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Beyond the double helix:
the multifaceted landscape
of extracellular DNA in
Staphylococcus aureus biofilms
Lucy C. Bowden, Jenny Finlinson, Brooklyn Jones
and Bradford K. Berges*

Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United
States
Staphylococcus aureus forms biofilms consisting of cells embedded in a matrix

made of proteins, polysaccharides, lipids, and extracellular DNA (eDNA). Biofilm-

associated infections are difficult to treat and can promote antibiotic resistance,

resulting in negative healthcare outcomes. eDNA within thematrix contributes to

the stability, growth, and immune-evasive properties of S. aureus biofilms. eDNA

is released by autolysis, which is mediated by murein hydrolases that access the

cell wall via membrane pores formed by holin-like proteins. The eDNA content of

S. aureus biofilms varies among individual strains and is influenced by

environmental conditions, including the presence of antibiotics. eDNA plays an

important role in biofilm development and structure by acting as an electrostatic

net that facilitates protein-cell and cell-cell interactions. Because of eDNA’s

structural importance in biofilms and its ubiquitous presence among S. aureus

isolates, it is a potential target for therapeutics. Treatment of biofilms with DNase

can eradicate or drastically reduce them in size. Additionally, antibodies that

target DNABII proteins, which bind to and stabilize eDNA, can also disperse

biofilms. This review discusses the recent literature on the release, structure, and

function of eDNA in S. aureus biofilms, in addition to a discussion of potential

avenues for targeting eDNA for biofilm eradication.
KEYWORDS

Staphylococcus aureus, biofilm, MRSA, extracellular DNA, bacterial pathogenesis,
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Introduction

Staphylococcus aureus is a gram-positive bacterium that is commonly found in the

human population, colonizing approximately 30% of humans in the nasal passages (Lister

and Horswill, 2014), as well as the skin and gastrointestinal tract (Raineri et al., 2022). S.

aureus is an important human pathogen since it causes skin infections, bacteremia,
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osteomyelitis, pneumonia, and endocarditis and leads to nearly

20,000 deaths per year in the US (Kavanagh, 2019). S. aureus also

exhibits a high level of antibiotic resistance, with many strains

demonstrating resistance even to last-resort antibiotics (Guo

et al., 2020).

S. aureus forms biofilms, which are surface-associated

assemblages of bacteria embedded in a self-produced extracellular

matrix. These aggregations are an ideal way for bacteria to evade the

immune system and to survive in nutrient-poor locations (De La

Fuente-Núñez et al., 2013; Yin et al., 2019). Biofilms are of

particular concern in medical settings due to the extreme

difficulty in treating them (Gebreyohannes et al., 2019). This is

due in large part to the limited or delayed diffusion of some

antibacterial agents through the biofilm matrix (Singh et al.,

2010), as well as the presence of persister cells (Craft et al., 2019)

and antibiotic-resistant bacteria (Balcazar et al., 2015). Persister

cells are non-dividing cells that exhibit transient antibiotic

resistance during antibiotic challenge (Chang et al., 2020). Each of

these defense mechanisms make biofilms hard to target with

traditional antibiotic regimens.

Biofilm formation in S. aureus follows several well-studied

steps, including attachment, maturation, and dispersal (Schilcher

and Horswill, 2020). First, free-floating S. aureus bacteria attach to a

surface by hydrophobic interactions, hydrogen bonds, ionic bonds,

and/or protein-mediated attachment (Jiang et al., 2021). The

bacteria then multiply into a confluent mat of cells (Moormeier

and Bayles, 2017). This is followed by a period of exodus where a

subpopulation of bacteria is released, allowing for the development

of metabolically diverse microcolonies (Grande et al., 2014;

Moormeier et al., 2014; Moormeier and Bayles, 2017). The

microcolonies grow rapidly, and finally, quorum sensing initiates

the dispersal of cells, which begin new biofilms in additional

locations (Moormeier and Bayles, 2017).

Biofilms consist of cells surrounded by an extracellular matrix.

The composition of this matrix in S. aureus is highly strain, time,

and condition-dependent (Sugimoto et al., 2018; Lade et al., 2019;

Ball et al., 2022). The main components of this self-generated

matrix are proteins, polysaccharides, lipids, and extracellular

DNA (eDNA) (Karygianni et al., 2020). These components are

important attachment and structural components of the biofilm

(Moormeier and Bayles, 2017). Extracellular RNA may also be

present in S. aureus biofilms, where it is hypothesized to associate

with eDNA and provide structural support (Chiba et al., 2022).

However, the low stability of the RNA molecule and constraints in

available extraction protocols have made it difficult to study

(Mugunthan et al., 2023). Therefore, this review will focus on

eDNA. Although much attention has focused on the protein and

polysaccharide biofilm matrix constituents (Hobley et al., 2015;

Moormeier and Bayles, 2017), the vital role of eDNA is less-well

appreciated. The idea that eDNA was a critical component of the

biofilm matrix was first suggested by Whitchurch et al., 2002. They

showed that DNase I prevented Pseudomonas aeruginosa from

forming biofilms, suggesting the importance of eDNA as a

structural component (Whitchurch et al., 2002). Since that time,

further research has shown that the presence of eDNA in biofilms is

nearly universal across bacterial species (Campoccia et al., 2021). In
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S. aureus biofilms, eDNA plays important roles in attachment,

structure, and stability. The purpose of this review is to describe

recent breakthroughs in our understanding of the characteristics of

S. aureus eDNA as well as its mechanism of release, roles within the

S. aureus biofilm, and potential methods of targeting eDNA to

disrupt biofilm formation.
Mechanism of eDNA release

In S. aureus biofilms, eDNA is released by lysing a subfraction

of the bacterial population in a process that depends on murein

hydrolases (Rice et al., 2007). Murein (peptidoglycan) hydrolases

cleave covalent bonds in peptidoglycan for a variety of purposes

(Vollmer et al., 2008). Autolysis-independent mechanisms of eDNA

release have been shown in some species of bacteria such as E. coli

and P. aeruginosa, but not yet in S. aureus (Fischer et al., 2014). The

process of autolysis relies on several important effector and

regulatory proteins. After the murein hydrolases degrade the

peptidoglycan barrier, the cell lyses and DNA is released into the

surrounding area. The now-extracellular DNA is then able to

become part of the biofilm matrix.
Activity and regulation of the
Atl murein hydrolase

The murein hydrolase, Atl, is a bifunctional enzyme that is

cleaved to result in an amidase and a glucosaminidase, and both are

required to be catalytically active for S. aureus to form a biofilm

(Bose et al., 2012) (Figure 1A). The amidase cleaves the amide bond

between the murein backbone and the stem peptide (Bose et al.,

2012), severing the link between the peptide subunit and the

muramic acid residues in peptidoglycan (Biswas et al., 2006). This

link is one of the critical stress-bearing bonds in the murein netting,

and breaking it is a step required for autolysis (Biswas et al., 2006).

The activity of the amidase must occur before that of the

glucosaminidase, which cannot cleave cross-linked peptidoglycan

(Nega et al., 2020). After the amidase has hydrolyzed the cross-

peptides, the glucosaminidase cuts the glycan backbone into

disaccharides (Nega et al., 2020). This compromises membrane

integrity and leads to cell lysis.

Mutations in atl result in bacteria that are deficient in both

biofilm formation and daughter cell separation (Biswas et al., 2006).

Since S. aureus can produce minor autolysins such as the aaa

autolysin, atl mutants continue to grow (Biswas et al., 2006).

However, they form much weaker biofilms (Ball et al., 2022) with

reduced eDNA content (Houston et al., 2011; Bose et al., 2012).

When a biofilm formed by an atl mutant was treated with DNase I,

no significant difference in biomass was found (in contrast to wild-

type), indicating that eDNA does not play a significant role in the

biofilm of atlmutants (Ball et al., 2022). However, it is possible that

a loss of the atl gene may affect some S. aureus isolates differently,

particularly those with an ica-dependent biofilm phenotype

(Houston et al., 2011), as these biofilms may be less reliant on

eDNA for structural stability. It should also be noted that not all
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studies agree that atl mutants have substantially lower eDNA,

indicating that perhaps other mechanisms of eDNA release are

active, or that eDNA release depends on strain- or culture-

dependent factors (Dengler et al., 2015; DeFrancesco et al., 2017).
The role of the CidA/LrgA holin/
antiholin system

Cell death and lysis in the S. aureus biofilm are controlled by the

cidABC and lrgAB operons (Mann et al., 2009). The product of the

cidA gene acts as a holin, promoting cell lysis and the release of

DNA, and the product of the lrgA gene acts as an antiholin,

inhibiting lysis (Mann et al., 2009) (Figure 1B). Together they

regulate cell lysis and murein hydrolase activity, and balanced

expression of both is required for normal biofilm maturation

(Mann et al., 2009).
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Activity and regulation of the
cidABC operon

The cidABC operon in S. aureus regulates cell lysis by having a

positive effect on murein hydrolase activity (Rice et al., 2007). In

bacteriophage-infected cells, lysis is controlled by an endolysin and

a membrane-associated protein known as a holin, which controls

the activity of the endolysin, allowing control of the timing of cell

lysis (Endres et al., 2021). In S. aureus cell lysis, the murein

hydrolase acts as the endolysin and CidA as a functional holin

(Ranjit et al., 2011; Endres et al., 2021).

CidA oligomerizes and forms pores in the cytoplasmic

membrane (Ranjit et al., 2011), which allows the murein

hydrolase access to the cell wall, resulting in cell lysis (Windham

et al., 2016) (Figure 1B). A cidAmutant strain produces significantly

decreased levels of eDNA (Rice et al., 2007; Mann et al., 2009). A

cidA mutant is also less susceptible to DNase I treatment than its
B

A

FIGURE 1

(A) Activity of the Atl murein hydrolase. Atl mediates cell lysis in biofilms, resulting in the release of eDNA. Atl is cleaved into two functional enzymes,
an amidase and a glucosaminidase. The amidase cleaves the amide bond between the stem peptide and the peptidoglycan (murein) backbone. The
glucosaminidase can then cleave the glycan backbone. The glycan strand is made of N-acetyl glucosamine (NAG) and N-acetyl muramic acid (NAM).
The stem peptide in S. aureus contains the amino acids L-alanine (L-Ala), D-iso-glutamine (D-iso-Gln), L-lysine (L-Lys), D-alanine (D-Ala), D-alanine
(D-Ala). A crosslinking pentaglycine bridge connects adjacent stems. (B) Diagram of the regulatory proteins behind the holin/antiholin CidA/LrgA
system. CidA oligomerizes to form pores in the membrane, which allows the murein hydrolase to access peptidoglycan, resulting in cell lysis. LrgA
acts as an antiholin, preventing CidA from oligomerizing. Cell lysis results in the release of eDNA to the biofilm matrix.
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wild-type counterpart (Rice et al., 2007). Additionally, a study that

focused on early biofilm development found that a cidA mutant

affected biofilm morphology and adherence, possibly by interfering

with early attachment and microcolony formation (Rice et al.,

2007). The expression of cidA is affected by the surrounding

environment, with increased expression throughout biofilm

development (Grande et al., 2014). Expression of cidA is also

dependent on local oxygen concentrations (Moormeier et al., 2013).

CidR is a LysR-type regulator of the cidABC operon (Yang et al.,

2005). CidR increases transcription of cidA in the presence of acetic

acid, which is produced during the metabolism of glucose (Yang

et al., 2005; Patton et al., 2006). However, this increase in

transcription is not seen in the presence of other weak acids such

as ascorbic acid or pyruvic acid (Patton et al., 2006). Additionally,

simply changing the pH by mediating the exchange of protons

across the cytoplasmic membrane did not have a large impact on

cidABC or lrgAB expression (Patton et al., 2006). Instead of a pH

effect on CidR activation, some specific part of the metabolism of

excess glucose, which produces acetic acid, interacts with, and

activates CidR, which enhances the transcription of cidABC

(Patton et al., 2006).

It is possible that in addition to CidA, CidB and CidC also play a

role in cell lysis. Comparatively little is known about the role of

CidB, but one study found that cell death in a strain lacking the

SrrAB two-component system, which represses expression of the

cidABC operon, was reliant on CidB (Windham et al., 2016). The

exact role of CidB in this cell death, however, remains under

investigation (Windham et al., 2016). CidC (a pyruvate oxidase)

promotes cell death by promoting cytoplasmic acidification and

respiratory inhibition by the production of acetate (Thomas et al.,

2014). As extracellular pH lowers, acetate becomes acetic acid and

can diffuse across the membrane into the cytoplasm (Windham

et al., 2016). This accumulation of acetic acid lowers the

intracellular pH and over time leads to reactive oxygen species

(ROS)-dependent cell damage and death (Windham et al., 2016).
Activity and regulation of the lrgAB operon

The lrgAB operon in S. aureus regulates cell lysis by having a

negative effect on murein hydrolase activity. While CidA acts as a

holin, LrgA acts as an antiholin (Ranjit et al., 2011) (Figure 1B).

Antiholins interact with holins to prevent them from oligomerizing

and forming pores in the cell membrane (Ranjit et al., 2011). A lrgA

mutant produces significantly increased levels of eDNA compared

to the wild type, indicating more cell lysis (Mann et al., 2009). A

transposon mutant in the lrgB gene also results in increased biofilm

development and eDNA release, while overexpression of lrgB

inhibits biofilm formation (Beltrame et al., 2015).

Like cidA, expression of the lgrA gene is dependent on local

oxygen concentrations (Moormeier et al., 2013). While the cidABC

operon is regulated by CidR, lrgAB is activated by the lytSR two-

component regulatory system (Sharma-Kuinkel et al., 2009). The

LytSR system participates in two signal transduction pathways: it
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senses decreases in membrane potential and induces lrgA

transcription (Patton et al., 2006; Sharma-Kuinkel et al., 2009),

and it also induces lrgAB in response to the metabolism of excess

glucose (Figure 1B).
Other cell lysis pathways

One study performed a transposon insertion sequencing

experiment to identify other genes involved in the process of

eDNA release. While they did not find that mutations of cidA or

atl affected eDNA release under their culture conditions, they did

find that mutation of the gdpP gene resulted in impaired eDNA

release and biofilm formation (DeFrancesco et al., 2017). This effect

on biofilm formation and biomass may be strain-dependent

(Corrigan et al., 2011). The gdpP gene is a phosphodiesterase that

cleaves cyclic-di-AMP. Deletions of gdpP have been previously

shown to increase peptidoglycan cross-linking and increase

resistance to antibiotics that target the cell envelope. This work

suggests a model where a drop in cyclic-di-AMP levels results in

compromised cell wall integrity and subsequent cell lysis

(DeFrancesco et al., 2017). Substantiating this model, another

group found that a mutation in the purine biosynthesis pathway

(DpurF) exhibits significant decreases in cyclic-di-AMP levels,

decreased biofilm formation, and decreased eDNA levels. Mutants

that receive exogenous cyclic-di-AMP produce similar levels of

eDNA as the wild-type (Li et al., 2021).
Other mechanisms that affect the
amount of eDNA in the biofilm

The role of the thermonuclease in biofilm
eDNA degradation

The nuc gene encodes the staphylococcal thermonuclease,

which also plays a role in the amount of eDNA present in a

biofilm. The role of nuc is to degrade eDNA both to protect S.

aureus against NETs (Berends et al., 2010) as well as potentially

being involved in releasing cells from the biofilm (Moormeier et al.,

2014). Strains with low thermonuclease activity have higher

biofilm-forming abilities and there is a negative correlation

between nuc expression levels and the amount of eDNA in the

biofilm (Kiedrowski et al., 2011; Yu et al., 2021). A nuc mutant has

increased eDNA levels and an altered biofilm architecture (Mann

et al., 2009).

Nuc mutants have been shown to accumulate more high

molecular weight eDNA (Kiedrowski et al., 2011), and strains that

naturally produce more Nuc may therefore have lower levels of high

molecular weight eDNA in the biofilm (Kavanaugh et al., 2019).

The evidence presented above has led to the hypothesis that nuc is

responsible for the degradation of eDNA that results in a release of a

subpopulation of cells from the biofilm.
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Inclusion of host/foreign DNA in the
S. aureus biofilm

Studies of biofilms from other species have speculated that some

of the eDNA in an in vivo biofilm could be of eukaryotic host origin

(Chiang et al., 2013). This host DNA could come from neutrophils

and their production of neutrophil extracellular traps (NETs)

(Walker et al., 2005). In P. aeruginosa biofilms much of the

eDNA on the edges of the biofilm (though not its interior) is host

DNA rather than bacterial DNA (Alhede et al., 2020). The host

eDNA was found to originate from neutrophils, but the majority

did not originate from NETs (Alhede et al., 2020). It is unconfirmed

whether S. aureus biofilms also contain host DNA, but one study

found that while the addition of DNase I disrupted cell-cell

clumping within the biofilm, the addition of heterologous salmon

sperm DNA was able to restore cell-cell interactions in biofilms

(Dengler et al., 2015). This result was not confirmed by a separate

experiment (Graf et al., 2019). It remains to be seen whether host or

other exogenous DNA is an integral part of S. aureus biofilms.
Culture media makeup affects the amount
of eDNA in the S. aureus biofilm

In S. aureus biofilms, size and structure are culture method

dependent. For instance, glucose supplementation affects eDNA

levels in biofilms, decreasing it in many strains (Sugimoto et al.,

2018). However, further research is needed to better understand

these results and the mechanism behind them, since other research

has shown that glucose results in an increase in the production of

CidR (Patton et al., 2006), which increases eDNA release. The

presence of glucose has also been found to decrease cyclic-di-AMP

levels (DeFrancesco et al., 2017), which results in increased cell lysis.

Another common culture media supplement, NaCl, reduced the

quantity of eDNA in the extracellular matrix, possibly by inhibiting

the association of proteins and eDNA on the bacterial surfaces

(Sugimoto et al., 2018).
Different strains produce different amounts
of eDNA

Some studies have sought to classify methicillin-resistant S.

aureus (MRSA) biofilms as chiefly composed of protein and eDNA

(and ica-independent) and methicillin-sensitive S. aureus (MSSA)

biofilms as composed of polysaccharide (ica-dependent). However,

this description is not true of all strains. Most S. aureus isolates

possess the ica operon, but its expression is tightly regulated and is

affected by a variety of environmental conditions (Fitzpatrick et al.,

2005). Ica-dependent biofilms have at times been found to exhibit

lower eDNA quantities than ica-independent biofilms (Sugimoto

et al., 2018), though it would be simplistic to expect this to be true of

every ica-dependent strain (Ball et al., 2022). One study of 47 S.

aureus clinical isolates found that eDNAwas present in biofilms from

all strains tested regardless of methicillin resistance status (Sugimoto
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et al., 2018). Likewise, other studies have found that both ica-

dependent and ica-independent biofilm-forming strains are affected

by DNase I treatment (Avila-Novoa et al., 2021). This suggests that

even biofilms with comparatively lower amounts of eDNA have

enough eDNA to provide structural support to the biofilm.
Presence of subinhibitory antibiotics
impacts biofilm development

In some strains of S. aureus, subinhibitory levels of beta-lactam

antibiotics increase eDNA release as well as biofilm formation

(Kaplan et al., 2012a; Mlynek et al., 2016). This is broadly in

agreement with the cell lysis methods shown above; damage to

the cell wall results in lysis or autolysis, which results in increased

eDNA release and therefore increased biofilm formation.

Members of other categories of antibiotics may also be able to

increase eDNA release in S. aureus biofilms. Subinhibitory levels of

clindamycin, a protein synthesis inhibitor, were found to increase

biofilm formation and eDNA levels, though this effect may be strain

or lineage-specific (Schilcher et al., 2016). Treatment with

subinhibitory antibiotics upregulates atl expression, potentially

increasing eDNA levels within the biofilm (Azzam et al., 2023).

In contrast, one report found that treatment of S. aureus

biofilms with subinhibitory levels of nisin decreased eDNA

content (Andre et al., 2019). Nisin kills bacteria by causing cell

wall depolarization and inhibiting peptidoglycan synthesis (Zhou

et al., 2014). eDNA release was also decreased after treatment with

subinhibitory levels of tunicamycin, a cell wall teichoic acid

production inhibitor (Zhu et al., 2018). Further work remains to

be done to better understand the role of subinhibitory antibiotics of

various classes on eDNA release in the S. aureus biofilm.

Understanding that the presence of subinhibitory antibiotics

could encourage biofilm formation has implications for clinical

settings if antibiotic regimens for biofilm-related infections are not

followed as directed.
Characteristics of the eDNA in the
S. aureus biofilm

The eDNA in S. aureus biofilms is composed of genomic DNA

released from lysed cells (Mann et al., 2009; Svarcova et al., 2021).

Therefore, it is presumed to contain all chromosomally encoded

genes (Fischer et al . , 2014), and likely also includes

extrachromosomal plasmid DNA. Indeed, amplified fragment

length polymorphism comparison of eDNA to genomic DNA

reveals high similarity between the two in S. aureus (Svarcova

et al., 2021). This is in contrast to some other bacterial species,

which may incorporate eDNA into their biofilm matrices in a

sequence-specific manner (Jakubovics et al., 2013). Sequence-

specific eDNA incorporation may also occur in mixed-species

biofilms containing S. aureus (Steinberger and Holden, 2005), due

to either differences in eDNA release or post-release

DNA modifications.
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Matrix eDNA varies in molecular weight and may take on

different roles as it is enzymatically or otherwise modified following

release. Addition of restriction enzymes to produce fragments <10

kb resulted in near-complete biofilm detachment while fragments of

11–24 kb caused partial detachment (Izano et al., 2008). This

suggests that only fragments >11 kb can function as intercellular

adhesins (Izano et al., 2008). In support of these results, additional

studies have described the presence of high molecular weight eDNA

in S. aureus biofilms (Kiedrowski et al., 2011; Kavanaugh

et al., 2019).
Conformation of eDNA in the
S. aureus biofilm

B-DNA is a right-handed DNA helix and is the most common

form of DNA. Z-DNA, in contrast, is slightly smaller in diameter

(18 angstroms vs. 20 angstroms) and is in a left-handed

conformation. Z-form DNA, as wel l as other non-B

conformations, is an unfavorable substrate for DNase I (Ramesh

and Brahmachari, 1989). Therefore, the presence of Z-DNA could

affect experiments that use DNase I to quantify and

understand eDNA.

Z-DNA is abundant in biofilm eDNA for some organisms

including Escherichia coli, Klebsiella pneumoniae , and

Haemophilus influenzae (Buzzo et al., 2021). The Z-DNA confers

resistance to DNase treatment and reduces neutrophil extracellular

trap (NET) function (Buzzo et al., 2021; Goodman and Bakaletz,

2022). Z-DNA is also abundant in mixed-species biofilms that

include S. aureus (Buzzo et al., 2021). It is currently unknown

whether single-species S. aureus biofilms contain Z-DNA, but the

possibility ought to be taken into consideration, especially

considering the general reliance on DNase I to quantify eDNA

in biofilms.
Structure of eDNA in the biofilm matrix

eDNA from the biofilms of diverse species presents a highly

structured, lattice-like organization in in vivo biofilms (Jurcisek and

Bakaletz, 2007; Novotny et al., 2013). This includes clinical samples

of S. aureus (Idicula et al., 2016). Interestingly, images of these

lattice structures also displayed the presence of DNABII proteins,

which bind to DNA vertices (Novotny et al., 2013; Idicula et al.,

2016). Eventually it was discovered that eDNA-dependent

Staphylococcus epidermidis biofilms are reliant on Holliday

junction (HJ) orthologs at the vertices of the eDNA. A HJ is a

four-way branched structure that links two pieces of double-

stranded DNA (Song et al., 2022). The eDNA in biofilms is

therefore organized into a lattice-like structure with vertices

where HJ-stabilizing proteins such as DNABII proteins and RuvA

bind. The combination of functional HJ orthologs and binding

proteins helps to stabilize the biofilm (Devaraj et al., 2019). HJ

equivalents are also found in in vivo examples of E. coli and non-

typable H. influenzae biofilms (Devaraj et al., 2019). Given the
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conservation of this mechanism across three such varied species,

and the fact that DNABII proteins are present at DNA vertices in S.

aureus biofilms from clinical in vivo samples (Gustave et al., 2013;

Idicula et al., 2016), it is likely that S. aureus biofilms also utilize HJ

orthologs in eDNA organization.
Role of eDNA in biofilm development

eDNA plays a vital role in biofilm attachment and early

development. Multiple studies have shown that the application of

DNase I during early biofilm development results in a reduction in

biomass (Mann et al., 2009; Das et al., 2010). Other studies suggest

that while eDNA is important for early biofilm formation, its role

may not be easily elucidated by DNase I treatment. One group

found that in very early biofilm formation (0–8 hours) eDNA is

present in the biofilm but protected from nuclease activity until

about 4–6 hours into development (Moormeier et al., 2014).

Similarly, another report found that DNase I treatment during

early biofilm formation did not affect the total number of cells in the

biofilm (Grande et al., 2014). Although no difference in biofilm

structure was found after two hours of incubation between DNase I

and control treatments, differences in biofilm architecture and

morphology were noted at 24 and 72 hours, indicating that

eDNA is an important component of biofilm structure (Grande

et al., 2014). The authors note that some eDNA remained in DNase

I-treated biofilms, indicating that some of the eDNAmay have been

protected from DNase I digestion (Grande et al., 2014). Although

results on whether eDNA is vital for early biofilm formation vary,

they indicate that it is likely that eDNA plays an important role in

biofilm stability under certain conditions.

At one time eDNA was thought to be mainly important for

bacterial attachment and early biofilm formation (Houston et al.,

2011). However, many studies have found that DNase I can

significantly affect and even dissolve older biofilms in vitro (Izano

et al., 2008; Tetz et al., 2009; Kaplan et al., 2012b; Moormeier et al.,

2014; Ball et al., 2022). DNase I treatment was also found to inhibit

early (24 hour) biofilm formation in an in vivo rabbit model of

empyema, a condition marked by pockets of pus collecting in body

cavities, particularly the pleural space (Deng et al., 2022).

Less research has been done into the role of eDNA in mature

biofilms. One report that investigated P. aeruginosa biofilms found

that DNase I was capable of reducing biofilm size at 12, 36, and 60

hours, but not at 84 hours (Whitchurch et al., 2002). This could

either indicate that eDNA is less important in a mature biofilm, or

that it is protected from DNase activity in an older biofilm.
Interaction of eDNA with other
biofilm components

One of the key theories of the role of eDNA in the S. aureus

biofilm is the electrostatic net model. In this model, negatively

charged eDNA facilitates cell-cell adhesion by interacting with
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positively charged matrix proteins, which can interact with

negatively charged cell surface molecules such as teichoic acids

(Figure 2) (Dengler et al., 2015). An additional study found that in

the acidic conditions of biofilms, the proteins of the extracellular

matrix are strongly positively charged, supporting the model (Graf

et al., 2019).

Some other groups have shown that proteins from the

cytoplasm of lysed cells may be recycled to act as biofilm matrix

proteins (Foulston et al., 2014), binding to eDNA and protecting it

from nuclease activity. Such moonlighting proteins associate with

cells in biofilms due to the drop in pH found in biofilm interiors

(Dengler et al., 2015). These proteins found in the extracellular

matrix have a high isoelectric point and therefore in the acidic

milieu of the interior of a biofilm will be strongly positively charged

(Graf et al., 2019). This result corroborates those found by Dengler

et al., suggesting that the negatively charged eDNA can act as an

electrostatic net, connecting positively charged proteins and anionic

cell surfaces (Dengler et al., 2015). Furthering this paradigm, work

by Kavanaugh et al. confirmed the presence of these positively

charged proteins in addition to showing that membrane-attached

lipoproteins can interact with matrix eDNA. These lipoproteins can

function as anchors between matrix eDNA and cell surfaces

(Kavanaugh et al., 2019).

Interestingly, while it is well known that the interior of biofilms

is acidic, one group found that in P. aeruginosa, eDNA may be

partially responsible for the acidification of the biofilm (Wilton

et al., 2016), and a similar mechanism may be in play for S. aureus.

The acidic environment is then ideal for eDNA to act as a stabilizing

electrostatic net.

eDNA is known to associate with cells in a biofilm in very

specific ways. A study by Dengler et al. degraded proteins in the

matrix of S. aureus biofilms and observed that eDNA was freed

from the cell surface. This indicates that the specific methods by

which eDNA interacts with biofilm cells depend on the proteins

within the matrix (Dengler et al., 2015). Such a claim would suggest
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that eDNA interactions are complex and largely not understood

and can change depending on the protein composition of the

biofilm (Dengler et al., 2015). Nevertheless, it is suggested that

eDNA serves to hold cells in place by creating a web of interactions

with the matrix proteins (Dengler et al., 2015).

There have been several studies into the interactions of eDNA

with specific biofilm matrix components. Beta toxin is a neutral

sphingomyelinase that belongs to the DNase I superfamily (Huseby

et al., 2007). A study by Huseby et al (Huseby et al., 2010). showed

that rather than simply degrading eDNA, co-incubation of beta

toxin and DNA resulted in the formation of a precipitate of beta

toxin oligomers. Thus, beta toxin cross-links in the presence of

DNA, forming an insoluble matrix that stimulated biofilm

formation in vivo. This points to a molecular mechanism for a

structural framework for some staphylococci biofilms, but many

strains of S. aureus do not express beta toxin, indicating that many

other mechanisms must be at work (Huseby et al., 2010). This

research is also similar to studies in other bacterial species showing

that proteins with DNA-binding activity may be important biofilm

matrix components (Kavanaugh et al., 2019).

However, not all proteins with DNA-binding activity appear to

contribute to biofilm structure or formation in all strains (Mackey-

Lawrence et al., 2009). IsaB is a protein that was discovered to have

DNA-binding capabilities but its deletion did not result in changes to

biofilm biomass (Mackey-Lawrence et al., 2009). Further studies

determined that in a different strain that had previously reported

higher levels of secreted IsaB, a 2-fold reduction in biofilm formation

was found in an isaB mutant (Kavanaugh et al., 2019). Further, they

determined that deletion of both IsaB and another DNA-binding

protein, Eap resulted in a reduction of eDNA, suggesting that in some

cases eDNA-binding proteins may act redundantly to bind eDNA in

the biofilm matrix (Kavanaugh et al., 2019).

S. aureus also produces phenol-soluble modulins (PSMs) that are

involved in biofilm structure and dissemination (Schilcher and

Horswill, 2020). PSMs can disperse biofilms but they can exist in a

polymerized, amyloid-like form in stable biofilms (Zheng et al., 2018).

PSMs were found to attach to eDNA and were found in some cases to

provide resistance against DNase digestion (Zheng et al., 2018),

though earlier research had postulated that the presence of eDNA

promoted amyloid formation by PSMs (Schwartz et al., 2016).

In addition to binding to proteins to stabilize the biofilm matrix,

eDNA interacts with the poly-N-acetylglucosamine (PNAG)

polysaccharide to stabilize the biofilm (Mlynek et al., 2020). It

was once thought that S. aureus produced one of two possible

biofilm morphologies based on either PNAG or eDNA/protein.

However, these morphologies are not mutually exclusive, as

discussed above, and isolates that produce large amounts of

polysaccharide also produce eDNA (Sugimoto et al., 2018). In

biofilms, PNAG carries a net positive charge and thus may

directly interact with eDNA as part of the electrostatic net model

(Mlynek et al., 2020). Due to an expanding understanding of S.

aureus biofilm matrix composition, the relationship and interaction

between PNAG and eDNA is an area of active research. Further

research into eDNA interactions with polysaccharides needs to be

done to conclude whether an interaction between them is a

widespread phenomenon important to biofilm structure.
FIGURE 2

eDNA acts as an electrostatic net. The negatively charged eDNA
interacts with positively charged expelled cytoplasmic proteins, which
interact with negatively charged proteins on the surface of S. aureus
cells, helping to form a cohesive biofilm (Dengler et al., 2015).
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Other roles of eDNA

The mechanical strength and structure of a biofilm is affected by

the amount of eDNA present. Biofilms are both viscous (resistant to

flow) and elastic (returning to their original shape and size when force

is removed) (Peterson et al., 2015). These properties help the bacteria

within the matrix to survive various stresses such as fluid flow or

mechanical detachment. In one study, biofilms of S. aureus and several

other species were mechanically deformed, and the stress relaxation

was quantified. Principle component analysis revealed that eDNA

contributes to viscoelastic relaxation, the ability of the biofilm to

rebound after stress is placed upon it (Peterson et al., 2013). Even

relatively small changes in biofilm viscoelasticitymay impact a biofilm’s

resistance to phagocytosis as well as the time required for effective

phagocytosis (Wells et al., 2023). From amechanical standpoint, eDNA

is considered to be an effective construction material, participating not

only in biofilm structure but also in biofilm remodeling. This is due to

environmental mechanical forces such as shear. Biofilm mechanics in

response to shear and compressive forces were found to depend on the

concentration of eDNA and the eDNA-to-cell ratio (Lysik et al., 2022).

In addition to its role as a mechanical stabilizer, in some

bacteria eDNA also acts as a mechanism for horizontal gene

transfer (Panlilio and Rice, 2021). Although the S. aureus genome

has competence genes, S. aureus displays natural competence only

under certain conditions. One study has found that in S. aureus

biofilms, horizontal gene transfer of the SCCmec gene could occur

between heat-killed cells and living cells. These results could suggest

the existence of horizontal gene transfer involving eDNA in S.

aureus biofilms in other environments (Maree et al., 2022).

Additionally, microaerobic conditions may induce natural

competence in S. aureus (Feng et al., 2023). Oxygen-poor

microenvironments can be found in biofilms, which may provide

the proper environment for horizontal gene transfer in the form of

transformation to take place.

Not all of the roles of eDNA are helpful to the biofilm—it can

also act as a pathogen-associated molecular pattern (PAMP).

Bacterial eDNA can be recognized by the innate immune system

by toll-like receptors, particularly TLR9, which is triggered upon

phagocytosis of eDNA (Knuefermann et al., 2007; Campoccia et al.,

2023). One group found that the treatment of P. aeruginosa biofilms

with DNase I reduced the ability of the biofilm to upregulate

neutrophil activation markers and reduced the release of

neutrophil proinflammatory cytokines (Fuxman Bass et al., 2010).

However, another study of in vivo S. aureus showed that these

biofilms were capable of evading detection by both TLR9 and TLR2

(Thurlow et al., 2011).
eDNA and biofilm eradication

A better understanding of the role of eDNA in biofilms can lead to

the development of treatments for biofilm-related infections that target

eDNA (Table 1). DNase treatment has previously been found to

prevent biofilm formation (Mann et al., 2009), but results have been

mixed as to when during biofilm development it may be effective, or

whether it is effective at all (Grande et al., 2014; Moormeier et al., 2014).
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This is possibly due to either proteins that protect eDNA fromDNase I

treatment (Grande et al., 2014), or the potential accumulation of Z-

form DNA (Ramesh and Brahmachari, 1989; Buzzo et al., 2021). As

discussed above, both conditions result in eDNA that is not a favorable

substrate for DNase I treatment.

However, DNase may be a possible treatment for some

applications. DNase I has shown promise in empyema models

both in vitro and in vivo (Deng et al., 2022). When DNase was

used in conjunction with tissue plasminogen activator, the

combination therapy resulted in undetectable S. aureus levels in

about 90% of patients without the need for surgery (Piccolo et al.,

2015; Mehta et al., 2016), as well as improving pus viscosity

(Kacprzak et al., 2013) and pleural drainage (Rahman et al.,

2011). DNase may be a potential therapeutic for other disease

models. Potential avenues include the administration of DNase in

combination with antibiotic therapy (Li et al., 2023) as well as

DNase pre-treatment of medical implants (Aktan et al., 2022).

Not all therapeutic anti-biofilm efforts revolve around the

application of DNase. The DNABII family of proteins is ubiquitously

expressed in all eubacterial species (Goodman and Bakaletz, 2022).

They are small, basic proteins that bind to bent DNA and have been

found to contribute greatly to the end structure of eDNA in biofilms of

many pathogens including non-typableH. influenzae (Goodman et al.,

2011), E. coli (Devaraj et al., 2015), and Streptococcus gordonii (Rocco

et al., 2017), by acting as a binding agent at the vertices of the eDNA

(Goodman and Bakaletz, 2022). DNABII proteins are also present in

the biofilms of S. aureus (Goodman et al., 2011).

Both of the two members of the DNABII protein family,

integration host factor (IHF) and histone-like protein (HU) do

not have any known homologs in mammalian species (Rogers et al.,

2022). S. aureus does not code for the integration host factor, but

does contain the gene for the histone-like protein (Rogers et al.,

2022). HU binds to and bends double-stranded DNA in a non-

sequence-specific manner, but it has a high affinity for highly

structured dsDNA, such as Holliday junctions (Goodman et al.,

2011) and DNA bent at various angles (Swinger and Rice, 2004).

Since biofilm eDNA contains structural Holliday junction orthologs

(Devaraj et al., 2019), it is unsurprising that proteins such as IHF

and HU are important to biofilm stability.

It has been proposed that disruption or depletion of DNABII

proteins is a potential therapeutic treatment against biofilms
TABLE 1 Treatments targeting eDNA to eradicate biofilm-
related infections.

Treatment Reference

DNase + tissue
plasminogen activator

(Rahman et al., 2011; Kacprzak et al., 2013;
Piccolo et al., 2015; Mehta et al., 2016)

DNase + antibiotic therapy (Li et al., 2023)

DNase pretreatment of
medical devices

(Aktan et al., 2022)

Antibody treatment against
HU protein

(Gustave et al., 2013; Idicula et al., 2016;
Kurbatfinski et al., 2022)

Antibody treatment against HU
protein + antibiotic therapy

(Estelles et al., 2016; Kurbatfinski et al.,
2022; Rogers et al., 2022)
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(Novotny et al., 2016; Rocco et al., 2017; Goodman and Bakaletz,

2022), and preclinical ex vivo data suggest that it could be effective

against multiple pathogens, including S. aureus (Gustave et al.,

2013; Idicula et al., 2016). Treatment of in vitro S. aureus biofilms

with a monoclonal antibody treatment against HU resulted in a

dose- and time-dependent disruption of the biofilm within about 15

minutes, continuing to increase until a 60-minute time point

(Kurbatfinski et al., 2022).

This treatment also resulted in the released cells from the

biofilm being more susceptible to antibiotic treatment

(Kurbatfinski et al. , 2022). This increase in antibiotic

susceptibility could be due to either increased exposure of cells

within the biofilm as the structure was degraded, and/or due to

increased release of bacteria from the biofilm into the planktonic

state (Goodman et al., 2011). In a mouse implant infection model

using S. aureus, the addition of anti-DNABII antibodies and

daptomycin significantly reduced both biofilm and planktonic

bacteria compared to the administration of daptomycin alone

(Estelles et al., 2016).

One potential mechanism for the ability of anti-DNABII-

antibody-induced biofilm collapse suggests that the antibodies

bind to free DNABII proteins in the biofilm environment. This

causes an equilibrium shift between free and eDNA-bound DNABII

proteins, resulting in a release of DNABII proteins from the biofilm.

The loss of the DNABII proteins results in biofilm structural

collapse (Brockson et al., 2014) (Figure 3). This collapse releases

bacteria into the surrounding environment, rendering them more

susceptible both to antibiotic treatment and to clearance by the host

immune system (Rogers et al., 2022).
Concluding remarks

eDNA has a pivotal role in the development and architecture of S.

aureus biofilms. The eDNA found in S. aureus biofilms is composed

of DNA released from lysed cells during biofilm formation. This cell
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lysis is facilitated by the murein hydrolase, Atl, which is regulated by

the holin/antiholin CidA/LrgA system. The process of cell lysis is also

potentially influenced by factors such as cyclic-di-AMP levels and

other hydrolases. The release of eDNA is contingent upon various

factors including culture conditions, individual strain characteristics,

and the presence of subinhibitory antibiotics.

Functioning as a crucial structural component within biofilms,

eDNA significantly impacts biofilm adhesion, as evidenced by the

substantial effects of DNase I on biofilm size and attachment. Acting as

an electrostatic net, eDNA binds proteins together, facilitating cell-cell

connections. Due to its strong negative charge, it can interact with

positively charged proteins in the biofilmmatrix, which in turn interact

with negatively charged cell surface molecules. This results in a strong

adhesion between various biofilm components, which protect the

biofilm from removal agents.

The ubiquity of eDNA in S. aureus isolates suggests its potential

as a general target for biofilm eradication. DNase, commonly used

to study the effects of eDNA in biofilms, has potential as a

therapeutic agent, especially in combination with other therapies.

However, its efficacy may be limited by mechanisms that protect

eDNA from DNase activity. An alternative approach involves

targeting the DNABII family of proteins that bind to and stabilize

bent DNA. This method demonstrates versatility against a wide

variety of biofilm-forming pathogens and enhances the effectiveness

of concurrent antibiotic treatments.

Despite these improved insights into the role of eDNA in S. aureus

biofilms, there are many areas that warrant further investigation. One

critical aspect is an improved understanding of the mechanisms behind

the observed variations in the outcomes of DNase I treatment of S.

aureus biofilms. Since DNase I is one of the most common methods of

studying eDNA production in S. aureus biofilms, the limitations of this

approach influence our current understanding of eDNA.

Another area of study that requires more in-depth study is the

impact of subinhibitory antibiotics on eDNA production, as well as

their influence on biofilm formation and stability. Understanding

these interactions is important in the development of effective
A B C

FIGURE 3

Proposed mechanism for the action of anti-DNABII antibodies. (A) DNABII proteins bind to Holliday junction orthologs. The addition of anti-DNABII
antibodies removes free DNABII from outside the biofilm. (B) This results in diffusion of DNABII proteins away from the biofilm matrix. (C) The loss of
DNABII proteins compromises the integrity of the biofilm, resulting in release of cells which are then more accessible to antibiotics (Brockson et al.,
2014). Note that conceptual figure is not drawn to scale.
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strategies for biofilm-associated infection management.

Additionally, more exploration of the relationship between

glucose metabolism and eDNA production is warranted. Glucose

is widely used as an additive in culture media to increase biofilm

formation, and also has relevance to research on diabetes-associated

infections. Furthermore, the investigation into the proteins that

bind eDNA opens avenues for potential therapeutic interventions.

Continued research in this domain may reveal novel approaches for

treating biofilm-associated infections. This area of research includes

exploring the viability of targeting the DNABII family of proteins in

actual patients. These unresolved aspects of eDNA in biofilm

formation emphasize the ongoing challenges and opportunities

behind understanding S. aureus biofilms.

eDNA plays an indispensable role as a structural component of

S. aureus biofilms. This makes it a promising target for treatment

strategies against a pathogen associated with significant morbidity

and mortality. The exploration of innovative approaches to

manipulate eDNA holds potential for advancing biofilm

eradication efforts and improving therapeutic outcomes.
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