify key microbial species associated with 28-day

mortality in severe pneumonia cases.

Furthermore, we employed the best model in R to identify key

bacteria that differentiate between the two groups of samples. A

microbial network was also constructed by retaining edges with

correlation coefficients (R) ranging between -0.8 and 0.8, with a

significance threshold of P < 0.05. The analysis was conducted using

the igraph package in R and visualized by Gephi (Bastian et al.,

2009) accordingly.
2.6 Statistical analysis

All statistical analyses were conducted using SPSS version 23.0.

Descriptive statistics were used to summarize the data, with

categorical variables presented as numbers (percentages) and

continuous variables expressed as means ± standard deviations or

as medians (interquartile ranges). Group comparisons for

categorical variables were performed using the chi-square test or

Fisher’s exact test, while continuous variables were analyzed using

Student’s t-test for normally distributed data and the Wilcoxon

rank-sum test for non-normally distributed data. Variables

with a univariate analysis A P-value < 0.05 was considered

statistically significant.
3 Results

3.1 Baseline characteristics

This study is a retrospective cohort study that consecutively

enrolled 301 patients diagnosed with severe pneumonia and who

underwent BALF mNGS testing at the RICU of the First Affiliated

Hospital of Henan University of Science and Technology from

February 2022 to January 2024. Exclusion criteria included one

patient under 18 years of age, 18 patients with multiple repeat

detections of mNGS, 21 patients with incomplete clinical data, 10

patients failing to pass the quality control of mNGS, and 15 patients

who died due to withdrawal of treatment. Ultimately, 236 patients

were included in the study. Among these patients, 89 died within 28

days of hospitalization, while 147 survived, resulting in a 28-day

mortality rate of 37.7%. The patient enrollment process is illustrated

in Figure 1.

Comparisons of demographic and clinical characteristics between

the survival and non-survival groups are summarized in Table 1. The
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study population had a mean age of 71.38 (SD 14.65) years, with

70.7% being male. Overall, 89 patients (37.7%) died during the 28-day

follow-up. Non-survival patients had a higher prevalence of

hypertension compared to survivors (53.9% vs 39.5%, P = 0.03).

However, both survival and non-survival patients exhibited similar

demographic characteristics (age, sex) and baseline comorbidities

(such as diabetes, COPD, coronary artery disease, malignancy, etc.).

Regarding laboratory test results, non-survival group had lower

platelet counts and higher PCT levels compared to survival group.

However, there were no significant differences in white blood cell
Frontiers in Cellular and Infection Microbiology 05
count, lymphocyte count, neutrophil percentage, lymphocyte

percentage, and CRP between the two groups (P > 0.05). In terms

of admission scores, non-survivors had higher APACHE II and

SOFA scores (P < 0.05), while there was no difference in CURB-65

score between the two groups (P > 0.05). Additionally, we compared

the differences in length of hospital stay, ICU stay, duration of

mechanical ventilation, and total hospitalization costs between the

survival and non-survival groups. The results showed that these

indicators were significantly higher in the non-survival group

compared to the survival group (Table 1).
TABLE 1 Demographics and clinical characteristics of the study cohort.

Characteristics Severe pneumonia
(n=236)

Non-survival
(n=89)

Survival
(n=147)

P values

Age, years 71.38 ± 14.65 73.19 ± 13.30 70.29 ± 15.35 0.140

Male, n(%) 167 (70.7) 57 (64.0) 110 (74.8) 0.077

Comorbidities

Hypertension, n(%) 106 (44.9) 48 (53.9) 58 (39.5) 0.030

DM, n(%) 78 (33.0) 35 (39.3) 78 (33.1) 0.111

COPD, n(%) 48 (20.3) 15 (16.9) 48 (20.3) 0.301

CAD, n(%) 81 (34.3) 37 (41.6) 44 (29.9) 0.068

Stroke, n(%) 75 (31.7) 31 (34.8) 44 (29.9) 0.443

Cancer, n(%) 48 (20.3) 16 (18.0) 32 (21.8) 0.483

Influenza, n(%) 22 (9.3) 9 (10.1) 13 (8.8) 0.745

COVID-19, n(%) 57 (24.1) 24 (27.0) 33 (22.4) 0.432

Laboratory detection

WBC, x10^9/L 10.66 ± 5.89 10.48 ± 5.30 10.78 ± 6.26 0.712

NEU, % 83.68 ± 14.29 84.62 ± 14.76 83.08 ± 13.99 0.431

LYM, x10^9/L 0.82 ± 0.76 0.75 ± 0.72 0.87 ± 0.78 0.239

LYM%, % 10.18 ± 11.12 9.80 ± 12.65 10.43 ± 10.05 0.677

PLT, x10^12/L 182 (137,232) 175 (124.5,214) 187 (142.5,257) 0.026

PCT, ng/ml 0.30 (0.12,1.61) 0.38 (0.16, 2.23) 0.23 (0.11,0.91) 0.005

CRP, ng/ml 70.05 (30.23,110.22) 73.66 (35.95,120.40) 61.43 (22.54,104.55) 0.076

Disease severity assessment

APACHEII score 25.69 ± 7.41 27.80 ± 7.20 24.35 ± 7.07 <0.001

SOFA score 5 (3,7) 6 (4,10) 4 (3, 7) 0.001

CURB-65 score 3.98 ± 0.87 4.08 ± 0.92 3.92 ± 0.83 0.169

Others

LOS, days 20 (12,35) 13 (7, 20) 30 (16, 48) <0.001

LOIS, days 11 (4,21) 9 (3, 14.5) 14 (5, 30) <0.001

Duration of MV, hours 213.0 (48.8,483.8) 158.0 (64.5,321.0) 246.0 (48.0,692.0) 0.034

Costs, million(CNY) 8.12 (4.27,18.56) 7.44 (3.55,12.46) 9.43 (4.65, 26.33) 0.01
DM, diabetes mellitus; COPD, chronic obstructive pulmonary disease; CAD, coronary artery disease; COVID-19, coronavirus disease 2019; WBC, white blood cell count; NEU, neutrophilic
granulocyte percent; LYM, lymphocyte count; LYM%, lymphocyte percentage; PLT, platelet count; PCT, procalcitonin; CRP, C-reactive protein; CURB-65 score, consists of five parameters,
namely confusion, blood urea nitrogen (BUN) > 7 mmol/L, respiratory rate ≥ 30 breaths/minute, systolic blood pressure < 90 mmHg or diastolic blood pressure < 60 mmHg, and age ≥ 65 years.
Each parameter met earns 1 point, with a total score ranging from 0 to 5 points. LOS: length of stay; LOIS, Length of ICU stay; MV, mechanical ventilation; CNY, China Yuan.
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3.2 Microbial composition and diversity in
survival and non-survival groups

The diversity and species composition were analyzed. The

abundance level is based on the relative percentage of reads, and

the analysis of alpha/beta diversity is based on the reads table. In this

study, the microbial diversity of survival and non-survival group was

analyzed (Supplementary Figure S1A). The results showed that there

was no statistically significant difference between the two groups in

alpha diversity (Chao1 and Shannon) (Supplementary Figure S1C).

Similarly, the analysis of the beta diversity calculated with PCoA

based on the Bray-Curtis metrics also showed no difference in the two

groups (Supplementary Figure S1D). These results suggest that there

is no significant difference in overall microbial diversity between

survival and non-survival patients.

However, we observed some diversity patterns in both genera

(Figure 1) and species level (Figure 2) between the two groups.

Notably, the non-survival group exhibited a higher percentage of

Acinetobacter baumannii, Klebsiel la pneumoniae, and

Enterococcus faecium. Conversely, the survival group showed a

higher percentage of Corynebacterium striatum and Enterobacter.

the non-survival group had a higher proportion of Acinetobacter

baumannii, Klebsiella pneumoniae, and Enterococcus faecium,

whereas the survival group displayed a higher prevalence of

Corynebacterium striatum and Enterobacter (Figure 2). These

findings imply persistent distinctions in microbial diversity

between survivors and non-survivors.
3.3 Bacterial differences in the two groups

We further analyzed the bacterial community structure

associated with the non-survival and survival groups using LEfSe,

an algorithm for high abundance biomarker discovery that uses linear

discriminant analysis (LDA) to estimate the effect size of each taxon
Frontiers in Cellular and Infection Microbiology 06
that differed between the two groups (Figure 3). A total of 29

distinct terms were identified. For the non-survival group,

there were ten identified potential markers, mainly including

Pseudomonassp, Jeongeupia and Enterococcusdurans. Hypocreales

and Aspergillusluchuensishad the highest LDA scores, indicating a

potential strong influence of microbial relative abundance in the

survival group and non-survival group, respectively (Figure 3A).
3.4 Potential bacteria selected by machine
learning model

To comprehensively describe the microbial characteristics

between the non-survival group and the survival group, we

initially applied five machine learning methods to determine the

best-performing model. The residual distribution and ROC curve of

each model were plotted. Among these models, the RF machine

learning model exhibited the lower residuals and the highest area

under the curve (AUC) in predicting the 28-day mortality of severe

pneumonia (Figures 3B, C). Subsequently, RF was utilized to

identify key pathogenic bacteria distinguishing the non-survival

group from the survival group. Thirty potential pathogenic bacteria

were screened by the random forest model, based on the analysis of

MeanDecreaseAccuracy and MeanDecreaseGini. Through the

assessment of these microorganisms’ pathogenic characteristics,

we identified 16 pathogens,including Pseudomonas sp. GXZC,

Corynebacterium segmentosum, Asticcacaulis excentricus,

Klebsiella pneumoniae, Acinetobacter baumannii, Aspergillus

fumigatus, Aspergillus nidulans, Streptococcus pneumoniae,

Enterococcus faecium, Lymphocryptovirus humangamma4,

Cytomegalovirus humanbeta5, Alphainfluenzavirus influenzae,

Staphylococcus aureus, Enterococcus faecium, Prevotella veroralis

and Malassezia restricta), which significantly contributed to

predicting the short-term mortality of severe pneumonia

patients (Figure 4).
FIGURE 2

The composition of the pulmonary microbiome at the species level.
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3.5 Microbial interaction modes in the
non-survival and survival groups

We conducted further analysis by constructing a network co-

occurrence map using Spearman correlation analysis, focusing on

bacteria with relative abundances exceeding 0.01%. We considered

correlations significant at a threshold of P < 0.05 and |r| > 0.8. In

Figure 5A, the microbial network of the non-survival group

comprised 207 nodes and 277 edges, while the survival group

exhibited 230 nodes and 263 edges (Figure 5B). However,

distinguishing between the complexity of the two groups was

challenging. Subsequently, we calculated the average clustering

coefficients (Bastian et al., 2009) (AvgCC) for both groups. The

AvgCC values for the NS and S groups were 0.864 and 0.596,

respectively, indicating greater complexity in the non-survival

group compared to survival group. The top 6 phylum in the non-

survival and survival groups were also showed in the bottom of

Figures 5A, B, respectively. Then, we calculated the central genera

bashed on the proportion of the connection number in each

node (i.e., degree) at the genus level. In the non-survival group,
Frontiers in Cellular and Infection Microbiology 07
the central genera in the network were Lactobacillus and

Acinetobacter, with positive correlations within the respective

species (Supplementary Table S1). Conversely, in the survival

group, Streptococcus and Veillonella emerged as the central

genera, exhibiting positive correlations within their respective

sub-species (Supplementary Table S2). These findings imply that

disparities in microbial interactions between non-survival and

survival patients may contribute to differences in the short-term

prognosis of severe pneumonia.
4 Discussion

The relationship between lung microbiota and the prognosis of

severe pneumonia is a relatively understudied area. Despite the

increasing attention to the role of the microbiome in respiratory

diseases (Wang et al., 2016; Cuthbertson et al., 2020; Natalini et al.,

2023), its correlation with the short-term prognosis of severe

pneumonia remains unclear. Current research predominantly

targets identifying pathogenic microorganisms to enhance
A B

C

FIGURE 3

Bacterial biomarkers were identified by linear discriminant analysis effect size (LEfSe) and machine learning algorithm. (A) Bacterial histograms of
unique biomarkers based on |LEfSe| >2. (B) Boxplots of residual distribution of each machine learning model. (C) ROC analysis of five machine
learning models based on 5-fold cross-validation. The areas under the AUC were obtained for the five models.
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antibiotic treatment for pneumonia (Xu et al., 2023). However,

there is a relatively limited grasp of the association between

microbiota and patient prognosis. In this study, we categorized

patients into survival and non-survival groups based on whether

they experienced death within 28 days. We investigated the

differences in baseline characteristics between the two groups and

particularly focused on examining the disparities in microbial

composition. Additionally, leveraging machine learning strategies,

we identified certain microbes that have the potential to distinguish

or predict the short-term mortality risk of patients with severe

pneumonia, providing new insights into severe pneumonia

pathogenesis, prognosis, and the application of mNGS.

Severe pneumonia stands as one of the foremost causes of

mortality worldwide, placing a significant burden on healthcare

systems globally. The mortality rates among severe pneumonia

patients range from 20% to 50%, underscoring the severity and

complexity of this condition (Lee et al., 2020, Rodriguez et al.,

2009, Valles et al., 2014; Walden et al., 2014). In our study, the

observed mortality rate within 28 days of admission was 37.7%.

However, it is essential to acknowledge that the actual mortality in

severe pneumonia cases may be higher, as most severe pneumonia

patients who did not undergo mNGS testing were excluded from our

study. Additionally, various clinical scoring systems have been

developed to predict mortality in critically ill patients, including

those with severe pneumonia. The APACHE II and SOFA scores

are well-established tools that have been validated (Raith et al., 2017;

Wei et al., 2024) and widely recognized for prognostic prediction in

critically ill patients (Ferreira et al., 2001; Izumida and Imamura,
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2020; Tian et al., 2021). Consistent with previous findings, our study

found that both APACHE II and SOFA scores were associated with

mortality in severe pneumonia patients within 28 days of admission.

Furthermore, our results revealed no significant differences

between the survival and non-survival groups in terms of gender,

age, comorbidities (except hypertension), CURB-65 score, and most

laboratory test results. However, among patients who died within 28

days, higher levels of PCT and PLT, shorter hospital stays, ICU

stays, and mechanical ventilation durations, as well as higher

hospitalization costs, were observed. These findings are consistent

with previous studies. PCT and PLT could predict mortality in

severe pneumonia patients (Mirsaeidi et al., 2010; Liu et al., 2016).

The primary objective of this study is to investigate the differences

in lung microbiota between the non-survival and survival groups of

severe pneumonia. Initially, we explored the alpha and beta diversity

between the two groups, revealing no significant differences. Despite

this apparent similarity, the lack of distinction between them may be

attributed to sample size or sequencing biases, warranting further

investigation. However, we did observe differences at the phylum level

and species level. At the phylum level, Basidiomycota showed

variance between the groups (Supplementary Figure S2). Although

cases of Basidiomycota causing pneumonia are rare, there have been

reported instances (Kim et al., 2022). At the species level, the non-

survival group exhibited a higher percentage of Acinetobacter

baumannii, Klebsiella pneumoniae, and Enterococcus faecium,

which are commonly associated with drug resistance or multidrug

resistance (De Oliveira et al., 2020), leading to substantial healthcare

costs and adverse outcomes. It is estimated that approximately
A B

FIGURE 4

The potential microbe identified by RF model to predicate the short-term outcome of the severe pneumonia. (A) The top 30 potential pathogenic
bacteria based on MeanDecreaseAccuracy analysis. (B) The top 30 potential pathogenic bacteria based on MeanDecreaseGini analysis.
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541,000 deaths in Europe in 2019 were related to antibiotic resistance

(European Antimicrobial Resistance Collaborators, 2022).

Conversely, the survival group demonstrated a higher percentage of

Corynebacterium striatum and Enterobacter. Corynebacterium

striatum can also precipitate severe pneumonia or mortality,

particularly in immunocompromised patients (Roig-Rico et al., 2011).

LEfSe analysis and machine learning methods serve as valuable

tools for feature selection and biomarker screening. These approaches

are instrumental in identifying key microbial signatures associated

with different clinical outcomes in severe pneumonia patients. LEfSe

analysis enables the detection of statistically significant differences in

microbial abundance between groups, facilitating the identification of

potential biomarkers. Our result showed that the non-survival group

identified major potential pathogens, such as Pseudomonassp,

Jeongeupia and Enterococcusdurans. The results regarding

Enterococcusdurans replicated the findings of the diversity analysis

between the two groups.

The machine learning strategy is a highlight of this study.

Initially, we employed six machine learning models and randomly

partitioned our mNGS data into training (70%) and validation

(30%) sets. Subsequently, we utilized the residual distribution and

ROC curve of each model to select the machine learning model with

the lower residual distribution and highest AUC, identifying the

random forest algorithm as the most suitable model for predicting

the 28-day mortality risk of severe pneumonia patients.

Subsequently, we systematically analyzed our data using the RF
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strategy. Based on the RF analysis of MeanDecreaseAccuracy and

MeanDecreaseGini, and the subsequent assessment of

these microorganisms’ pathogenic characteristics, we identified 16

pathogens, including Corynebacterium segmentosum, Asticcacaulis

excentricus, Klebsiella pneumoniae, Acinetobacter baumannii,

Enterococcus faecium, Lymphocryptovirus humangamma4,

Cytomegalovirus humanbeta5, and Alpha influenza virus

influenzae. In addition to partially overlapping with the previous

results, these findings provided new evidence for predicting

the short-term mortality of severe pneumonia, such as

Cytomegalovirus humanbeta5 and Alpha influenza virus.

Reactivation of cytomegalovirus can lead to serious adverse

consequences in critically ill patients and immunocompromised

individuals (Park et al., 2021; Liu et al., 2023). Cytomegalovirus

infection-associated pneumonia has a high incidence rate (Coisel

et al., 2012) and carries a higher mortality rate in immunodeficient

patients (Huang and Tang, 2021; Lecuyer et al., 2022). Additionally,

influenza, a potentially deadly infectious disease that has affected

humans for centuries (Uyeki et al., 2022), is responsible for up to

650,000 annual deaths worldwide (Iuliano et al., 2018). Although

influenza is usually self-limited, 5-10% of patients require ICU

admission for additional supportive treatment (Beumer et al., 2019).

In the ICU, influenza infections have a mortality rate of 20% (Sarda

et al., 2019). Influenza infections are often followed by secondary

bacterial pneumonia or complicated infections, known as a major

cause of morbidity and mortality during influenza virus epidemics
A B

FIGURE 5

The correlation-based networks of abundant and frequent OTUs (relative abundance > 0.01%) for the two groups. (A) Network co-occurrence
diagram between microbes in the non-survival patients. (B) Network co-occurrence diagram between microbes in the survival patients. The size of
each node is proportional to the number of connections (i.e., degree), and the nodes are colored according to different phyla. Numbers inside
parentheses following names of each phylum represent relative proportion of nodes belonging to the phylum. Grey edges indicate
positive correlations.
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(Joseph et al., 2013; Sumitomo et al., 2021), which indicates the poor

outcome of severe pneumonia combined with influenza.

Severe pneumonia represents not only single microbial infections

but also perturbations in the entire lung microecosystem. Therefore,

it is crucial to emphasize the lung’s microecosystem, which comprises

diverse bacterial populations. Hence, alongside individual microbial

infections, we should pay closer attention to the overall ecological

changes within the lungs and the interrelations and interactions

among various bacterial species. In this study, bacterial genera with a

relative abundance greater than 0.01% were screened. Correlation

analysis was performed for each genus, and the results were visualized

using a network diagram. Our results showed that the microbial

network of the non-survival group was more complex than the

survival group. While a previous study suggested that the microbial

network of mild pneumonia was more complex than that of severe

pneumonia (Zhan et al., 2023), it’s worth noting that their study did

not include mortality data, and the enrollment criteria of our study

differed from theirs. The central genera in the non-survival group,

Lactobacillus and Acinetobacter, are more likely to be core genera

predicting 28-day mortality in severe pneumonia. Conversely, in the

survival group, Streptococcus and Veillonella emerged as the central

genera. Furthermore, both the central genera of the non-survival and

survival groups were positively correlated with their respective

species, with no correlation observed among other genera. This

may be associated with sample size and sequencing biases.

However, the central genera identified in the non-survival group

showed certain consistency with the results of diversity analysis,

LEfSe analysis, and machine learning strategies, indicating the

credibility of the results.

With the widespread adoption of mNGS, accessing information

about the lung microecosystem has become more convenient.

However, mNGS is primarily utilized for diagnosing pathogens in

lung infections, potentially overlooking crucial information about

lung microecosystem dynamics. This study integrated lung

microecosystem fluctuations with severe pneumonia prognosis,

providing clinicians with a fresh perspective and new applications

for mNGS technology.

Nevertheless, several limitations need to be acknowledged. Firstly,

the relatively small sample size may limit the generalizability of the

findings. Secondly, our study did not comprehensively analyze

baseline comorbidities and other laboratory results alongside

microbial data. Finally, this is a single-center study, which may

restrict the generalizability to other healthcare settings with

differing patient populations and treatment practices.

In summary, our study highlights the potential significance of

lung microbiota composition in predicting the short-term

prognosis of severe pneumonia patients. Through mNGS analysis,

we identified distinct microbial profiles between these non-survival

and survival groups. In the non-survival group, the presence of

Acinetobacter baumannii, Klebsiella pneumoniae, Enterococcus

faecium, and certain viruses may serve as potential predictors or

markers for a worse outcome in patients with severe pneumonia.

These findings underscore the potential role of the pulmonary
Frontiers in Cellular and Infection Microbiology 10
microbiome in influencing the short-term prognosis of severe

pneumonia. However, further research is needed to elucidate the

underlying mechanisms and validate the clinical implications of

these microbial differences.
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SUPPLEMENTARY FIGURE 1

(A) The heatmap of top 20 species in non-survival and survival groups. (B)
Composition of pulmonary microorganisms at the generic level. (C) The
Alpha diversity metrics (Shannon’s index and Chao1) between the two groups.

(D) The beta diversity metric (PCoA) between the two groups.

SUPPLEMENTARY FIGURE 2

The difference in composition between the two groups at the phylum level.
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