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and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
Infectious diseases represent a significant global health challenge, with bacteria,

fungi, viruses, and parasitic protozoa being significant causative agents. The

shared symptoms among diseases and the emergence of new pathogen

variations make diagnosis and treatment complex. Conventional diagnostic

methods are laborious and intricate, underscoring the need for rapid, accurate

techniques. Aptamer-based technologies offer a promising solution, as they are

cost-effective, sensitive, specific, and convenient for molecular disease

diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve

as nucleotide equivalents of monoclonal antibodies, displaying high specificity

and affinity for target molecules. They are structurally robust, allowing for long-

term storage without substantial activity loss. Aptamers find applications in

diverse fields such as drug screening, material science, and environmental

monitoring. In biomedicine, they are extensively studied for biomarker

detection, diagnostics, imaging, and targeted therapy. This comprehensive

review focuses on the utility of aptamers in managing infectious diseases,

particularly in the realms of diagnostics and therapeutics.
KEYWORDS
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1 Introduction

Pathogens, such as bacteria, fungi, viruses, or parasitic protozoa transmitted

throughout populations, are typically the source of infectious diseases, some recognized

as potentially fatal (Wan et al., 2021; Krüger et al., 2021; Zhang et al., 2021). Infectious

diseases continue to be a significant global public health concern, representing the primary

causes of morbidity and mortality (Cohen, 2000). Similar signs and symptoms are common

among numerous diseases, and the diagnosis, treatment, and management of infectious

diseases may face significant difficulties due to the emergence of novel pathogens as well as

the reappearance and rise of previously identified pathogen variations (Chen et al., 2022b)
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(Wan et al., 2021). The rise of antimicrobial resistance can be

attributed to the improper or empirical use of antibiotics in the

treatment of infections. This underscores the need for careful and

evidence-based antibiotic management in addressing infectious

diseases (Fair and Tor, 2014; Rahbi et al., 2023). While laboratory

testing, imaging scans, and biopsies based on clinical signs and

epidemiological data have been successfully used to identify

infections, these conventional procedures are either labor-

intensive or highly complex (Wan et al., 2021; Zhang et al., 2021).

Therefore, it is imperative to develop new, quick, and precise

diagnostic and therapeutic techniques to address the issues of drug

resistance and anti-microbial resistance (Krüger et al., 2021).

Aptamer-based diagnostic technologies are among the diagnostic

approaches that are rapidly being employed for molecular disease

diagnosis due to their cost-effectiveness, sensitivity, specificity, and

convenience (Wan et al., 2021). The Latin word “aptus”, which

means “to fit,” and the Greek word “meros”, which means “region,”

are the sources of the word “aptamer” (Ku et al., 2015). Aptamers,

single-stranded RNA or DNA oligonucleotide sequences with a

length of approximately 25–80 bases, are the nucleotide

counterparts of monoclonal antibodies. They may bind target

molecules with high affinity and specificity, demonstrating the

nucleic acid’s multifunctional nature (Ni et al., 2021). Aptamers

offer a range of benefits, such as being cost-effective, exhibiting

minimal batch-to-batch variat ion, demonstrating low

immunogenicity, and possessing a small size for improved tissue

penetration (Otte et al., 2022). Despite their potential, aptamers are

constrained by their rapid clearance through renal filtration and

susceptibility to nuclease hydrolysis, leading to a very short half-life

in vivo (Kovacevic et al., 2018; Ni et al., 2021). In response to these

limitations, several techniques have been developed to extend the

half-life. These include PEGylation for sustained action,

modification of sugar ring or base, phosphodiester linkage, and 3′
end capping with inverted thymidine (Ni et al., 2017). Due to their

structural stability, aptamers can be manufactured in large

quantities and stored for extended periods without significant

activity loss (Srivastava et al., 2021).

Various aptamers have been developed against various targets

such as hormones, viruses, metal ions, proteins, viruses, and

bacteria (Zhou and Rossi, 2017; Shraim et al., 2022). These

complexes form stable and specific targets with dissociation

constants in the nanomolar range. Additionally, aptamers have a

greater target range, it is easier to regenerate, substantially smaller,

and is neither poisonous nor immunogenic (Garcıá-Recio et al.,

2016; Zheng et al., 2015; Roxo et al., 2019). New aptamer reports are

released nearly daily due to their broad applicability. A specific

database has been built (https://sites.utexas.edu/aptamerdatabase)

to classify the aptamer-related data and enable access to

information about various existent aptamers (Askari et al., 2024).

Aptamers have drawn a lot of interest in the biomedical community

due to their unique qualities and wide applications in a variety of

sectors, including drug screening, material science, and

environmental monitoring (Chen et al., 2022a).

Aptamers have been extensively studied and developed over the

past 20 years by researchers in several biomedical fields, including

biomarker detection, diagnostics, imaging, and targeted therapy.
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Aptamers that are now utilized in cancer treatment can bind to and

block the immunoregulatory components of carcinogenesis, which

are particular to molecular targets that are characteristic of various

diseases. In December 2004, the US Food and Drug Administration

approved pegaptanib (Macugen), the first medication based on

aptamer technology, for the treatment of age-related macular

degeneration (Adachi and Nakamura, 2019). Despite the lack of

new aptamers approved for clinical use, there is promising progress

in the development of aptamers for blood disorders, with several of

them currently undergoing different stages of clinical trials and

proof-of-concept investigations (Aljohani et al., 2022). Aptamers

demonstrate a wide range of applications, highlighting their

versatile nature in the field of infectious diseases. Thus, the review

provides an in-depth insight into the general mechanism of aptamer

selection and its applications in the diagnostic and therapeutic

fields. Furthermore, it addresses recent advances and challenges in

the field of aptamers, aiming to inspire further exploration of

aptamer-based approaches in combating infectious diseases.
2 Mechanisms of aptamer selection

The process of aptamer selection includes a range of

methodologies designed to identify nucleic acid sequences that

can bind specific target molecules with high affinity and

specificity (Kinghorn et al., 2017). Both SELEX (Systematic

Evolution of Ligands by Exponential Enrichment) and non-

SELEX approaches are used to refine methods. SELEX employs

iterative rounds of selection, in which a nucleic acid library interacts

with the target molecule under controlled conditions, to enhance

sequences with optimal binding properties (Uemachi et al., 2021).

Contrastingly, Non-SELEX methods steer clear of traditional

scaffold-based approaches, opting instead for innovative strategies

to bolster aptamer stability, specificity, and interaction dynamics

(Kong and Byun, 2013). These diverse methodologies empower

researchers to confidently tailor aptamer selection processes

according to the specific requirements of their applications, from

diagnostics to therapeutic interventions.
2.1 Systematic evolution of ligands by
exponential enrichment

SELEX is a method used to derive aptamers from a pool of

nucleotide sequences that exhibit high affinity and selectivity (Chen

et al., 2016). The process involves several key steps to select

aptamers through a repetitive cycle of amplification and

enrichment. Initially, a large and diverse library of nucleic acid

sequences (DNA or RNA) is synthesized and incubated with the

target molecule in an appropriate buffer at a specific temperature

(Sun et al., 2014). The partitioning or the eluting steps involves

removal of the unbound nucleotide by chromatography,

electrophoresis or filtration (Dong et al., 2018). A low ratio of

nucleic acid sequences to the target molecule is used, ensuring

effective binding. The aptamer-target complexes are then separated

from unbound sequences using techniques such as capillary
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electrophoresis (Hamedani and Müller, 2016), magnetic bead

separation (Yüce et al., 2015), and flow cell methodologies

(Gopinath, 2007).

The bound sequences are eluted from the target and amplified

using PCR for DNA aptamers or reverse transcription followed by PCR

for RNA aptamers, creating a new, enriched library. These processes are

repeated for several rounds, typically 8-15, to enhance the prevalence of

high-affinity species, which eventually dominate the library (Zhou and

Rossi, 2017) (Figure 1). After multiple rounds of selection, the enriched

library is cloned and sequenced to identify individual aptamer

sequences, which are then validated for their binding performance.

Through these iterative rounds, SELEX effectively isolates aptamers that

can bind to specific target molecules with high affinity and specificity.

However, a common drawback of aptamers derived from traditional

SELEX methods is poor or nonspecific detection performance in

diagnostic applications (Bakhtiari et al., 2021). To overcome these

shortfalls, different methodologies are incorporated over conventional

SELEX, some of which are discussed below.
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2.1.1 Magnetic beads SELEX
Magnetic SELEX is a method that is commonly employed as

this method offers ease in the separation of the target and nucleotide

sequence easily from the remaining reaction mixture by employing

a magnet (Yüce et al., 2015). When the DNA sequence binds with

the target molecule, the mixture is now added with magnetic beads

coated with a molecule that can selectively bind with the nucleic

acid sequence attached to the target molecule. The elution of the

bound nucleic acid sequences from the magnetic beads is achieved

by altering the buffer’s properties, applying heat, or utilizing other

methods that hinder the nucleic acids’ binding to the magnetic

beads (Komarova and Kuznetsov, 2019). In previous research, the

isolation of Metamitron (MTM) aptamers using magnetic-bead

SELEX has been successful. MTM, a widely used herbicide in

agriculture, has been the subject of a thorough investigation. It is

important to note that even with significant exposure, the negative

health effects on humans are minimal. Following ten rounds of

screening, high-throughput sequencing successfully identified six
FIGURE 1

Illustration of SELEX strategies for aptamer synthesis. (1) The process begins with the preparation of a nucleotide pool, which is then incubated with
target cells. (2) Various SELEX methods, such as Capillary Electrophoresis SELEX, SPR-SELEX, Whole Cell SELEX, and Magnetic Beads SELEX, are
employed to facilitate the selection of aptamer-target complexes. (3) & (4) These complexes are isolated, and the bound aptamers are subsequently
amplified by PCR. (5) The cycle is repeated multiple times to enhance the specificity and affinity of the aptamers for their targets. Created using
Biorender.com.
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outstanding candidate aptamers with remarkable affinity and

specificity (Xie et al., 2022).

2.1.2 Capillary electrophoresis
Apart from using traditional gel electrophoresis, capillary

electrophoresis (CE) is employed to derive aptamer candidates on

the metrics of sizes and charge; under the electric field, capillary

electrophoresis can separate molecules as tiny as porphyrin30 (Yüce

et al., 2015). When performing CE-SELEX, the target molecules are

subjected to incubation with the random library in free solution,

and the resulting combination of free target molecules, target-

ssDNA complexes, and free ssDNA is then fed into a capillary

column, then split apart using a high voltage. Taking a sample of the

output fraction at the designated retention time, target-bond

ssDNA provides the chance to collect DNA aptamers that bind to

a specific target (Hamedani and Müller, 2016). Demonstrating the

perspective of CE-SELEX for small-molecule targets in just four

rounds. Small-molecule targets are anticipated to alter the mobility

of the complex only slightly from the nonbinding sequences,

leading to only partial separation of the bound and unbound

sequences. However, even if just a tiny amount of the complex

can be recovered, adequate enrichment can be accomplished since

nucleic acids can be exponentially amplified by polymerase chain

reaction (PCR). Additionally, repeated recurrent rounds of

enrichment can eventually lead to the evolution of an abundant

pool with high quality, even in the situation of separation with poor

resolution (Yang and Bowser, 2013).

When CE-SELEX and high throughput sequencing (HTS) gave

higher efficiency with faster separation of target-ssDNA complex

and free ssDNA in free solution, aptamers can be chosen with

relatively fewer rounds of selection thanks to HTS, which offers

insight into the sequence evolution during the CE-SELEX process

and makes it possible to characterize the entire evolutionary path.

This reduces the need for the pool to occupy a consensus sequence

and increases selection efficiency (Zhu et al., 2021).

2.1.3 Whole cell SELEX
While the major targets for the other SELEX techniques are

highly purified targets, whole cell-SELEX uses a complete cell as the

target. The cell-SELEX procedure may aim for extracellular cell

surface proteins or unidentified cell structures. This SELEX

approach makes it possible to create whole-cell targeting

aptamers without much prior information on the cell’s surface

proteins, which facilitates the identification of new biomarkers

primarily for diagnosis and imaging (Yüce et al., 2015). The

whole-cell SELEX method is used to create highly selective

aptamers by different rounds of SELEX and counter SELEX.

Aptamer can be separated using methods such as flow cytometry,

Magnetic-Activated Cell Sorting, Differential Centrifugation, and

Label-free methods. Whole-cell SELEX yields aptamers with high

affinity and specificity when targeting bacterial surface compounds

and live bacterial cells. Flow cytometry is a vital method for

identifying target aptamers that bind selectively to cells. The

technique overcomes the limitations of whole-cell SELEX by

sorting, counting, and detecting fluorescence (Moon et al., 2013).
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Within flow cytometry techniques, fluorescence-Activated Cell

Sorting (FACS) technique offers the ability to simultaneously

differentiate and separate cell subpopulations, facilitating the

identification of bound and unbound aptamers with specificity

along with isolation of functional nucleic acids. By utilizing a

sorting device that efficiently separates specific cells based on their

fluorescence, FACS streamlines the process of finding aptamers that

target different cell types contributing to a better yield of the

aptamer candidates. The effectiveness of FACS in SELEX for

functional aptamer selection is apparent in its successful

separation of E. coli cells that produce RNA mimics (Nishimoto

et al., 2007; Mayer et al., 2010; Zou et al., 2015). FACS is an effective

method for large-scale aptamer screening because it is a fast and

accurate technique that can process thousands of cells per second. It

can sort cells based on multiple parameters and select aptamers

based on their binding to live cells or complex mixtures, which may

be more representative of physiological conditions than selections

made in vitro. The possibility of obtaining high-quality aptamers is

increased by the capacity to sort and enrich high-affinity binders

from a huge library. FACS employs both positive and negative

selection strategy, thereby reducing the experimental steps and

experimental errors in the cell SELEX process, hence saves times.

DNA Aptamers against Burkitt’s lymphoma cells which exhibit a

characteristic phenotype was chosen using positive selection

methods (Ohuchi, 2012; Raddatz et al., 2008; Sola et al., 2020).

Despite the benefits of the cell-SELEX system, the low aptamer

enrichment performance of this technique is caused by the co-

expression of several off-target surface indicators and compounds

on the target cells (Sun et al., 2014).

2.1.4 Surface plasmon resonance or flow
cell SELEX

SPR- SELEX utilizes SPR for the selection process,

differentiating it from the other methods. A Randomized library

is passed over a surface coated (gold surface) with the target

molecule (Yüce et al., 2015). In the library, a diverse range of

oligonucleotides interact with the target in various ways.

Oligonucleotides demonstrating strong binding will firmly adhere

to the target-coated surface, while those with weak binding or

unbound sequences will be effectively washed away (Jia et al., 2018).

In SPR the nucleic acid sequence bound to the target molecule will

be monitored in real time by observing the change in the refractive

index on the surface leading to the change in surface plasmon signal

(Ferhan et al., 2016). With the help of the above-mentioned steps,

specific aptamer candidates are carefully selected and amplified

using PCR (Jia et al., 2018).
2.2 Non-SELEX methods

SELEX uses a nucleic acid scaffold to develop the aptamer;

however, other techniques do not require scaffolds (Reverdatto

et al., 2015). For instance, aptamers are produced in the RNase

III-deficient E. coli HT115(DE3), and 5′- and 3′ ends of the RNA
transcript are protected from the RNase using double stranded
frontiersin.org
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spacers. This method only required fewer nucleotides than scaffold-

based methods like the other different types of SELEX used to avoid

RNase activity on the formed aptamer (Zou et al., 2023).

PhotoSELEX, featuring photoreactive nucleic acids, confidently

enhances control over the selection process. Upon exposure to

light, the photoreactive groups confidently form covalent bonds

between the selected aptamers and the target molecule, confidently

providing a reliable method for identifying and capturing aptamer-

target complexes (Brody et al., 1999). Graphene oxide (GO) is

composed of carbon atoms arranged in a hexagonal lattice. Its

unique properties allow for the immobilization of arbitrary DNA or

RNA sequences on its surface, forming an oligonucleotide library

with diverse sequences. During the GO-SELEX process, the target

molecule interacts with the library-immobilized sequences. In the

presence of the target molecule, the immobilized sequences on the

GO surface are released and precisely interact with the target. This

stage allows for the selection of aptamers with a high affinity for the

target molecule (Nguyen et al., 2014; Ding and Liu, 2023). In the

Capture-SELEX process, a DNA library is immobilized onto a

substrate. The target of interest is then passed through to extract

eluted aptamers. Aptamers are specifically chosen using this

strategy for solute targets (Boussebayle et al., 2019). These non-

SELEX methods provide versatile alternatives, overcoming

challenges such as RNase degradation, and enhancing binding

affinity through innovative selection techniques.

The aptamers that are selected can be used in various applications.

One groundbreaking application is the use of apta-sensors for detecting

infectious diseases. These biosensors use aptamers as recognition

elements, and they provide fast, sensitive, and specific detection of

pathogens. By incorporating aptamers selected through SELEX or

Non-SELEX methods, apta-sensors can accurately detect infectious

agents, greatly improving diagnostic capabilities. Their versatility and

ability to detect a wide range of pathogens make aptasensors extremely

valuable tools in epidemiology, healthcare settings, and biodefense

(Brosseau et al., 2023).
3 Aptamers in diagnostics of
infectious diseases

Traditional methodologies for detection encompass culture-

based techniques and color culture medium approaches.

However, these methodologies are encumbered by limitations,

necessitating professional expertise, and demanding cumbersome

labor and time commitments. The procedural intricacies include

pre-enrichment, selective enrichment, and biochemical

identification, typically leading to a confirmed outcome after 2-3

days (Bell et al., 2016). Due to the limitations present in these

methods, there is a need for more efficient, rapid and accurate

diagnostic methods. Immunological assays, such as ELISA and

immunosensors, are commonly used for bacterial detection.

However, their sensitivity is limited because proteins like

immunoglobulins cannot be amplified. Furthermore, nucleic acid-

based assays are unable to distinguish between viable and non-

viable cells, as DNA can persist in the environment long after cell
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viability has been lost. This creates a need for a more specific,

sensitive, and convenient diagnostic method that can bridge the gap

between the detection. Aptamer-based assays are utilized for the

detection of pathogens and biomarkers. Aptamers synthesis is rapid

compared to the antibody production, and these rapid turnaround

time helps in timely diagnosis. Furthermore, they have increased

stability and shelf life compared to antibodies and reduced risk of

immunogenicity due to ease of modifications that increase the

stability, binding affinity and functionality (Ali et al., 2019). These

assays enhance detection methods by providing improved

specificity and sensitivity even at lower concentrations compared

to traditional methods (Aslan et al., 2023). By delivering rapid

results, which are ideal for point-of-care settings, this approach

enhances diagnostic efficiency across various healthcare

applications (Majdinasab et al., 2022). Further, the review

delineates a comprehensive analysis of the diverse categories of

apta-sensors. (Figure 2, Table 1).
3.1 Optical aptasensors

The components of an optical biosensor are an optical

transducer system coupled with a biorecognition sensor. Optical

biosensors are designed to generate a signal that is directly

proportional to the concentration of the analyte (Damborský

et al., 2016). Optical aptasensors are biosensors in which the

biorecognition sensing element is an aptamer. The transduction

method can be SPR, fluorescence, surface enhanced raman

scattering (SERS) and chemiluminescence (Uniyal et al., 2023).

Optical sensors are frequently used in aptasensors because of their

high sensitivity, robustness, reliability, good temporal and spatial

control, selectivity, simplicity, versatility, and wide linear range for

biomolecule detection (Chen et al., 2021c).

3.1.1 Surface plasmon resonance
based aptasensors

When a plane polarized light falls on a thin sheet of metal,

plasmons (group of electrons that undergo oscillation due to energy

absorption) are formed. In context of aptasensors, aptamer-

functionalized metal particles are used. When the analyte binds to

the aptamer, it causes changes in the refractive index at the

interface, altering the resonance condition of the surface

plasmons. These changes can be observed as variations in the

angle or intensity of reflected light (Schasfoort, 2017). The

sensitivity and selectivity of SPR-based sensors can be

significantly improved by utilizing gold nanoparticles linked to

ligands that are specific to the target. SPR assays are commonly

used in dual-recognition biosensors and sandwich assays to

enhance detection capabilities (Kim et al., 2018a).

3.1.2 Fluorescence based aptasensors
In this type of biosensing there are usually two probes involved-

the capture probe that binds to the infectious agent and the

signaling probe which is usually a nanoparticle that is tagged with

a fluorophore. The interaction between the analyte and the
frontiersin.org
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aptamers leads to a rise in the fluorescence signal, which is

detectable and can be analyzed in both qualitatively and

quantitatively. Examples of fluorescent labels are Lanthanide-

doped upconversion nanoparticles (UCNPs), silver nanoclusters

(AgNCs) (Zhang et al., 2020), carbon quantum dots (CQDs)

(Pebdeni et al., 2020), CdTe quantum dots and thiazole orange

(Pang et al., 2015).

UCNPs have distinctive optical and chemical characteristics,

including excellent photostability, low light scattering, low

autofluorescence backgrounds, and low toxicity (Liu et al., 2021).

AgNCs have the advantages of high quantum yield, strong

photostability, low toxicity, adjustable fluorescence emission, and

excellent biocompatibility (Zhang et al., 2020).

An important application of fluorescence spectroscopy is förster

resonance energy transfer (FRET). It involves non-radiative transfer of

energy from an excited donor fluorophore to an acceptor fluorophore

that are in proximity. This phenomenon is also called quenching.

Graphene oxide is a commonly used quencher molecule (Verma et al.,

2023). For example, Pebdeni et al. discovered that CDQs emit blue-

colored fluorescence, which is quenched in the presence of aptamers

and gold nanoparticles. With the introduction of specific bacteria, the

aptamer-target complex was effectively assembled, leading to the

restoration of free CQD emission. The linear range of this aptasensor

was 108 to 101 CFU/mL, with a detection limit as low as 10 CFU/mL

for S. aureus (Pebdeni et al., 2020). Colorimetric aptasensors work by

detecting changes in the color due to the binding of the aptamer to the

analyte. This is done with the help of UV-visible spectroscopy. A peak
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is obtained at a specific wavelength and stokes shift takes place

(Weerathunge et al., 2019).
3.1.3 SERS based aptasensors
Surface-enhanced Raman scattering (SERS) is a phenomenon in

which the Raman scattering signals are amplified by enhancing the

sensor surface. Nanostructured surfaces, usually made of metals

such as gold or silver, are shaped into nanoparticles, nanorods, or

nanostars. These structures demonstrate strong localized surface

plasmon resonance (LSPR), resulting in the enhancement of Raman

signals of nearby molecules through electromagnetic and chemical

mechanisms. The SERS substrates are aptamers and when the

infectious agent binds to the aptamer, there is a change in the

raman signal that is detected (Zhou et al., 2020).
3.1.4 Chemiluminescence based aptasensors
Chemiluminescence-based aptasensors rely on the emission of

light resulting from a chemical reaction between a luminophore (a

molecule capable of emitting light) and a substrate or analyte, often

facilitated by enzymatic reactions (Chen et al., 2021b). A DNA

aptasensor to detect norovirus GII capsid was developed based

on guanine chemiluminescence detection and the principle of

intra chemiluminescent resonance transfer. The high-energy

intermediates formed from the reaction of extra guanines and

TMPG transferred the energy to 6-FAM which caused bright

chemiluminescence (Kim et al., 2018a).
FIGURE 2

The figure illustrates various aptasensing mechanisms used for detecting target molecules. These mechanisms include (1) Optical sensors (such as
Surface-Enhanced Raman Scattering (SERS), Surface Plasmon Resonance (SPR), and fluorescence-based methods), (2) Electrochemical sensors, (3)
Sandwich assays, and (4) Quartz Crystal Microbalance (QCM). Each mechanism provides a unique approach to aptamer-based detection,
highlighting the versatility and specificity of aptamers in biosensing applications.
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TABLE 1 Pathogen detection table: Pathogens, aptamer sequences, and detection mechanisms.

LOD (limit
of
detection)

Methodology Reference

2.9 × 102

CFU/mL
Impedimetric aptasensor

(Brosel-Oliu
et al., 2018)

250 and 400
CFU/mL, for
buffer and milk
samples
respectively

Eye-based microfluidic aptasensor
(EA-Sensor)

(Li
et al., 2020)

07
3.46 CFU/mL SERS aptasensor

(Ye
et al., 2022)

L 3 CFU/mL
Gold nanobones enhanced
ultrasensitive SERS aptasensor

(Zhou
et al., 2020)

1.46 × 103

CFU/mL
Aptamer-antibody sandwich assay

(Yu
et al., 2018)

10 CFU/mL
Bridged rebar graphene
functionalized
impedimetric aptasensor

(Kaur
et al., 2017)

10 CFU/mL
Electrochemical aptasensor
using boron-carbon nanorods
decorated by nickel nanoparticles

(Kaur
et al., 2020)

3 CFU/mL

Zirconium-based metal−organic
frameworkTi3C2Tx nanosheet
based faraday cage-type
electrochemical aptasensor

(Dai
et al., 2022)

L 116 CFU/mL
MoS2 nanosheets-based label-free
colorimetric aptasensor

(Li
et al., 2023)

101 CFU/mL
Reduced graphene oxide-titanium
dioxide nanocomposite-based
electrochemical aptasensor

(Muniandy
et al., 2019)

6 CFU/mL
Aptasensor based immuno-HCR-
SERS method with dual signal
amplification capability

(Li
et al., 2021)

(Continued)
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S.No. Aptamer sequence (5’ to 3’) Type Organism Target
Concentratio
range

Bacteria

1.
S-S- ATCCGTCACACCTGCTCTGTCTGCGAGCGGGGC GCGGGCC
CGGCGGGGGATGCGTGGTGTTGGCTCCCGTAT

DNA
E. coli
O157:H7

Outer
membrane
proteins

101 to 105 CFU/mL

2.
ATCCGTCACACCTGCTCTGTCTGCGAGCGGGGCGCGGGCCCGGC
GGGGGATGCGTGGTGTTGGCTCCCGTAT

DNA
E. coli
O157:H7

–
500 to 5x107

CFU/mL

3.
CCATGAGTGTTGTGAAATGTTGGGACACTAGGTGGCATAGAGC
CG-C6-SH

DNA E. coli –
3.2 × 101 to 3.2 × 1
CFU/mL

4.

Apt1 (signal probe)
A20-CCGGACGCTTATGCCTTGCCATCTACAGAGCAGGTGTGACGG
Apt2 (capture probe)
biotin-CCGGACGCTTATGCCTTGCCATCTACAGAGCAGGTGTGACGG-3

DNA
E. coli
O157:H7

– 10 to 10000 CFU/m

5.
CAG TCC AGG ACA GAT TCG CGA G-N45-CAC GTG GAT TTC ATT
CAG CGA TT

ssDNA
E. coli
O157:H7

– –

6. ATCCAGAGTGACGCAGCA-(N45)- TGGACACGGTGGCTTAGT DNA
E. coli O78:
K80:H11

– 101 to 106 CFU/mL

7. ATCCAGAGTGACGCAGCA-(N45)-TGGACACG GTGGCTTAGT ssDNA
E. coli
O157:H7

– 100 to 105 CFU/mL

8.
P-CCG GAC GCT TAT GCC TTG CCA TCT ACA GAG CAG GTG
TGA CGG

DNA
E. coli
O157:H7

LPS of E. coli
O157:H7

–

9.
SH-ATC CGT CAC ACC TGC TCT GTC TGC GAG CGG GGC GCG GGC
CCG GCG GGG GAT GCG TGG TGT TGG CTC CCG TAT

DNA
E. coli
O157:H7

– 500 to 5000 CFU/m

10. TATGGCGGCGTCACCCGACGGGGACTTGACA TTATGACAG DNA
Salmonella
enterica

– 108 to 101 CFU/mL

11. – dsDNA
Salmonella
typhimurium

– 10 to 105 CFU/mL
n
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TABLE 1 Continued

tion
LOD (limit
of
detection)

Methodology Reference

/mL 1 CFU/mL Aptamer-based fluorescence assay
(Ren
et al., 2019)

10 CFU/mL FRET based aptasensor
(RM
et al., 2020)

× 106
33 CFU/mL in
pure culture and
95 CFU/mL in
spiked milk

Colorimetric sensor based on dual
aptamers - the absorbance
intensity ratio (A523/A650) for
quantitative analysis of various
concentrations of bacteria

(Chen
et al., 2021a)

/mL 4 CFU/mL
SERS using spiny gold
nanoparticles (SGNPs)

(Ma
et al., 2018)

15 CFU/mL

SERS-S.typhimurium specifically
interacted with the aptamers to
form Au@Ag-apt 1-target-apt 2-
ROX sandwich-like complexes.

(Duan
et al., 2016)

/mL 1.223 CFU/mL

Competitive voltammetric
aptasensor based on electrospun
carbon nanofibers-gold
nanoparticles modified
graphite electrode

(Fathi
et al., 2020)

/mL 6 CFU/mL
Diazonium-based
impedimetric aptasensor

(Bagheryan
et al., 2016)

25 CFU/mL

Impedimetric aptasensor using a
glassy carbon electrode modified
with an electrodeposited
composite consisting of reduced
graphene oxide and
carbon nanotubes

(Jia
et al., 2016)

mL 1 CFU/mL Dual recognition aptasensor
(El-Wekil
et al., 2022)

(Continued)
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S.No. Aptamer sequence (5’ to 3’) Type Organism Target
Concentra
range

Bacteria

12. C6-NH2-CTGTCATAAT GTCAAGTC

CdTe
QD-
labeled
ssDNA2

Salmonella
typhimurium

Outer
membrane
proteins

10 to 1010 CFU

13.
ATTAGTCAAGAGGTAGACGCACATAAGGGGTCTGGTGTCGGGCCGC
GGGTCAGGGGGGTAAGGGATTCTGGTCGTCGTGACTCCTAT

ssDNA
Salmonella
paratyphi A

– –

14.

Apt1
botin- GAGGAAAGTCTATAGCAGAGGAGATGTGTGAACCGAGTAA
Apt2
CTCCTCTGACTGTAACCACGGAGTTAATCAATACAAGGCGGGAACA
TCCTTGGCGGTGCCGCATAGGTAGTCCAGAAGCC

ssDNA
Salmonella
typhimurium

–
3.3 × 101 to 3.
CFU/mL

15. TAT GGC GGC GTC ACC CGA CGG GGA CTT GAC ATT ATG ACA G DNA
Salmonella
typhimurium

– 10 to 105 CFU

16.

Apt 1
SH-AGTAATGCCCGGTAGTTATTCAAAGATGAGTAGGAAAAGA
Apt2
ROX-AGTAATGCCCGGTAGTTATTCAAAGATGAGTAGGAAAAGA

DNA
Salmonella
typhimurium

15 to 1.5 × 10
CFU/mL

17. HS-TATGGCGGCGTCACCCGACGGGGACTTGACATTATGACAG ssDNA
Salmonella
enterica

10 to 105 CFU

18.
NH2-TTT GGT CCT TGT CTT ATG TCC AGA ATG CGA GGA AAG
TCT ATA GCA GAG GAG ATG TGT GAA CCG AGT AAA TTT CTC
CTA CTG GGA TAG GTG GAT TAT

DNA
Salmonella
typhimurium

101 to 108 CFU

19.
NH2-TAT GGC GGC GTC ACC CGA CGG GGA CTT GAC ATT ATG
ACA-G

DNA Salmonella
75 to 7.5×105

CFU/mL

20.
SH-GCA ATG GTA CGG TAC TTC CTC GGC ACG TTC TCA GTA
GCG CTC GCT GGT CAT CCC ACA GCT ACG TCA AAA GTG CAC
GCT ACT TTG CTA A

DNA S. aureus 101 –107 CFU
3

6

/
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TABLE 1 Continued

LOD (limit
of
detection)

Methodology Reference

1 CFU/mL

Electrochemical aptasensor using
Au nanoparticles/carbon,
nanoparticles/cellulose,
nanofibers nanocomposite

(Ranjbar and
Shahrokhian,
2018)

10 CFU/mL
Aptasensor based on the FRET
between green carbon quantum
dot and gold nanoparticle

(Pebdeni
et al., 2020)

10 CFU/mL
Impedimetric biosensor based on
the protein A-binding aptamer

(Reich
et al., 2017)

Theoretical
value = 2 CFU/
mL
Visual LOD
<100 CFU/mL

Aptasensor swab designed for
qualitative and quantitative
detection, on contaminated non-
absorbable surfaces.

(Raji
et al., 2021)

1 CFU/mL

An ultrasensitive sandwich−type
electrochemical aptasensor using
silver nanoparticle/titanium
carbide nanocomposites

(Hui
et al., 2022)

1.09 CFU/mL

Dual-recognition SERS biosensor
based on teicoplanin
functionalized gold-coated
magnet NPs as capture probe and
S.aureus aptamer functionalized
silver coated gold NPs as
signal probe

(Qi
et al., 2022)

80 CFU/mL

Aptamer and antibiotic-based
dual detection sensor combining
vancomycin-copper nanoclusters
for the recognition and
quantification using fluorescence

(Bagheri
Pebdeni
et al., 2021)

3 CFU/mL
Electrochemical aptasensor based
on gold/nitrogen-doped carbon
nano-onions

(Sohouli
et al., 2022)

(Continued)
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S.No. Aptamer sequence (5’ to 3’) Type Organism Target
Concentration
range

Bacteria

21.
SH-TCG GCA CGT TCT CAG TAG CGC TCG CTG GTC ATC CCA
CAG CTA CGT C

DNA S. aureus
1.2×101 to 1.2×108

CFU/mL

22.
GCG CCC TCT CAC GTG GCA CTC AGA GTG CCG GAA GTT CTG
CGT TAT

DNA S. aureus 108 to 101 CFU/mL

23.
ATACCAGCTTATTCAATTAGCAACATGAGGGGGATAGAGGGGGT
GGGTTCTCTCGGCT

DNA S. aureus

Targets
protein A
(surface
bound
virulence
factor

–

24. – DNA MRSA – 102 to 108 CFU/mL

25.
GCAATGGTACGGTACTTCCTC GGCACGTTCTCAGTAGCGCTCGCTGG
TCATCCCACA GCTACGTCAAAAGTGCACGCTACTTTGCTAA

DNA S. aureus –
52 to 5.2× 107

CFU/mL

26. – – S. aureus –
7.6 × 101 to 7.6 × 107

CFU/mL

27.
NH2- GCG CCC TCT CAC GTG GCA CTC AGA GTG CCG GAA
GTT CTG CGT TAT

DNA S. aureus – 102 to 108 CFU/mL

28 – DNA S. aureus – 10 to 108 CFU/mL

https://doi.org/10.3389/fcimb.2024.1402932
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TABLE 1 Continued

LOD (limit
of
detection)

Methodology Reference

4 CFU/mL

Solid-state
electrochemiluminescence
biosensing based on the
quenching effect of ferrocene on
ruthenium pyridine

(Chen
et al., 2021c)

10 CFU/mL

Paper-based electrodes conjugated
with tungsten disulfide
nanostructure and aptamer for
impedimetric detection

(Mishra
et al., 2022)

6 CFU/mL
Luminol-functionalized AuNF-
labeled aptamer recognition and
magnetic separation

(Chen
et al., 2021b)

2.8 × 102

CFU/mL

Sandwich fluorometric method
for dual-role recognition was
developed based on antibiotic-
affinity strategy and fluorescence
quenching effect

(Li
et al., 2022)

1.6 × 103

CFU/mL
Acoustic aptasensor

(Oravczová
et al., 2020)

4.6 × 102

CFUmL-1 in
pure culture and
6.1 × 103 CFU/g
in spiked
fresh lettuce

Competitive enzyme-linked
aptasensor with rolling circle
amplification (ELARCA) assay for
colorimetric detection

(Zhan
et al., 2020)

0.88 CFU/mL
Dual recognition and highly
sensitive detection by fluorescence
enhancement strategy

(Du
et al., 2022)

8 CFU/mL Fluorescence aptasensor
(Liu
et al., 2021)

100 CFU/mL
Low-field magnetic resonance
imaging aptasensor for the rapid
and visual sensing

(Jia
et al., 2021)

50 CFU/mL
A magnetic relaxation
switch aptasensor

(Jia
et al., 2017)

(Continued)
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S.No. Aptamer sequence (5’ to 3’) Type Organism Target
Concentration
range

Bacteria

29. ATCCATGGGGCGGAGATGAGGGGGAGGAGGGCGGGTACCCGGTTGAT ssDNA
Listeria
monocytogenes

–
1.4 × 101 to 1.4 × 106

CFU/mL

30.
NH2-ATC CAT GGG GCG GAGATG AGG GGG AGG AGG GCG
GGT ACC CGG TTGAT

ssDNA
Listeria
monocytogenes

– 101 to 108 CFU/mL

31.
biotin-ATC CAT GGG GCG GAG ATG AGG GGG AGG AGG GCG
GGT ACC CGG TTG AT

DNA
Listeria
monocytogenes

–
1.0 × 101 to 1.0 × 105

CFU/mL

32. – –
Listeria
monocytogenes

–
102 to 2 × 108

CFU/mL

33. biotin-TAC TAT CGC GGA GAC AGC GCG GGA GGC ACC GGG GA DNA
Listeria
innocua

– –

34. TATCCATGGGGCGGAGATGAGGGGGAGGAGGGCGGGTACCCGGTTGAT DNA
Listeria
monocytogenes

–

4.6 × 102 to 4.6 × 107

CFUmL-1in pure
culture and 6.1 × 103

to 6.1 × 107 CFU/g in
spiked fresh lettuce

35. TACTATCGCGGAGACAGCGCGGGAGGCACCGGGGA –
Listeria
monocytogenes

–
1.4 × 101 to 1.4 ×
107 CFUmL

36.
NH2(CH2)6GGGAGCTCAGAATAAACGCTCAA
TACTATCGCGGGACAGCGC
GGGAGGCACCGGGGATTCGACATGAGGCCCGGATC

DNA
Listeria
monocytogenes

–
68 to 68 × 106

CFU/mL

37.
NH2-C6-CCC CCG TTG CTT TCG CTT TTC CTT TCG CTT TTG TTC
GTT TCG TCC CTG CTT CCT TTC TTG

DNA
Pseudomonas
aeruginosa

–
3.1 × 102 to 3.1 × 107

CFU/mL

38.
NH2- CCC CCG TTG CTT TCG CTT TTC CTT TCG CTT TTG TTC
GTT TCG TCC CTG CTT CCT TTC TTG

DNA P. aeruginosa Whole cell 102 to 106 CFU/mL
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TABLE 1 Continued

on
LOD (limit
of
detection)

Methodology Reference

L

105 CFU/mLfor
colour change
by the naked eye
and 104 CFU/
mL for UV–
Vis
spectrometry

Colorimetric detection by
aptamer−functionalized
gold nanoparticles

(Schmitz
et al., 2023)

0.5 µM
Label-free electrochemical
aptasensor for the detection of the
3-O-C12-HSL

(Capatina
et al., 2022)

×
100 CFU/mL

Graphene oxide quantum dots
assisted construction of
fluorescent aptasensor

(Gao
et al., 2018)

L 33 CFU/mL
Impedimetric aptasensor by using
a glassy carbon electrode modified
with silver nanoparticles

(Roushani
et al., 2019)

2.51 nM in
buffer and 8.13
nM in serum

G-quadruplex (GQ)-based
fluorescent aptasensor using one-
shot detection of NS1

(Mok
et al., 2021)

100 infectious
units per mL

Porous Au-seeded Ag nanorod
networks conjugated with DNA
aptamers for
impedimetric sensing

(Kumar De
et al., 2021)

1.74 × 10-7

TCID50/mL
AC-electrothermal flow-based
rapid biosensor

(Park
et al., 2023)

22 pg/mL Electrochemical aptasensor
(Bachour
Junior
et al., 2021)

nd
3.3 pg/mL

Electrochemical detetction using
GQD nanocomposite

(Bachour
Junior
et al., 2021)

(Continued)
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S.No. Aptamer sequence (5’ to 3’) Type Organism Target
Concentrati
range

Bacteria

39.
CCCCCG TTGCTTTCGCTTTTCCTTTCGCT TTTGTTCGTTTC
GTCCCTGCTTCCTTTCTTG

ssDNA P. aeruginosa – 108 to 105 CFU/m

40.

GCA-ATG-GTA-CGG-TAC-TTC-CCG-GGG-CCC-GCT-TCT-GGT-GCG-
GTG
-TAC-TAG-TGA-CCG-CAA-AAG-TGC-ACG-CTA-CTT-TGC-TAA-(CH2)
6-SH

DNA P. aeruginosa

3-O-C12-HSL
(Quorum-
Sensing
Molecule)

0.5 to 30 µM

41.
CCC CCG TTG CTT TCG CTT TTC CTT TCG CTT TTG TTC GTT
TCG TCC CTG CTT CCT TTC TTG

DNA P. aeruginosa –
1.28 × 103 to 2.00
107 CFU/mL

42.
NH2-CCC CCG TTG CTT TCG CTT TTC CTT TCG CTT TTG TTC
GTT TCG TCC CTG CTT CCT TTC TTG

DNA P. aeruginosa – 102 to 107 CFU/m

Virus

43. AGC GGA TCC GAT GGG TGG GGG GGT GGG TAG GAT CCG CG ssDNA DENV
Non-
structural
protein 1

–

44.
HS_TAGGCAGTGTGGACGAGAGGGAGCTGTCCTGAGAGAGGCCTG
TCAACCAGGGGTACCACAACCGAGGGCATA_SH

DNA DENV-2 E-protein –

45. – DNA DENV
surface
envelope
proteins

10–6 to 106

TCID50 /mL

46.
HS(CH2)6 – TTTTT – ACTAGGTTGCAGGGGACTGCTCGGGATTGCG
GATCAACCTAGTTGCTTCTCTCGTATGAT

DNA
DENV-1 and
DENV-4

NS1 10 pg to 1 mg/mL

47. – DNA
Hepatitis C
virus (HCV)

HCV
core protein

10 to 70 pg/mL a
70 to 400 pg/mL

https://doi.org/10.3389/fcimb.2024.1402932
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TABLE 1 Continued

n
LOD (limit
of
detection)

Methodology Reference

15.6 aM
Attomolar detection powered by
molecular antenna-like effect in a
graphene field-effect aptasensor

(Palacio
et al., 2023)

0.05ng/mL

Chemiluminescent aptasensor
based on rapid magnetic
separation and double-
functionalized gold nanoparticle

(Xi
et al., 2018)

114.7 pg/mL FRET Aptasensors
(Zhao
et al., 2021)

0.0128
hemagglutinin
units (HAU)

An Impedance Aptasensor with
Microfluidic Chips

(Lum
et al., 2015)

97 PFU/mL SERS imaging-based aptasensor
(Chen
et al., 2020)

70 aM
An Aptamer-aptamer Sandwich
Assay with Nanorod-enhanced
SPR for Attomolar Concentration

(Kim
et al., 2018b)

4.4 ng/mL and
3.3 ngmL for
MWCNT or
GO respectively

Aptamer-based fluorometric
determination using a paper-
based microfluidic device

(Weng and
Neethirajan,
2017)

200 viruses/mL
Ultrasensitive colorimetric
detection using
NanoZyme aptasensor

(Weerathunge
et al., 2019)

(Continued)
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S.No. Aptamer sequence (5’ to 3’) Type Organism Target
Concentratio
range

Virus

48.
GCGGATCCAGACTGGTGTGCCGTATCCCT CCCTTGTAATTATTTG
TTCCATCCGTTCCGCCCTAAAGACAAGCTTC

ssDNA HCV
HCV
core protein

10− 14 to 10−18 M

49. CACAGCGAACAGCGGCGGACATAATAGTGCTTACTACGAC DNA
Hepatitis B
virus (HBV)

HBsAg –

50. NH2- TTGGGGTTATTTGGGAGGGCGGGGGTT DNA
Influenza
A virus

H5N1
IAV
hemagglutinin

0.2 to 12 ng/mL

51.
GTG TGC ATG GAT AGC ACG TAA CGG TGT AGT AGA TAC GTG CGG
GTA GGA AGA AAG GGA AAT AGT TGT CCT GTT G

DNA H5N1 AIV – –

52.
Cy3/GGG TTT GGG TTG GGT TGG GTT TTT GGG TTT GGG TTG GGT
TGG GAA AAA

DNA
Influenza A/
H1N1 virus

– –

53.

Apt 1
H2N-GCT AGC GAA TTC CGT ACG AAG GGC GAA TTC CAC ATT GGG
CTG CAG CCC GGG GGA TCC
Apt 2
H2N-GTC TGT AGT AGG GAG GAT GGT CCG GGG CCC CGA GAC GAC
GTT ATC AGG C
Apt 3
H2N-CGT ACG GAA TTC GCT AGC ACG GGG CTT AAG GAA TAC AGA
TGT ACT
ACC GAG CTC ATG AGG ATC CGA GCT CCA CGT G
Apt 4
H2N-CGT ACG GAA TTC GCT AGC CGA CGG TCA ATG CTC GTG AGC
CAG
TAC ACA CAA TAT ATG TGG ATC CGA GCT CCA CGT G

DNA Norovirus
NoV
capsid protein

–

54.
AGT ATA CGT ATT ACC TGC AGC CCA TGT TTT GTA GGT GTA ATA
GGT CAT GTT AGG GTT TCT GCG ATA TCT CGG AGA TCT TGC

DNA Norovirus –
13 ng/mL to 13
mg/mL

55.
GCTAGCGAATTCCGTACGAAGGGCGAATTCCACATTGGGCT
GCAGCCCGGGG GATCC

DNA Norovirus MNV virion –

https://doi.org/10.3389/fcimb.2024.1402932
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TABLE 1 Continued

Organism Target
Concentration
range

LOD (limit
of
detection)

Methodology Reference

Virus

SARS-CoV-
2-RBD

– 0.5–250 ng/mL 32 ng/mL

Highly sensitive aptasensor using
aptamer-gated methylene
blue@mesoporous silica film/laser
engraved graphene electrode

(Amouzadeh
Tabrizi and
Acedo, 2022)

SARS-CoV-2
Nucleocapsid
protein

–
0.77 to
1.94 ngmL

Fluorescent nanodiamond-based
spin-enhanced lateral flow
immunoassay and spike protein
from different variants

(Wei-Wen
Hsiao
et al., 2022)

SARS-CoV2
Nucleocapsid
protein

– 33.28 pg/mL
Aptamer/antibody
sandwich method

(Ge
et al., 2022)

SARS-CoV-2 – 1 fM to 100 pM 0.389 fM

Aptasensing nucleocapsid protein
on nanodiamond assembled gold
interdigitated electrodes for
impedimetric assessment

(Ramanathan
et al., 2022)

Zika virus – 100 pM to 10 mM 38.14 pM Electrical biosensor
(Park
et al., 2022)

Zika virus NS1 protein 0.01 to 1000 pg/mL 0.01 pg/mL
Aptasensor based on
graphene FETs

(Almeida
et al., 2022)
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S.No. Aptamer sequence (5’ to 3’) Type

56.
CAG CAC CGA CCT TGT GCT TTG GGA GTG CTG GTC CAA GGG CGT
TAA TGG ACA

DNA

57. – DNA

58.

Apt 1
biotin-GCT GGA TGT CAC CGG ATT GTC GGA CAT CGG ATT GTC
TGA GTC ATA TGA CAC ATC CAG C
Apt 2
biotin-GCT GGA TGT TGA CCT TTA CAG ATC GGA TTC TGT GGG GCG
TTA AAC TGA CAC ATC CAG C

DNA

59.
GCA ATG GTA CGG TAC TTC CGG ATG CGG AAA CTG GCT AAT
TGG TGA GGC TGG GGC GGT

DNA

60. TGA CAC CGT ACC TGC TCT-N40-AAG CAC GCC AGG GAC TAT DNA

61. CTTCTGCCCGCCTCCTTCC-(39N)-GGAGACGAGATAGGCGGACACT DNA
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3.2 Electrochemical biosensors

A variety of electrochemical transducer systems, including

impedimetric, potentiometric, amperometric, voltammetric,

conductometric, and FET-based biosensors, can be integrated

with aptamers for enhanced functionality.

3.2.1 Impedimetric aptasensor
When the target analyte binds to the aptamer functionalized

sensor surface, inducing changes in the electrical properties at the

interface such as charge transfer kinetics, dielectric properties, or

surface conductivity at the sensor interface. The change in

impedance is converted into a measurable electrical signal.

Impedance spectroscopy measures the impedance change of the

sensor due to exposure to the target analyte and computes how the

sensors electrical impedance changes over a range of frequencies.

In a study conducted by Roushani et al. (2019) NH2-aptamer was

immobilized covalently on the surface of a glassy carbon electrode

through electrodeposition modification of AgNPs. The

conductivity and the charge transfer resistance before and after

the addition of P.aeruginosa to the aptasensor was studied. The

impedance increases on going from 102 to 107 CFU/mL

concentrations of P. aeruginosa, and the detection limit was

found to be 33 CFU/mL (for S/N=3). In a study conducted by

Ramanathan et al. (2022) carbon nanodiamond enhanced gold

interdigitated electrode was used to detect the nucleocapsid

protein of SARS-CoV-2. The aptasensor which was portable,

showed a good selectivity with a lower detection limit of 0.389

fM; at a linear detection range from 1 fM to 100 pM; showing 30 &

33% loss with stability & reusability. A rapid (30 mins) label-free

aptasensor was constructed by Bagheryan et al., using screen-

printed electrodes (SPEs) that were modified with diazonium salt

for the detection of Salmonella typhimurium in spiked apple juice

samples. The aptasensor had a linear detection range of 1×101 to

1×108 CFU mL−1 (Bagheryan et al., 2016).

3.2.2 Voltammetry based aptasensors
In a recent study, Fathi et al. (2020) developed a novel

voltammetric aptasensor for detecting Salmonella enterica serovar.

The sensor utilized a pencil graphite electrode modified with

chitosan-coated electrospun carbon nanofibers and gold

nanoparticles. The presence of the analyte on the electrode

surface led to an increase in charge transfer resistance, with the

change in current being measured as a function of voltage.

Electrochemical detection of Salmonella was achieved using

differential pulse voltammetry in a methylene blue solution. The

aptasensor demonstrated a linear detection range of 10 to 105 CFU/

mL, with a limit of detection (LOD) of 1.223 CFU/mL,

outperforming the PCR technique.

3.2.3 Graphene FET based aptasensors
An aptamer with high affinity against HCV (hepatitis C virus)

was functionalized on graphene solution-gated field-effect

transistors (g-SGFET) and the developed aptasensor was used to

amplify and detect the change in conductance caused by the
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interaction between the aptamer and the HCV core protein

(Palacio et al., 2023). Similarly, Almeida et al., fabricated a

graphene FET aptasensor to detect Zika virus (ZIKV). The

aptamer (termed ZIK60), selected by CE-SELEX was

complimentary to the Zika virus non-structural protein 1 (NS1)

and counterselection against the NS1 proteins of DENV (serotypes

1, 2, 3, and 4) and YFV (Almeida et al., 2022).

3.2.4 Quartz crystal microbalance
based aptasensors

QCM aptasensor is an acoustic (mass-based) piezoelectric

biosensor that detect changes in mass on the aptamer

immobilized surface of quartz crystal due to its interaction with

the analyte molecules by detecting changes in the resonance

frequency of the crystal. QCM-based aptasensors are highly

sensitive, label free, portable and can be miniaturised and hence

are suitable for point-of-care diagnostics. Aptamer selected using

whole cell SELEX was utilized to fabricate a QCM sensor to detect E.

coli O157:H7. The aptasensor had a LOD that was as low as 1.46 ×

103 CFU/mL and outperformed most QCM-based immunosensors

for pathogen detection. In addition, the quick response time of 50

min showed the possibility of using this aptamer in various other

types of biosensors used for rapid detection and investigation of E.

coli O157:H7 outbreaks (Yu et al., 2018). An interesting study

conducted by Wang et al., demonstrates the use of QCM based

SELEX to effectively select the ssDNA aptamer and subsequent

construction of QCM based aptasensor which was able to detect 103

CFU/mL of S. typhimurium within 1 h (Wang et al., 2017a).

Another example is a QCM aptasensor in which a nanowell based

electrode effectively increased the immobilization capacity of

aptamers for the detection of avian influenza virus. The result

showed that the binding of target AIV H5N1 onto the immobilized

aptamers decreased the sensor’s resonant frequency, and the

frequency change correlated to the virus titer. The detection range

of 2−4 to 24 hemagglutination units (HAUs)/50 mL was obtained

with a detection limit of 2−4 HAU/50 mL for AIV H5N1 with a

detection time of 10 mins using a label free assay. (Wang et al.,

2017a, 2017b)
3.3 Dual recognition aptasensor

As the name suggests, dual recognition sensors make use of two

different recognition principles facilitating a highly specific

detection. Li et al., developed an aptasensor for detecting S.

typhimurium by combining the methods of immune

hybridization chain reaction (HCR) with SERS achieving double

amplification and high sensitivity with a limit of detection of 6

CFU/mL in 3.5 h (Li et al., 2021). Bagheri Pebdeni et al., proposed

an aptamer and antibiotic-based dual detection sensor that

combines copper nanoclusters (CuNCs) as an effective approach

for the recognition and quantification of S. aureus. The use of dual

receptors enhanced fluorescence signal linearly with S. aureus

concentrations between 102 -108 CFU/mL, and the detection limit

was 80 CFU/mL after 45 min (Bagheri Pebdeni et al., 2021).
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Aptasensors like the electrochemiluminescence aptasensors come

under both electrochemical and optical sensors. It works by

detecting the luminescence that is produced due to the

electrochemical interactions between the aptamer and the analyte

molecules (Chen et al., 2021c; Chen et al., 2021b).
3.4 Sandwich assay based aptasensors

A sandwich assay involves two aptamers – the capture probe

and the signal probe. The capture probe is immobilized on the

surface of the sensor and after the analyte is added, the signal probe

is added forming an aptamer-aptamer sandwich platform. This

method is desirable because of the high sensitivity and selectivity

that it offers. S. Kim et al., demonstrated a nanorod enhanced SPR

with sandwich enzyme-linked immunosorbent assay (ELISA) for

the attomolar detection of the norovirus (NoV) capsid protein (Kim

et al., 2018b). RNA aptamer-based sandwich assays were used to

detect the NS1 protein of dengue virus serotype 2 and a LOD of 2

nM was attained (Thevendran et al., 2023).

Another notable example is an aptamer/antibody sandwich

constructed by Ge et al., for the digital detection of SARS-CoV2

nucleocapsid protein using fluorometry. The detection limit of this

digital method for N protein was 33.28 pg/mL, which was 300 times

lower than traditional double-antibody sandwich-based ELISA (Ge

et al., 2022). Even though sandwich ELISA assay offers various

advantages, it has a complex workflow, more optimization is

required, is labor intensive and the time of detection is a little high.
3.5 Other aptasensors

There are aptasensors based on principles other than the above

mentioned, for example, F. Jia et al. developed a low-field magnetic

resonance imaging (LF-MRI) aptasensor based on the difference in

magnetic behavior of two magnetic nanoparticles covalently

immobilized with aptamers for the rapid detection of

P.aeruginosa. Under optimum conditions, the LF-MRI platform

provides both image analysis and quantitative detection of P.

aeruginosa, with a detection limit of 100 CFU/mL (Jia et al., 2021).

Aptamer-based assays represent a significant advancement in

the diagnostics of infectious diseases, addressing the limitations of

traditional methods. Optical aptasensors, including surface

plasmon resonance, fluorescence, and surface-enhanced Raman

scattering, excel in sensitivity and specificity, ideal for detailed

biomolecule detection. Electrochemical aptasensors, such as

impedimetric, voltammetric, and graphene FET-based sensors,

offer robust, portable solutions with high sensitivity for point-of-

care applications. Meanwhile, dual-recognition and sandwich

assay-based aptasensors combine multiple detection principles to

enhance accuracy and detection limits. This comprehensive range

of aptamer-based technologies demonstrates their potential to

revolutionize diagnostic practices by providing versatile, efficient,

and precise tools for infectious disease management. The most

suitable method can be selected by understanding the strengths and

limitations for each approach.
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4 Notable aptasensor case studies

4.1 For the detection of methicillin
resistant Staphylococcus aureus-
contaminated surfaces

Methicillin-resistant Staphylococcus aureus (MRSA) is a well-

known pathogen that causes healthcare-associated infections.

Hospitals with contaminated environments are important sources

for the spread of MRSA and other nosocomial infections. In a study,

researchers have developed a new swab called a pathogen

aptasensor which can specifically detect MRSA on contaminated

non-absorbable surfaces. The visual detection limit of the MRSA

aptasensor swab was less than 100 CFU/mL, and theoretically, using

a standard curve, it was 2 CFU/mL. The assay has a short

turnaround time of 5 minutes, with a linear range of quantitation

from 10^2 to 10^5 CFU/mL. The MRSA aptamers bind to the

swab’s activated aldehyde group, and when exposed to an MRSA-

contaminated surface, the activated nanobeads conjugate with the

aptamer, causing the swab to turn blue. The intensity of the color

change is proportional to the concentration of MRSA, allowing for

both qualitative and quantitative detection (Raji et al., 2021).
4.2 Simultaneous detection of E.coli O157:
H7 and S.typhimurium

Simultaneous detection of E.coli and S.typhimuriumwas achieved

using an evanescent wave dual-color fluorescence aptasensor based

on time resolved effect. Two fluorescence labeled aptasensors, Cy3-

apt-E and Cy5.5-apt-S that were complimentary to E.coli O157:H7

and S.typhimurium were alternatively excited by evanescent waves

originated from 520 nm to 635 nm excitation lights, respectively. The

fiber nanoprobe with in-situ etched nanopores was used for

distinguishing free aptamer and aptamers bound to pathogenic

bacteria based on the limited penetrated depth of evanescent wave

and the significant size difference of bacteria and nanopore. The E.

coli O157:H7 and S. typhimurium were directly and simultaneously

quantitated in less than 35 min without the requirement of the

complex immobilization of biorecognition molecules and bacteria

enrichment/separation processes. The limits of detection of E. coli

O157:H7 and S. typhimurium were 340 CFU/mL and 180 CFU/mL,

respectively (Fang et al., 2021).
4.3 Colorimetric aptasensor for detecting
Salmonella spp., Listeria monocytogenes,
and Escherichia coli in meat samples

Aptasensors are revolutionizing infectious disease detection by

enhancing the specificity and sensitivity of aptamers. These

biosensors provide versatile solutions for streamlining diagnostic

processes in healthcare by rapidly and precisely identifying pathogens.

A recent study introduced a quick detection method that can

simultaneously identify Salmonella spp., Listeria monocytogenes,
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1402932
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Sujith et al. 10.3389/fcimb.2024.1402932
and E. coli. This method uses visual colorimetric detection with

labeled colloidal gold nanoparticles and UV absorbance

determination at optimized wavelengths of 625 nm and 525 nm.

The aptasensor has a detection limit as low as 105 CFU/mL.

Notably, this colorimetric aptasensor enables one-step detection

without the need for pre-culture, DNA extraction, or amplification

steps. As a result, it provides a simple, rapid, specific, and qualitative

assay suitable for point-of-care testing, allowing for direct detection

of multiple foodborne pathogens (Ledlod et al., 2020). Additionally,

exploring virulence factors as potential targets for aptamers is

helping us understand pathogen behavior and leading to the

development of targeted therapeutic interventions.
5 Aptamer applications: targeting
virulence factors and recent advances

5.1 Virulence factors and potential
aptamer targets

Aptamer is one of the most promising therapeutic candidates

because of its selectivity. In the field of therapeutics, they serve

various crucial roles, including acting as a drug delivery vehicle

(Ninomiya et al., 2014), functioning as a targeting molecule for

genes or whole cells, thereby reducing the expression of virulent

genes in pathogens and enhancing susceptibility to the immune

system (Lai et al., 2014). Furthermore, it serves as a binding agent

for toxins and specific proteins that contribute to increased

pathogen virulence (Gribanyov et al., 2021). When it comes to

treating viral infections that have no known treatment and drug-

resistant microorganisms that cause infectious diseases, aptamers

may be a useful therapeutic tool (Figure 3).

5.1.1 Bacteria
By removing important virulence components from bacteria,

aptamers present a viable strategy for treating bacterial illnesses.

(Tables 2, 3). The innovative technology enhance the treatment

efficacy against pathogens such as Staphylococcus aureus,

Mycobacterium tuberculosis, Salmonella typhi, Listeria monocytogenes,

Streptococcus pneumoniae, and Escherichia coli. In the fight against S.

aureus infections, aptamers AT-33 and AT-36 have been specifically

engineered to target and neutralize the a-toxin, a key virulence factor.
These aptamers effectively inhibit a-toxin-induced cell death and

cytokine upregulation in human cells, offering a promising

therapeutic approach (Ommen et al., 2022). Another set of aptamers

targets S. aureus biofilms, binding to the biofilm matrix to enhance

antibiotic delivery and significantly improve treatment outcomes by

overcoming biofilm-associated resistance. This dual approach of

targeting both toxins and biofilms represent a significant

advancement in therapeutic strategies against S. aureus infections.

To identify and target important molecules connected to M.

tuberculosis, aptamers have also been developed. For instance,

mannose-capped lipoarabinomannan (ManLAM), a major

glycolipid on the bacterial surface, serves as a target for specific

aptamers, aiding in both diagnostic and therapeutic applications.
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Additionally, aptamers targeting the GlcB and HspX antigens

disrupt bacterial metabolism and persistence, offering potential

therapeutic benefits (Zhou et al., 2021). Furthermore, aptamers

targeting ESAT-6, a critical virulence factor secreted by M.

tuberculosis, can reduce the bacterium’s virulence and increase its

vulnerability to immune system attacks (Sreejit et al., 2014). M.

tuberculosis produces a lipid called phthiocerol dimycocerosate

(PDIM), which is essential to the pathogenicity and virulence of

the bacteria (Augenstreich et al., 2020).

Researchers have developed an aptamer that interacts with and

neutralizes the InvA gene of S. typhi, a crucial element in the

bacterium’s invasion process. Additionally, the S9 aptamer targets

the outer membrane protein of S. typhi, further contributing to the

bacterium’s neutralization (Pathania et al., 2017; Yang et al., 2013).

SPI1, or Salmonella pathogenicity island 1, is essential for

Salmonella’s interaction with host cells, facilitating penetration

through the T3SS, also known as the needle complex, which

assembles proteins to translocate effector proteins into host cells

(Raffatellu et al., 2005; Lerminiaux et al., 2020). The pathogenicity of

S. typhi is enhanced by the release of typhoid toxin and the Vi

capsular antigen, which has anti-opsonic and antiphagocytic

properties (Galán, 2016; Tran et al., 2010; Wain et al., 2005). These

harmful factors can be targeted by specifically curated aptamers.

In order to prevent L. monocytogenes from invading host cells,

aptamers that target InlB, one of the bacteria’s virulence factors,

have been created. By blocking this key infection pathway, these

aptamers offer a promising therapeutic strategy for preventing L.

monocytogenes infections (Chen et al., 2024). L. monocytogenes

produces listeriolysin O (LLO), a pore-forming toxin dependent

on cholesterol (Dramsi and Cossart, 2002). LLO damages the

vacuolar membrane, facilitating bacterial escape into the cytosol

(Petrisǐč et al., 2021). These vulnerable parts of the pathogen can be

exploited by targeting them with protein-specific aptamers.

For S. pneumoniae, aptamers have shown good specificity; the

Lyd-3 aptamer in particular has shown promise. Lyd-3 effectively

inhibits biofilm formation, a critical factor in the pathogen’s

virulence and antibiotic resistance. By significantly reducing

biofilm formation, Lyd-3 enhances treatment outcomes, especially

when used in combination with antibiotics (Afrasiabi et al., 2020).

The pneumococcus’s polysaccharide capsule is a significant

virulence component, aiding in immune evasion and colonization

(Jonsson et al., 1985). PspK mediates adherence to human epithelial

cells, independent of the pneumococcal isolate genetic background

(Keller et al., 2013).

Four aptamers have demonstrated high affinity and specificity

for E. coli cells, making them valuable tools for both diagnostic and

therapeutic applications. These aptamers offer precise detection and

effective targeting of E. coli (Marton et al., 2016). E. coli causes

various infections, including urinary tract infections, and relies on

colonization factors and toxins for virulence. Aptamers can target

these virulent factors, disrupting E. coli’s pathogenic mechanisms

and enhancing treatment efficacy (Johnson, 1991; Kaper et al., 2004;

Terlizzi et al., 2017).

By leveraging the specificity and affinity of aptamers, we can

target key virulence factors in various bacterial pathogens, offering

innovative and effective therapeutic strategies.
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FIGURE 3

Illustrating Therapeutic Modalities Employing Aptamers. The figure depicts various therapeutic applications of aptamers, including (1) targeted drug
delivery, where aptamers are used to direct drugs specifically to diseased cells; (2) whole cell binding, where aptamers bind to specific cells for
therapeutic purposes; and (3)binding to toxins, where aptamers neutralize toxins by binding to them. These modalities showcase the potential of
aptamers in precision medicine and targeted therapies.
TABLE 2 Therapeutic techniques and mechanisms of aptamers against bacteria.

Target
Conjugated

With
Target site Mechanism Reference

Salmonella species

S. choleraesuis Ampicillin Flagella ▪ Aptamer 3 targets flagella, causing loss of bacterial motility decreasing
adherence to the matrix surface, and reinforces hydrodynamic and repulsive
forces which inhibit biofilm formation.
▪ Aptamer 3 may also serve as an antibiotic carrier helping ampicillin to
penetrate biofilms to eradicate bacteria and to overcome biofilm tolerance
to drugs

(Lijuan
et al., 2017)

S. enteritidis – Sip A protein (SPI –
Salmonella
pathogenicity island)

▪ Apt17, an aptamer targeting SipA an effector protein secreted by Type
Three Secretion System (T3SS).
▪ It facilitates the invasion of Salmonella cells by triggering
membrane ruffling

(Shatila
et al., 2020b)

S. Typhimurium
and
S. Enteritidis

– Sip A protein (SPI –
Salmonella
pathogenicity island)

▪ Targeting Salmonella invasion protein (SipA)
▪ A type three secretory system effector protein blocking this helps in anti-
adhesion and anti-invasion property against Salmonella Enteritidis

(Shatila
et al., 2020a)

S. Typhimurium
and
S. Enteritidis

Using rolling
circle amplification

- ▪ Use complementary sequences of recently described (anti-ST and anti-SE)
DNA aptamers as a template to develop RCA-p.
▪ The use of RCP-p is done to increase the bacteriostatic effect on
the bacteria

(Hameed
et al., 2022)

Salmonella
enterica
serovar
typhimurium

Gold nano particles Membrane disruption,
Intracellular interaction.

▪ Involve the binding of the AMPs to lipopolysaccharide and lipoteichoic
acid
▪ With subsequent membrane disruption through pore formation or other
processes
▪ AMPs are drugs delivered by aptamer nanoparticle complex

(Yeom
et al., 2016)

Salmonella
enterica
Serovar typhi

– Preferentially bind type
IVB pilli

▪ RNA Aptamer is used to bind to IVB pilus operon and stops IVB PILUS
formation

(Pan
et al., 2005)

(Continued)
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TABLE 2 Continued

Target
Conjugated

With
Target site Mechanism Reference

Salmonella species

▪ Which helps S.enterica serovar typhi to attach to cells which increases
its pathogenicity

Staphylococcus aureus

S aureus Teicoplanin and
PLGA nanoparticles

D-Ala, D-Ala site
in peptidoglycan

▪ Aptamer is used to bind to the bacteria and is conjugated with teicoplanin
encapsulated in PLGA
▪ Which stops the cell wall synthesis by blocking the D-Ala, D-Ala site

(Ucak
et al., 2020)

S. aureus – Alpha toxin and
transcriptional activators of
TNF-alpha and IL 17 gene

▪ Aptamers are specific to their targets through SELEX process, so they
bind directly to the alpha toxin

(Vivekananda
et al., 2014)

S .aureus
(MRSA)

Magnetic
graphene oxide

Whole-cell ▪ The conjugated magnetic graphene oxide (MGO) benefits from the
aptamer
▪ When it is exposed to NIR light, it produces heat that aids in the death
of MRSA.

(A Ocsoy
et al., 2021)

S
aureus (MRSA)

Anti-
galactosyltransferase
(anti-a-gal)

Whole-cell and help immune
system enhance the fight
against MRSA

▪ Anti-galactosyltransferase, or anti-a-gal, is conjugated with MRSA specific
aptamer.
▪ Anti-a-gal alerts the immune system to the presence of bacteria and aids
in its prompt elimination.

(Doherty
et al., 2023)

S aureus NaY0.28F4:Yb0.70,
Er0.02
magnetic
nanoparticle

As of now no targets but
This can be used as a
potential therapeutic

▪ The magnetic nanoparticle NaY0.28F4:Yb0.70, Er0.02 coupled with
aptamer is utilized to draw all of the bacterial cells into one location,
offering it a possible therapeutic use.

(Duan
et al., 2012)

Mycobacterium tuberculosis

Mycobacterium
tuberculosis

– Malate Synthase ▪ Aptamer attaches itself to the Mtb's malate synthase,
▪ Inhibiting adhesin function and preventing bacterial invasion.

(Dhiman
et al., 2019)

Mycobacterium
tuberculosis

– HupB protein ▪ Aptamer attaches itself to the HupB protein and prevents it
from working.

(Kalra
et al., 2018)

Mycobacterium
tuberculosis

Biotin DevR dimer ▪ The DevR dimer becomes dysfunctional when an aptamer attaches to it,
inhibiting transcription.

(Chauhan
et al., 2022)

Listeria monocytogenes

Listeria
monocytogenes

Porous
silica Nanoparticles

Whole-cell ▪ The aptamer is coupled to porous silica nanoparticles and loaded with
benzalkonium chloride (BAC).
▪ Because BAC is toxic, it cannot be utilized in treatment; instead, an
appropriate antibiotic can be employed to effectively target the bacteria.

(Sudagidan
et al., 2021)

Listeria
monocytogenes

Antibody of
L. monocytogenes

Antigen ▪ When an aptamer and bacterial antibodies are conjugated
The antigen found in the bacterium may be targeted therapeutically.

(Du
et al., 2022)

Listeria
monocytogenes

Bacteriocin
(nisin with
leucocin F10)

Cell membrane ▪ Aptamer in connection with Nisin and Leucocin F10
Once it attaches to bacteria, the aptamer pores the bacteria's surface.

(Turgis et al)

Streptococcus pnuemoniae

Streptococcus
pnuemoniae

a-Gal epitope Whole cell ▪ An aptamer is designed to attach to an a-Gal epitope, creating an
alphamer that targets bacteria
▪ Initiating opsonization and phagocytosing the pathogen by anti-a-
Gal antibody.

(Kristian
et al., 2015)

Streptococcus
pnuemoniae

Graphene
oxide (GO)

▪ This aptamer has the potential to be a therapeutic tool when combined
with drugs that are specific to this bacteria

(Bayraç and
Donmez,
2018)

Streptococcus
pnuemoniae

– PavA and FHbp ▪ Researchers created an aptamer that binds to the virulent proteins PavA
and FHbp.
▪ When the aptamer binds to PavA, it prevents the bacteria from attaching
to fibronectin

(Escolano
et al., 2017)

(Continued)
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TABLE 2 Continued

Target
Conjugated

With
Target site Mechanism Reference

Streptococcus pnuemoniae

▪ When it binds to FHbp, it compromises the ability to evade the immune
system and kills the bacteria.

Escherichia coli

E. coli – Targets adhesins and
colonization factor eg:
Afimbrial Adhesins

▪ Aptamers were employed to lower the biofilm activity. (Kusumawati
et al., 2022)

E.coli – Cell membrane ▪ Aptamer was designed to attach to the elements of the cell membrane.
▪ It is also utilized to prevent from forming biofilms.

(Oroh
et al., 2020)

E.coli – LPS ▪ This paper's researchers have inferred that aptamer attaches to the LPS
▪ This method may be exploited as a treatment option in addition
to detection.

(Zou
et al., 2018)

E.coli AuNPs and
Antimicrobial
peptides

Cell membrane ▪ Antimicrobial action is demonstrated by HPA3P, a derivative of HP(2-20)
▪ AMP with substitutions of E9P connected with gold nanoparticles and
aptamer pair (AuNPs-Apt).

(Lee
et al., 2017)
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TABLE 3 Virulence factors for aptamer-based targeting of bacterial pathogens.

Virulent
factors

Bacteria

L. monocytogenes S.aureus S.typhi M.tuberculosis E.coli S.pnuemoniae Reference

LPS (Endotoxin) + + (Chessa et al.,
2014)

(Somerville
et al., 1999)

Colonization factor +(adhesins) + (Gerlach et al.,
2007)

(Gerlach
et al., 2007)

Listeriolysin O + (Portnoy et al)

Phospholipases + + (Faucher et al.,
2008)

(Kadurugamuwa
and

Beveridge, 1995)

ACT A + (Pistor
et al., 1994)

Capsules + + + + + + (Bai et al., 2021)

Exotoxins +(Listeriolysin O) + (hemolysin,
leukotoxin,

exfoliative toxin,
enterotoxin, and

toxic-shock
syndrome toxin-
1 (TSST-1).)

+(typhoid
toxin)

+(necrotizing toxin) + +(pneuemolysin) (Portnoy et al)
(Otto, 2014)
(Fowler and
Galán, 2018)

(Sun et al., 2015)
(Kaper et al.,

2004)
(Nishimoto
et al., 2020)

ESAT-6 + (Sreejit
et al., 2014)

Surface adhesins + + + + + (Gerlach et al.,
2007)

(Johnson, 1991)

(Continued)
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5.1.2 Virus
Aptamers are also increasingly recognized for their potential to

combat viral infections by targeting and neutralizing specific viral

components (Table 4). It can enhance the efficacy of existing antiviral

treatments and provides new therapeutic avenues for diseases like

Zika virus, Nipah virus, Ebola virus, and Influenza A virus.

Zika virus, a member of the Flaviviridae family transmitted by

Aedes aegypti mosquitoes (Diagne et al., 2015), has been targeted with

various antiviral strategies. Ribavirin has shown efficacy in suppressing

viremia in ZIKV-infected STAT-1-deficient mice (Kamiyama et al.,

2017), while favipiravir and BCX4430 inhibit viral RNA synthesis by

targeting viral RNA-dependent RNA polymerase (Furuta et al., 2009;

Eyer et al., 2017). The similarity between the envelope proteins of

dengue and Zika viruses underscores their close evolutionary

relationship (Lunardelli et al., 2023). NS1 protein plays critical roles

in ZIKV replication (Valente and Moraes, 2019), and aptamer

technology holds promise for enhancing antiviral drug efficacy by

targeting specific virulence factors (Feng et al., 2011).

Nipah virus lacks specific antiviral treatments, making aptamer-

based therapies a potential breakthrough by targeting its virulence

factors, such as the F protein that mediates viral entry through ephrin

B2/B3 receptors (Sun et al., 2018; Weis and Maisner, 2015). The

Nipah virus V protein inhibits STAT proteins, crucial for interferon

signaling, enhancing viral pathogenesis (Shaw et al., 2004). Aptamers

designed to bind these proteins could mitigate infection severity.

Ebola virus VP35 and VP24 proteins are key virulence factors

that disrupt host immune responses (Leung et al., 2010; Zhang et al.,
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2012), with aptamers identified to target VP35’s interferon

inhibitory domain (Binning et al., 2013). These aptamers offer

potential therapeutic avenues against Ebola virus by restoring

interferon response pathways.

Influenza A viruses, characterized by their surface proteins HA

and NA, play crucial roles in viral entry and replication (Bouvier

and Palese, 2008). Aptamers targeting HA have demonstrated

significant antiviral effects in animal models, inhibiting viral

replication and reducing infection rates across different influenza

strains (Nobusawa, 1997; Gopinath et al., 2006; Jeon et al., 2004).

Aptamer research continues to explore novel therapeutic strategies,

addressing the challenges posed by viral mutation and enhancing

treatment efficacy (Musafia et al., 2014; Sanjuán, 2012).
5.2 Recent advancements and case studies

5.2.1 Notable developments in aptamer research
for infectious diseases
5.2.1.1 Gold nanoparticle-DNA aptamer conjugate-
assisted delivery of antimicrobial peptide (CA2634987A1)

Gold nanoparticles are a durable and widely used delivery

technology that offers various benefits over liposomes and PLGA.

It was demonstrated that combining antimicrobial peptides with a

gold nanoparticle-aptamer complex was effective in eliminating

intracellular Salmonella enterica serovar Typhimurium (Yeom

et al., 2016).
TABLE 3 Continued

Virulent
factors

Bacteria

L. monocytogenes S.aureus S.typhi M.tuberculosis E.coli S.pnuemoniae Reference

Protein A + (Palmqvist
et al., 2002)

Salmonella
pathogenicity
island

+(SPI1,
SPI2, SPI3)

(Lerminiaux
et al., 2020)

Vi antigen + (Zhang
et al., 2022)

Pneumococcal
factors (psp k , sir
A, pmp A)

+ (Brooks and
Mias, 2018)

Flagella + + + (Winter et al.,
2009)

(Grü ndling
et al., 2004)

Protein Kinases + + + (Wang &
Koshland, 1978)
(Canova and
Molle, 2014)

Mannose
capped
lipoarabinomannan

+ (Turner
and Torrelles)

Phthiocerol
Dimycocerosate

+ (Augenstreich
et al., 2020)
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TABLE 4 Therapeutic techniques and mechanisms of aptamers against the virus.

Virulence factors of Viruses

S. No. Virus Virulence factor Function Mechanism Reference

1 Zika NS1 (non-structural
protein 1)

Immune evasion
and modulation

▪ NS1 prevents the synthesis of interferon-
beta (IFN-b),
▪ Essential for the antiviral immune response.

(Rastogi and
Singh, 2020)

NS2A and NS4B Viral replication ▪ The Zika virus's NS2A contributes to the
suppression of NF-kB promoter activity.
▪ NS2A is composed of a central region (the
bridge) that passes through a cellular
compartment (ER) & six arms (segments)
that extend outward from the central region.

(Lee et al., 2020)
(Nutho et al., 2019)

Envelope protein Entry into host cell and
helps in assembly of new
viral particles

▪ E protein promotes the production of viral
particles by interacting with apolipoprotein E,
a protein involved in lipid metabolism.
▪ C-type lectin receptors in the host cell are
involved in receptor-mediated endocytosis.

(Nutho et al., 2019)
(Agrelli et al., 2019)

Capsid protein Helps in formation of new
virus particles

▪ capsid protein forms overall positively
charged dimers that bridge RNA and lipid
membrane surfaces.
▪ The protein exists as dimers with four a
helices and a long pre-a1 loop, contributing
to its unique structure

(Shang et al., 2018)

2 Ebola Viral protein 24 (VP24) Interferes in host
interferon and evades host
immune system

▪ VP24 suppresses interferon-dependent
signaling, of interferon alpha/beta (IFN-a/b).
▪ The host's antiviral response is interfered,
which makes it easier for the virus to
multiply and propagate.

(Zhang et al., 2012)

VP30 Helps in transcription
and replication

▪ Dynamic phosphorylation of VP30 occurs
at six serine residues at the N-terminus.
▪ This post-translational alteration affects
VP30's function in viral transcription and
replication by regulating its activity in
conjunction with dephosphorylation.

(Lier et al., 2017)

VP35 Interferes with host
interferon regulatory
factor (IRFs)

▪ VP35 interacts with the PKA-CREB1
pathway, a set of intracellular chemical
signals.
▪ A biological protein known as AKIP1 is
bound by VP35, starting a chain reaction.
▪ PKA (Protein Kinase A) and CREB1
(cAMP Response Element-Binding Protein
1), two important participants, are activated
by this binding.
▪ Following activation, CREB1 is drawn to
viral inclusion bodies, which are particular
structures created when the Ebola virus
infects a host.

(Zhu et al., 2022)

VP40 Formation and release of
viral particles from
infected cells

▪ SUMOylation is a post-translational
modification that controls VP40.
▪ Affects the stability, nucleocapsid
recruitment, structure, and budding of
the virus.

(Baz-Martnez
et al., 2016)

L Polymerase RNA dependent RNA
polymerase involved in
replication
and transcription

▪ The process includes the polymerase
starting RNA synthesis from scratch, or de
novo, without the aid of an existing primer.

(Yuan et al., 2022)

3 Nipah Nucleoprotein (N protein) responsible for enclosure
of viral RNA genome

▪ The N protein facilitates the interchange of
N-terminal (NTARM) and C-terminal
subdomains (CTARM) and lateral
interactions that lead to the creation of a
stable homopolymer structure.

(Ker et al., 2021)

(Continued)
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TABLE 4 Continued

Virulence factors of Viruses

S. No. Virus Virulence factor Function Mechanism Reference

▪ This particular structural configuration
enhances the nucleocapsid's integrity.

Phosphoprotein
(P protein)

Crucial for viral RNA
synthesis and synthesis

▪ Viral polymerase activity and viral RNA
synthesis are regulated by overexpression of
the Nipah virus nucleocapsid protein (N)
▪ Which indicates the complex interaction
between P and other viral components.

(Ranadheera
et al., 2018)

Matrix protein (M protein) Involved in assembly and
budding of new
vial particles

▪ The induction of interferon-beta (IFNb) at
the level of the TBK1/IKKe kinases is
inhibited by the NiV matrix protein.

(Bharaj et al., 2016)

Fusion protein (F protein) Helps in viral entry into
host cells

▪ The attachment (G) protein and the NiV-F
protein work together to mediate viral entry
and syncytium formation.
▪ Syncytium formation is the process by
which adjacent and infected cells combine to
promote the spread of the virus.

(Aguilar et al., 2006)

4 Influenza
A virus

Hemagglutinin HA Helps in adherence to
host cell

▪ Low pH inside endosomes causes HA to
undergo a conformational shift after
attachment.
▪ The fusing of the viral and endosomal
membranes can be mediated by HA
▪ Conformational shift exposes a fusion
peptide.
▪ The viral genome must pass through this
stage in order to enter the cytoplasm of the
host cell.

(Brandenburg
et al., 2013)

Neuraminidase NA Releases viral particles
from infected cells

▪ Neuraminidase is an exosialidase that
breaks the a-ketosidic bond between the
sugar residue next to the sialic acid on the
surface of host cells that are infected.
▪ The release of offspring viruses from the
host cell membrane depends on this cleavage.

(McAuley et al., 2019)

PB1, PB2, PA Viral replication ▪ The catalytic component responsible for
RNA-dependent RNA polymerase (RdRP)
activity is called PB1.
▪ PB2 participates in the cap-snatching
process, responsible for the start of viral
transcription. To facilitate the production of
viral mRNA, the viral polymerase snatches
the 5' cap structure from host pre-mRNAs.
▪ In the cap-snatching procedure, PA is an
essential component. Sue to its endonuclease
activity, host mRNA can be broken down
close to the 5' cap structure.
▪ Afterwards, PB2 uses this cleaved cap to
start viral transcription.

(Binh et al., 2013)
(Lerminiaux et al., 2020)
(Ma et al., 2017)

NP Responsible for enclosure
of viral RNA genome

▪ The results show that NP serves a variety of
purposes throughout the life cycle of the
virus, and its requirement varies depending
on the particular circumstances or context of
the viral activities under investigation.

(Turrell et al., 2013)

M1 M2 Involved in assembly and
budding of new
vial particles

▪ M1's conformation may be affected by
association with M2, which would promote
the elongation of viral budding.
▪ The effective release of new virus particles
depends on this interaction.

(Roberts et al., 1998)

NS1 NS2 Immune evasion ▪ NS1 suppresses host's antiviral defenses by
blocking several pathways, including
interferon generation and activation of PKR

(Huang et al., 2017)
(O’Neill et al., 1998)

(Continued)
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5.2.1.2 Point-of-care SARS-CoV-2 salivary antigen testing
with an off-the-shelf glucometer (WO2022016163A2)

An innovative test technique that combines a pre-conjugated

aptamer with the enzyme invertase, which is then attached to a

magnetic bead. Because the aptamer is highly specific to the antigen

found in the corona virus, it goes through a confirmational change that

releases the enzyme into the medium, where it is separated by magnetic

separation. The medium’s invertase then breaks down sucrose into

glucose, andmeasuring the glucose yields an assay of the antigen present

in the sample. This model operates on this concept (Singh et al., 2021).

5.2.1.3 Graphene aptasensor for the detection of hepatitis
C virus (EP4124855A1)

Changes in their surroundings, particularly the attachment of bio-

receptors to the graphene surface, cause Graphene Field-Effect

Transistor Biosensors (gFET) to detect changes in electrical metrics,

such as conductivity. Graphene’s sensing potential is increased by

chemical modification. As an example of how biological molecules can

be sensed, researchers have created chemically functionalized gFETs

that can detect negatively charged exosomes when they are bound to

the graphene surface. In this particular case, researchers have created

sgFETs with aptamer that can detect HCV protein even at lower

concentrations making it an ultrasensitive aptasensor. Attomolar

detection of the viral protein target is made possible by the enhanced

sensitivity brought about by induced polarization at the graphene

interface (Kwong Hong Tsang et al., 2019; Palacio et al., 2023).

5.2.1.4 Aptamer binding hemagglutinin of H7N7 subtype
influenza virus (JP2014008002A)

An aptamer capable of differentiating between influenza A

serotypes and interfering with the HA-glycan interaction was

created by researchers. To ensure the aptamer’s stability in the

presence of endo-ribonucleases, 2′-fluoro cytidine is employed,

which does not interfere with its binding to HA. This aptamer
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has applications in detecting and diagnosing H5N1 and H7N7

viruses, as well as in synthesizing virucidal drugs that selectively

target these viruses, impeding their early interactions with hosts

(Suenaga and Kumar, 2014). The glycoprotein known as

hemaglutinin (HA), which is present on the influenza virus’s

surface, is essential to the virus’s capacity to bind to and

penetrate host cells. Aptamers work by specifically targeting HA,

which stops the virus from attaching to host cell receptors and

preventing it from entering the cells (Zou et al., 2019)

5.2.2 Case studies: aptamers that inhibit biofilm
Quorum sensing, a mechanism that enables signaling and

communication within bacteria, plays a key role in the formation

of P.aeruginosa biofilms. Three main QS systems in P.aeruginosa:

las system, rhl system and Pseudomonas quinolone signal system

(PQS) encode for various signaling molecules that act as regulator

for the transcription of numerous virulence factor genes (Zhang

et al., 2013; Chadha et al., 2022). Zhao et al., conducted a study in

which they screened DNA aptamers complimentary to the signal

molecule C4-HSL of the rhl system. Depressing the rhl system

affects the formation and maintenance of the biofilm. It was

observed that the biofilm formation of P.aeruginosa was

efficiently reduced to about 1/3 by the aptamers compared with

that of the groups without the aptamers in the in vitro biofilm

inhibition experiments (Zhao et al., 2019) (Figure 4).

Matchawong et al., constructed a 2’ -fluoropyrimidine modified

nuclease-resistant RNA aptamersusing cell SELEX against

Streptococcus suis serotype 2, strain P1/7. The R8-su12 RNA

aptamer significantly reduced the S. suis biofilm formation and

had the ability to bind to other pathogenic S. suis (serotype ½, 1, 9,

and 14) (Matchawong et al., 2022). Candida albicans was grown in

the exposure of condensed cigarette smoke (CSC), prepared from

clove (CCSC) and non-clove (NCSC) cigarettes, for 48 h (Bachtiar

et al., 2021).It was found that the presence of added CCSC or NCSC
TABLE 4 Continued

Virulence factors of Viruses

S. No. Virus Virulence factor Function Mechanism Reference

(Protein Kinase R).
▪ The nuclear export of viral
ribonucleoprotein (vRNP) complexes is
facilitated by NS2.
▪ It controls the movement of NS2 mRNA
that has been spliced and its precursor, NS1
mRNA, making it easier for vital viral
components to be exported from the nucleus
into the cytoplasm.

5 Noro virus VP1 (major
capsule protein)

Formation of viral capsid,
contributes to stability
of virion

▪ The capacity of the virus to reproduce in B
cells is closely correlated with the projecting
domain of VP1
▪ Potential function for this domain in
determining norovirus virulence.

(Zhu et al., 2016)

VP2 (minor
structural protein)

Contributes for the
stability of the virion

▪ VP2 experiences coevolution and is the
cause of most illnesses. Its significance in the
infection process is shown by the
coevolutionary dynamics.

(Hong et al., 2022)
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significantly enhanced C. albicans biofilm development but when C.

albicans was precoated with aptamer (Ca-apt1) there was a

significant impairment in the biofilm development accelerated by

the NCSC and CCSC. This could be attributed to the enhancement

of the morphological changes of C. albicans (from yeast to hypha

formation) due to CCSC or NCSC was reduced due to precoating

the aptamer.

Ning et al.,conducted an interesting study in which a GO-

loaded aptamer/berberine bifunctional complex specific to

penicillin-binding protein 2a (PBP2a) significantly inhibited

MRSA biofilm formation (Ning et al., 2022). The aptamer blocks

the function of PBP2a, reducing surface-cell attachment and

berberine attenuates the level of the accessory gene regulator (agr)

system, which is essential for MRSA biofilm formation.

Furthermore, GO also has the potential to disrupt cell

membranes, attributing to the antibiofilm activity (Saravanan

et al., 2023). Lijuan et al., developed an aptamer-ampicillin

bifunctional conjugate that targeted bacterial flagella for treating

biofilms (Lijuan et al., 2017).
6 Challenges and limitations

6.1 Stability and delivery concerns
of aptamers

The term “steady state” describes the dynamic balance that results

from consistent dosage between the total amount of a drug taken and

its elimination. For aptamers, the steady-state or nearly steady-state
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concentration can be attained three to five times the half-life

following aptamer administration, which has a steady-state

duration of 17 to 29 hours (Lee et al., 2015). This emphasize on

the importance of aptamer’s stability i.e.,The longer the aptamer stays

in circulation for the treatment of infectious disorders, the greater the

likelihood that it may encounter pathogens. The pharmacokinetic

profile of the aptamer must be determined to proceed with trials,

firstly the aptamer’s half-life in vivo is rather brief, lasting roughly 2

mins. Unmodified ssDNA oligonucleotides have a half-life of less

than one minute (Griffin et al., 1993) (Sanjuán, 2012).

In conditioned media, HEK cells infected with M. fermentans

exhibit ribonuclease activity that rapidly degrades RNA carrying 2′-
fluoro- and 2′-O-methyl-modified pyrimidines. Similar

ribonuclease activity was seen in a pure culture of M.fermentans,

but not in a culture of uncontaminated HEK cells (Hernandez et al.,

2012). RA-36, an aptamer with antithrombin properties, have

shown rapid bloodstream elimination with a half life of 1 minute

As opposed to 23 minutes in tissues (Zavyalova et al., 2017).

The tissue type, aptamer sequence, and their formulation affects

the outcomes of aptamer uptake ad distribution. A single bolus oral

dose of aptamer was administered to mice, and after tissue

contamination was eliminated with perfusion buffer, the aptamer

was diffused into the bloodstream from the peritoneum and into

multiple organs, including the brain and spinal cord, within

minutes of oral administration. The uptake of the aptamer was

reduced within a few hours (Perschbacher et al., 2015). When

aptamer and nanoparticles are conjugated, the physiochemical

properties including the size and distribution of the particles are

altered (Ghassami et al., 2018).
FIGURE 4

Aptamers disrupting quorum sensing in biofilm. (A) Communication in bacterial biofilm by quorum sensing molecule. (B) Aptamer binds to the
quorum-sensing molecules, disrupting signaling.
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6.2 Potential for off-target effects and
safety issues

Drugs undergoing clinical trials may have side effects and safety

problems of their own, but it is crucial to understand these effects in

order to design a therapeutic version with less side effects.

Investigations’ findings by Zhao et.al., in the tested settings, the

SGC8 aptamer exhibited neither mutagenicity nor genetic toxicity

using total body-positron emitting tomography (TB PET) (D. Ding

et al., 2023). When an aptamer-tagged radioactive element was

injected intravenously, the kidney contained the highest quantities

of radioactivity. This indicates that the pharmacokinetics profile of

absorption from intravenous aptamer injection results in a

relatively low absorption rate. However, giving aptamer was

administered in many doses, but this did not cause aptamer to

accumulate in plasma. The factor most likely limiting the drug’s rate

of disposal is its rate of absorption (Siddiqui and Keating, 2005).

Researchers discovered that the absence of conjugating

cholesterol has certain undesirable effects, such as altering the

expression of genes associated to innate immunity and cellular

survival (Lee et al., 2015). In addition, the aptamer’s overall negative

charge causes it to attach to positively charged substances without

being specific. As stated previously, the aptamer’s short length and

compact size promote bio clearance (Gholikhani et al., 2022).
6.3 Strategies to overcome challenges and
ongoing research in the field

The aforementioned problems can be solved in a number of

ways, and some of these tactics are (1) substituting sulfur for one of

the monothio or dithio groups of the phosphoryl non-bridging

oxygen atoms results in a number of benefits, including increased

binding to the target, resistance to nuclease action, and faster

absorption into the cells. However, there is a small drawback to

this the aptamer may become less specific (Thiviyanathan et al.,

2007; Keefe et al., 2010). (2) integrating aptamer into a larger

molecular framework in the shape of a multivalent circle by offering

nucleolytic stabilization that guards against exonucleases (Di Giusto

et al., 2006). (3) the body’s nuclease enzymes could not break down

aptamers synthesized with an L nucleotide sequence. This type of

sequence, called spigelmers, is the mirror image of an

oligonucleotide but contains L nucleotide instead of R nucleotide

(Maasch et al., 2008; Chen et al., 2017). (4) RNA sequences that

have aldehyde derivatives appended to the 5’ end, facilitate affinity

purification and coupling with other molecules (Pfander et al.,

2007). (5) producing the most stable hybrids by employing

nucleoside analogues that have a methylene bond between the

ribose ring’s 2′-O and 4′-C in order to create a locked nucleic

acid sequence. The sugar moiety is thus locked in a C3′-endo
configuration (Lebars et al., 2007). (6) an aptamer was modified by

adding PEG linkers to decrease stearic hinderance and 2’-fluoro-

pyrimidines (2’F) (Derbyshire et al., 2012; Ni et al., 2021). (7) the

highest tissue exposure was achieved by the aptamer, which was

prepared as a 3′ biotin derivative coupled with tetrameric
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streptavidin (Perschbacher et al., 2015). To achieve this, a

cholesterol moiety was linked to the 5’ end of a 29-nucleotide

RNA aptamer that had been modified with 2’-F against the HCV

NS5B protein. This modification was chosen because previous

studies have shown that conjugating oligonucleotide molecules

with cholesterol can prolong their plasma half-life by associating

with plasma lipoproteins and enhance their uptake by hepatic cells

through receptor-mediated endocytosis. (8) An improved aptamer

half-life results by conjugating cholesterol with the aptamer (Lee

et al., 2015). (9) The aptamer attached to MetCyc, facilitating its

interaction with other molecules helping evade attacks from

nucleases (Borbas et al., 2007; Ni et al., 2021). (10) In some

circumstances, we can employ liposomal conjugated aptamers to

lengthen the drug’s half-life and make it more covert (Jiang et al.,

2020; Alameh et al., 2021; Kim et al., 2001). (11) To shield the RNA

from exonuclease degradation, the derivative’s two terminals are

capped with an extended stem structure, allowing for the effective in

vivo expression of the aptamer (Mori et al., 2012). Creating chimeric

aptamers by combining segments from different aptamers or

combining with other functional molecules for enhancing

specificity (Cheng et al., 2023). In conclusion, these diverse

strategies and modifications illustrate ongoing efforts to optimize

aptamer technology, enhancing their stability, specificity, and

therapeutic efficacy across various biomedical applications.
7 Conclusion and future perspectives

The diverse applications of aptamers in the realm of infectious

diseases underscore their immense potential in diagnostics,

therapeutics, and biosensing. The ability of aptamers to specifically

recognize and bind to a wide range of pathogenic targets, including

viruses, bacteria, and fungus, has paved the way for innovative

solutions in disease detection and treatment. In diagnostics, aptamers

have demonstrated exceptional sensitivity and specificity, enabling the

development of rapid and accurate diagnostic assays. Their

incorporation into biosensors has facilitated the detection of

infectious agents at early stages, contributing to timely interventions

and improved patient outcomes. Aptamer-based diagnostic platforms

also offer the advantage of portability and cost-effectiveness, making

them particularly valuable in resource-limited settings. Aptamers have

proven their mettle in therapeutic applications, where they can be

engineered to inhibit viral entry, replication, or modulate the host

immune response. The versatility of aptamers allows for the design of

tailored therapeutic interventions, offering a promising avenue for the

development of antiviral and antibacterial agents. Moreover, the

potential for aptamers to mitigate the emergence of drug-resistant

strains adds another layer of significance to their therapeutic

applications. Looking ahead, the future perspectives of aptamer

research in infectious diseases are exciting and multifaceted.

Advancements in aptamer selection technologies, such as SELEX,

will likely enhance the discovery of aptamers with improved binding

affinities and specificities. The integration of aptamers with emerging

technologies, such as CRISPR-based diagnostics and gene editing,

holds promise for the development of next-generation diagnostic and
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therapeutic tools. Furthermore, the exploration of aptamer-

nanoparticle conjugates and other delivery systems may enhance the

targeted delivery of aptamers to infected tissues, improving their

therapeutic efficacy. Collaborations between academia, industry, and

healthcare providers will be crucial in translating aptamer-based

technologies from the laboratory to clinical practice.
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Eyer, L., Zouharová, D., Širmarová, J., Fojtıḱová, M., Štefánik, M., Haviernik, J., et al.
(2017). Antiviral activity of the adenosine analogue BCX4430 against West Nile virus
and tick-borne flaviviruses. Antiviral Res. 142, 63–67. doi : 10.1016/
j.antiviral.2017.03.012

Fair, R. J., and Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century.
Perspect. Medicinal Chem. 6, PMC.S14459. doi: 10.4137/PMC.S14459

Fang, S., Song, D., Zhuo, Y., Chen, Y., Zhu, A., and Long, F. (2021). Simultaneous and
sensitive determination of Escherichia coliO157:H7 and Salmonella typhimurium using
evanescent wave dual-color fluorescence aptasensor based on micro/nano size effect.
Biosensors Bioelectronics 185, 113288. doi: 10.1016/j.bios.2021.113288

Fathi, S., Saber, R., Adabi, M., Rasouli, R., Douraghi, M., Morshedi, M., et al. (2020).
Novel competitive voltammetric aptasensor based on electrospun carbon nanofibers-
gold nanoparticles modified graphite electrode for salmonella enterica serovar
frontiersin.org

https://doi.org/10.1371/journal.ppat.1005880
https://doi.org/10.1371/journal.ppat.1005880
https://doi.org/10.3389/fmicb.2013.00398
https://doi.org/10.3389/fmicb.2013.00398
https://doi.org/10.1021/bi400704d
https://doi.org/10.1021/bc0700741
https://doi.org/10.1021/bc0700741
https://doi.org/10.1016/j.ymeth.2019.04.004
https://doi.org/10.1016/j.ymeth.2019.04.004
https://doi.org/10.1016/j.vaccine.2008.07.039
https://doi.org/10.1371/journal.pone.0080034
https://doi.org/10.1016/S1084-8592(99)80014-9
https://doi.org/10.3389/fimmu.2018.01366
https://doi.org/10.3389/fimmu.2018.01366
https://doi.org/10.1016/j.snb.2017.09.121
https://doi.org/10.1016/j.snb.2017.09.121
https://doi.org/10.3390/s23020562
https://doi.org/10.3390/s23020562
https://doi.org/10.1074/jbc.R113.529917
https://doi.org/10.1074/jbc.R113.529917
https://doi.org/10.3390/bios12070440
https://doi.org/10.1111/1462-2920.15784
https://doi.org/10.1021/acsinfecdis.2c00414
https://doi.org/10.1021/acsami.4c00496
https://doi.org/10.1021/acsami.4c00496
https://doi.org/10.1021/acsomega.1c03527
https://doi.org/10.1021/acsomega.1c03527
https://doi.org/10.3389/fcell.2023.1091809
https://doi.org/10.3389/fcell.2023.1091809
https://doi.org/10.3389/fbioe.2022.1002285
https://doi.org/10.3389/fbioe.2022.1002285
https://doi.org/10.1016/j.bios.2020.112496
https://doi.org/10.1111/jfs.12868
https://doi.org/10.1016/j.talanta.2016.11.001
https://doi.org/10.3390/ijms17122079
https://doi.org/10.1007/s00604-022-05533-w
https://doi.org/10.3390/foods10112539
https://doi.org/10.3390/foods10112539
https://doi.org/10.1128/IAI.02297-14
https://doi.org/10.1038/35021206
https://doi.org/10.1021/acsanm.2c01548
https://doi.org/10.1042/EBC20150010
https://doi.org/10.1021/ac300815c
https://doi.org/10.1021/ac300815c
https://doi.org/10.1016/j.omtn.2019.09.026
https://doi.org/10.1186/s12879-015-1231-2
https://doi.org/10.1002/cbic.200500316
https://doi.org/10.1021/acs.analchem.3c02477
https://doi.org/10.34133/research.0126
https://doi.org/10.3390/microorganisms11071776
https://doi.org/10.1083/jcb.200202121
https://doi.org/10.1016/j.snb.2022.131654
https://doi.org/10.1016/j.ijfoodmicro.2015.11.006
https://doi.org/10.1016/j.aca.2012.02.011
https://doi.org/10.1038/s41598-022-15637-1
https://doi.org/10.1016/j.snb.2017.02.098
https://doi.org/10.1016/j.antiviral.2017.03.012
https://doi.org/10.1016/j.antiviral.2017.03.012
https://doi.org/10.4137/PMC.S14459
https://doi.org/10.1016/j.bios.2021.113288
https://doi.org/10.3389/fcimb.2024.1402932
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Sujith et al. 10.3389/fcimb.2024.1402932
detection. Biointerface Res. Appl. Chem. 11, 8702–8715. doi: 10.33263/
BRIAC112.87028715

Faucher, S. P., Viau, C., Gros, P. P., Daigle, F., and Le Moual, H. (2008). The prpZ
gene cluster encoding eukaryotic-type Ser/Thr protein kinases and phosphatases is
repressed by oxidative stress and involved in Salmonella enterica serovar Typhi survival
in human macrophages. FEMS Microbiol. Lett. 281, 160–166. doi: 10.1111/j.1574-
6968.2008.01094.x

Feng, H., Beck, J., Nassal, M., and Hu, K. (2011). A SELEX-Screened aptamer of
human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS
One 6, e27862. doi: 10.1371/journal.pone.0027862

Ferhan, A. R., Jackman, J. A., and Cho, N.-J. (2016). Integration of quartz crystal
microbalance-dissipation and reflection-mode localized surface plasmon resonance
sensors for biomacromolecular interaction analysis. Analytical Chem. 88, 12524–12531.
doi: 10.1021/acs.analchem.6b04303

Fowler, C. C., and Galán, J. E. (2018). Decoding a Salmonella typhi regulatory
network that controls typhoid toxin expression within human cells. Cell Host Microbe
23, 65–76.e6. doi: 10.1016/j.chom.2017.12.001

Furuta, Y., Takahashi, K., Shiraki, K., Sakamoto, K., Smee, D. F., Barnard, D. L., et al.
(2009). T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of
RNA viral infections. Antiviral Res. 82, 95–102. doi: 10.1016/j.antiviral.2009.02.198

Galán, J. E. (2016). Typhoid toxin provides a window into typhoid fever and the
biology of Salmonella Typhi. Proc. Natl. Acad. Sci. 113, 6338–6344. doi: 10.1073/
pnas.1606335113

Gao, R., Zhong, Z., Gao, X., and Jia, L. (2018). Graphene oxide quantum dots assisted
construction of fluorescent aptasensor for rapid detection of Pseudomonas aeruginosa
in food samples. J. Agric. Food Chem. 66, 10898–10905. doi: 10.1021/acs.jafc.8b02164
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