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Background: Toxoplasma gondii (T. gondii) is a widespread, zoonotic protozoan

intracellular parasite with a complex life cycle, which can cause toxoplasmosis, a

potentially serious disease. During the invasion process, T. gondii proteins first

bind to the relevant host cell receptors, such as glycosaminoglycan molecule

(GAG-binding motif), which is one of the main receptors for parasites or virus to

infect host cells. However, research on TGME49_216510 (T. gondii Trx21), a

protein from Toxoplasma gondii, is limited.

Methods: Bioinformatics analysis of the Trx21 protein was performed firstly. And

specific primers were then designed using the conserved domain and GAG-

binding motif to amplify, express, and purify a fragment of the Trx21 protein. The

purified Trx21-GST protein was used for antioxidant and cell adhesion

experiments. Simultaneously, mice were immunized with Trx21-His to

generate specific polyclonal antibodies for subcellular localization analysis.

Results: The Trx21 protein, consisting of 774 amino acids, included a

transmembrane region, three GAG-binding motifs, and a Thioredoxin-like

domain. The recombinant Trx21-His protein had a molecular mass of about 31

kDa, while the Trx21-GST protein had a molecular mass of about 55 kDa, which

was analyzed by SDS-PAGE and Western blot. Subcellular localization analysis by

IFA revealed that Trx21 is predominantly distributed in the cytoplasm of T. gondii.

Furthermore, Trx21 exhibited a protective effect on supercoiled DNA against

metal-catalyzed oxidation (MCO) and demonstrated adhesion abilities to

Vero cells.

Conclusions: These results indicate that Trx21 plays an important role in host cell

interaction and oxidative damage.
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Introduction

Toxoplasma gondii (T. gondii) is a protozoan parasite

responsible for causing toxoplasmosis , which infects

approximately one-third of the world’s population (Wei et al.,

2021). T. gondii can invade the nucleated cells of various

mammals, birds and vertebrates, including humans. Transmission

of T. gondii can occur in a variety of ways, such as eating

undercooked or raw contaminated meat, drinking contaminated

water, handling infected cat litter, or contact with contaminated

soil. In addition, the infection can be transmitted from a newly

infected mother to her unborn child. Most people with normal

immune systems experience latent infection without obvious

clinical symptoms. However, people with weakened immune

systems, such as HIV/AIDS patients or organ transplant

recipients, may experience more serious complications from T.

gondii reactivation (Attias et al., 2020; Weiss and Kim, 2020; Matta

et al., 2021; Tong et al., 2021).

Thioredoxin (Trx) is a group of small redox proteins with a

molecular mass of 12 kDa that are known for their widespread

distribution, high conservation and importance in various

organisms, including mammals (Ghareeb and Metanis, 2020;

Masutani, 2022; Zhang et al., 2023). Trx plays a crucial role in

antioxidant function by facilitating the reduction of other proteins

through cysteine-thiol-disulfide exchange. The dithiol disulfide

active site, which contains two adjacent cysteines in a CXXC

motif, is found in many organisms, from plants and bacteria to

mammals. These cysteines are essential for Trx to carry out protein

reduction (Ershov et al., 2022; Hillier et al., 2022; Onodera et al.,

2022). The thioredoxin system (Trx system), which consists of Trx,

thioredoxin reductase (TrxR), and reduced nicotinamide adenine

dinucleotide phosphate (NADPH), is present in eukaryotes and

prokaryotes. This system remains reduced through an NADPH-

dependent reaction (Bjørklund et al., 2021, 2022; Mohammadi et al.,

2019; Jastrzab̨ and Skrzydlewska, 2021; Hasan et al., 2022; Zhang J

et al., 2021). By facilitating electron transfer, the Trx system

catalyzes redox reactions, which play a crucial role in regulating

the activity of biological macromolecules and maintaining oxidative

balance in organisms (Suhail et al., 2020; Le Gal et al., 2021; Jeong

et al., 2022). Recent studies have shown that Plasmodium can be

effectively blocked from entering human red blood cells by specific

antibodies targeting Plasmodium Trx, a heparin-binding protein

(Wang et al., 2018).

Invasion of host cells by apicomplexan parasites involves a

number of complex processes, including gliding motility, initial

attachment, apical attachment, and the formation of moving

junctions. The crucial prerequisite for invasion is the adhesion of

parasites to host cells (Rastogi et al., 2019; Burrell et al., 2020; Najm

et al., 2023; Singer et al., 2023). During this invasion process,

specific parasite proteins first bind to host cell receptors such as

glycoprotein, lipoprotein, and glycoprotein receptors (Guevara

et al., 2020; Yeagle, 2016). Heparin, a glycoprotein receptor

widely distributed on cell membranes, is an important

glycosaminoglycan molecule (GAG) and one of the primary

receptors used by parasites to invade host cells (Tsai et al., 2017;

Subramani et al., 2019; Gao et al., 2023). Several publications
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suggest that heparin molecules can impede parasite invasion into

host cells, and the role of heparin-binding proteins in parasites is

attracting increasing attention. Several heparin-binding proteins in

T. gondii, including MIC2, MIC3, ROP2, ROP4, ROP9, SAG1,

SAG2 and GRA2, have been identified. These interactions between

heparin and parasite surface antigens have been found to contribute

to the attachment of T. gondii to host cell surfaces and the initiation

of the invasion process (Harper et al., 2004; Azzouz et al., 2013;

Zhang et al., 2019). In addition, numerous heparin-binding proteins

have been identified in T. gondii and Plasmodium falciparum (P.

falciparum) by Mass Spectrometry (Zhang et al., 2013; 2014).

However, most of these proteins lack functional annotations and

further studies are required to determine their importance in the

parasite invasion process. One such protein is TGME49_216510,

also known as T. gondii Trx21, which contains a Thioredoxin-like

domain and three GAG-binding motifs. In this study, we

investigated the antioxidant and cell adhesion abilities of T.

gondii Trx21 with the aim of providing a theoretical basis for the

development of new therapeutic targets.
Materials and methods

Ethics statement

Experiments were performed on female BALB/c mice (6–8

weeks old) purchased from Liaoning Changsheng Biotechnology

Company in China. All animals were treated in strict accordance

with the ethical guidelines for animal experimentation of the

People’s Republic of China. The study was approved by the

Animal Ethics Committee of Jinzhou Medical University (Permit

Number: SYXK [Liao] 2019–0007).
Cells and parasites

Vero cells were cultured in 25 cm2 culture flasks using DMEM

medium (Macgene, China) supplemented with 100 U/mL

penicillin, 100 mg/mL streptomycin (Macgene, China) and 10%

heat-inactivated fetal bovine serum (FBS) (BI, Israel). The culture

was maintained at 37°C in an atmosphere containing 5% CO2. T.

gondii tachyzoites (RH strain) were cultured in Vero cells using

DMEM medium supplemented with penicillin, streptomycin, and

2% FBS. The tachyzoites were cultivated at 37°C and 5% CO2.
Bioinformatic analysis of Trx21

We searched the ToxoDB database for genes responsible for

encoding thioredoxin in Toxoplasma gondii. Our search led us to

the identification of TGME49_216510, which encodes a putative

protein of 79 kDa. This protein was named Trx21. We then

performed an analysis of the signal peptide, transmembrane

domain, conserved domain, GAG-binding motif, and antioxidant

motif of Trx21.
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Molecular cloning and expression of
recombinant Trx21 proteins

Freshly isolated parasites purified by percoll without host cells

were collected for Total RNA extraction by TRIzol (Invitrogen,

USA) according to the manufacturer’s instructions. DNase I

(Takara, China) was used to remove the genomic DNAs

completely from RNAs. After that, oligo (dT) primer and reverse

transcriptase were employed immediately with reverse transcription

carrying out immediately with oligo (dT) primer and reverse

transcriptase. PCR with specific primers (Trx21-F: 5 ’-

AAAGGATCCGAAACCCAGGCCGAGGAA-3’; Trx21-R: 5’-

TTTGTCGACTTACGCATGCAGTTTCTCCCG-3 ’) were

conducted to obtain the gene encoding fragment of Trx21. The

amplified fragment was then cloned into two different vectors,

pGEX-4T-1 and pET-28a (Invitrogen, USA). The resulting

recombinant plasmids were transformed into E. coli BL21 (DE3)

for protein expression. To purify the fusion proteins, the GST-

tagged and His-tagged Trx21 proteins were purified separately

using the Glutathione Sepharose 4B system (GE Healthcare) and

the His GraviTrap system (GE Healthcare), respectively, according

to the manufacturer’s instructions. The purity and integrity of the

purified proteins were assessed using SDS-PAGE and Western blot

analysis (Xing et al., 2020).
Generation of Trx21-specific antibodies

A total of twenty female BALB/c mice were used for the

immunization process. Each mouse was immunized with

recombinant Trx21-His proteins mixed with Freund adjuvant. The

immunization process was repeated a total of four times every two

weeks. Antisera were collected 10 days after the last immunization.

An enzyme immunoassay (ELISA) was carried out to determine the

antibody titers. The recombinant Trx21-GST protein was coated onto

microplates for 1 h at 37°C followed by incubation with 5% skimmilk

(BD, USA) for 1 h at 37°C. Diluted immunized serum samples and

untreated serum samples (in dilutions of 1:1000, 1:2000, 1:4000,

1:8000, 1:16,000 and 1:32,000) were added to the microtiter plates and

incubated overnight. The microtiter plates were further incubated

with HRP-conjugated goat anti-rat IgG (H+L) (1:10,000 dilution,

Zsbio, China) for 1 h at 37°C and TMB Chromogen Solution

(Beyotime, China) for 15 min. The absorbance was then measured

at 450 nm within 1 h in the dark using a microtiter plate reader

(Tecan, Switzerland) (Yang et al., 2020).
Localization analysis of Trx21 by
immunofluorescence assay

To prepare samples, purified T. gondii tachyzoites were fixed on

slides with 4% paraformaldehyde (PFA) for 15 min at room

temperature. After fixation, tachyzoites were permeabilized with

0.1% Triton X-100 for 15 min. To block nonspecific binding, the

slides were treated with 5% skim milk (BD, USA) at 37°C for

30 min. The slides were then incubated with mouse anti-Trx21
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antibody (diluted 1:100) and negative serum (Unimmunized mouse

serum, diluted 1:100) for 12 h at 4°C. The slides were then incubated

with Alexa Fluor 488-conjugated goat anti-mouse IgG (diluted

1:600, Invitrogen) for 1 h at 37°C. To visualize the parasite nuclei,

ProLong Gold Antifade Mountant with DAPI (Invitrogen) was

applied to the slides and incubated at 37°C for 30 min in the dark.

High-resolution images were captured using a confocal laser

scanning microscope (Leica, Germany).

To analyze the localization of Trx21 within the intracellular

parasites, the host cells were cultured on slides and then inoculated

with freshly isolated parasites purified by percoll. Once the

parasitophorous vacuoles became visible (about 20–24 h post-

infection), the slides were removed and subjected to the above

procedures (Li et al., 2023).
In vitro antioxidant activity assay of Trx21

The Metal-catalyzed oxidation (MCO) DNA cleavage protection

assays were conducted with adaptations of previous protocols (Sadat

Asadi et al., 2019; Babikir et al., 2021). In these assays, the reaction

mixtures consisted of 200 ng pUC19 supercoiled plasmid DNA

(Takara, China), 62.5 mM FeCl3, 4 mM dithiothreitol (DTT), and

different concentrations (ranging from 25 to 800 mg/mL) of purified

Trx21-GST recombinant protein. The mixtures were then incubated

for 2 h at 37°C in a total volume of 50 mL. GST-Tag (Purification of

unmodified pGEX-4T-1 plasmid) protein at a concentration of 800

mg/mL was used as a control. DNA degradation was then assessed by

electrophoresis on a 0.8% (w/v) agarose gel containing 0.5 mg/mL

ethidium bromide (Godahewa et al., 2019).
Adhesion assay of recombinant Trx21 with
Vero cells

The cell binding activity of Trx21 was examined by Western

blot and immunofluorescence assay (IFA). For Western blot

analysis, 10 mL of Vero cells were combined with 2 mM soluble

recombinant Trx21-GST protein and incubated for 1 h at 37°C

according to previously described methods (Li et al., 2022). As a

negative control, GST-Tag protein with the appropriate molarity

was also incubated with the cells. After incubation, cells were

washed three times with PBS and mixed with loading buffer for

Western blot analysis. Western blot was performed using an Anti-

GST Mouse Monoclonal Antibody as the primary antibody at a

dilution of 1:5,000 (TransGen, China). Detection was carried out

with the AP-labeled Goat Anti-Mouse IgG (H+L) secondary

antibody at dilution of 1:10,000 (Beyotime, China).

In the IFA procedure, all steps were carried out on glass slides.

Firstly, Vero cells were harvested with a cell scraper, washed with

PBS, and 10 mL of cell precipitate was placed onto the slides. After

natural air drying, Vero cells were incubated with either 2 mM soluble

recombinant Trx21-GST protein or GST-Tag protein (used as a

negative control) for 1 h at 37°C. After incubation, cells were washed

three times with PBS and then incubated with 5% skim milk (BD,

USA) for 1 h at 37°C. The cells were then incubated with Anti-GST
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Mouse Monoclonal Antibody diluted at a ratio of 1:5,000 (TransGen,

China) for 12 h at 4°C. This was followed by incubation with Alexa

Fluor 488-conjugated goat anti-mouse IgG secondary antibody

diluted 1:600 (Invitrogen) at 37°C for 30 min. DAPI (Invitrogen)

was used to stain the parasite nuclei and incubated for 5–10 min at

room temperature in the dark. High-resolution images were captured

using a confocal laser scanning microscope (Leica, Germany).
Results

Results of bioinformatic analysis

After screening through the ToxoDB database, a total of 51

Toxoplasma gondii thioredoxin proteins were identified and

compared with published data, including 21 heparin binding

proteins (Supplementary Table S1). Comprehensive analysis of 21

heparin binding proteins, including protein size, signal peptides,

transmembrane regions, conserved domains, CRISPR Phenotype

score and glycosaminoglycan binding motifs, TGME49_216510 was

ultimately chosen for further research (low CRISPR Phenotype

score, the most GAG-binding motifs and one transmembrane

region). The total length of the Trx21 genome is 6648 bp, and the

encoded mRNA is 2133 bp, which can be translated into a protein of

711 amino acids. Within the protein structure, there is a

transmembrane region spanning amino acid positions 189–211

that lacks signal peptides. In addition, a Thioredoxin-like domain

at positions 421–533, and this particular domain contains two

cysteine residues, particularly at amino acids 453 and 456.

Furthermore, three GAG-binding motifs are present in the

protein sequence: one at positions 301–306, another at positions

347–352 and the last at positions 413–418 (Figure 1).
Gene cloning and protein expression
of Trx21

The coding sequences of Trx21, which was 2133 bp, was

shortened into a smaller fragment of 774 bp based on conserved
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domains and functional motifs in this paper. This truncated

fragment was subsequently amplified, and finally PCR product

was purified by gel extraction kit (TIANGEN, China) to prepare

for digestion (Supplementary Figure S1A, Supplementary Table S2).

T4 ligase was used to ligate the fragments into the pET-28a and

pGEX-4T-1 vectors. To validate the ligation, a double enzyme

digestion was performed (Supplementary Figure S1B).

Subsequently, His-tagged and GST-tagged recombinant proteins

were expressed. SDS-PAGE analysis and Western blot revealed that

the Trx21-GST fusion protein had a molecular mass of about 55

kDa, while the Trx21-His fusion protein had a molecular mass of

about 31 kDa (Figures 2A, B).
Localization of Trx21 in T. gondii
tachyzoites by IFA

To determine the subcellular localization of Trx21 in T. gondii,

intracellular and extracellular tachyzoites of RH strain were

collected and fixed for IFA. Immunized anti-Trx21 mouse serum

was used as the primary antibody (Supplementary Figure S2). The

results showed that Trx21 (green fluorescence) was widely

distributed in the cytoplasm of both intracellular and extracellular

tachyzoites (Figures 3A, B). However, the fluorescence intensity was

observed to be stronger in intracellular tachyzoites than in

extracellular tachyzoites.
Antioxidant activity assay of Trx21

To assess the antioxidant activity of Trx21, a DNA nicking assay

was conducted to evaluate its ability to protect DNA from MCO. In

the presence of MCO, plasmid DNA in its supercoiled form can be

damaged and converted into a linear form. However, the presence

of Trx21 may protect against this damage. The extent of DNA

damage was determined by observing the shift in gel mobility of

pUC19 as it transitioned from its supercoiled to the nicked form. In

the MCO system without the recombinant Trx21 protein, the

generated reactive oxygen species caused incision of the
FIGURE 1

Trx21 functional graph. The Trx21 encoded 711 aa, with a transmembrane region (TM, 189–211 aa), a Thioredoxin-like domain (421–533 aa), two
cysteine residues (453 and 456 aa) and three GAG-binding motifs (301–306 aa, 347–352 aa, 413–418 aa). The cloned region (291–543 aa) was a
truncated fragment according to the conserved domain and functional motifs.
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supercoiled pUC19 DNA (Figure 4A). On the other hand, the

addition of purified recombinant Trx21-GST protein at a

concentration of 25 to 800 mg/mL of the reaction mixture

effectively prevented the incision of the supercoiled DNA by the

reactive oxygen species. As the concentration of the recombinant

Trx21-GST protein increased, the protective effect on pUC19

became more evident (Figure 4A). Control experiments with the

GST-Tag protein (800 mg/mL) did not show the same DNA

protection. Based on these results, it can be concluded that the

recombinant protein Trx21 exerts a protective effect on supercoiled

DNA against metal-catalyzed oxidation in this assay.
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Adhesion assay of recombinant Trx21 with
Vero cells

Recombinant Trx21-GST proteins were exposed to Vero cells

and adhesion was assessed by Western blot and IFA. The GST-Tag

protein was used as a control. Western blot analysis revealed that

recombinant Trx21-GST proteins showed binding to Vero cells,

while the GST-Tag protein did not (Figure 4C). Additionally, green

fluorescence (representing Trx21) was observed on the surface of

Vero cells by IFA (Figure 4B). Thus, these findings indicate that

Trx21 showed affinity for cells.
FIGURE 3

Localization of Trx21 in intracellular and extracellular RH strain tachyzoites. (A, B) Localization of Trx21 in extracellular (A) and intracellular (B) RH
strain tachyzoites by IFA. Mouse anti- Trx21 serum and health mouse serum was used as primary antibodies, and Alexa Fluor 488 goat anti-mouse
IgG was used as the secondary antibody. Scale bar: 10 mm.
FIGURE 2

Prokaryotic expression and identification of recombinant protein Trx21. (A) Purified Trx21-GST proteins identified by SDS-PAGE and Western blot.
(B) Purified Trx21-His proteins identified by SDS-PAGE and Western blot.
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Discussion

Thioredoxin is a small, multifunctional protein that is commonly

found in a variety range of organisms, including bacteria, plants and

animals. Its main function is to regulate the redox state of proteins by

facilitating the reduction of disulfide bonds (Muri and Kopf, 2021;

Morris et al., 2022). Moreover, thioredoxin plays a crucial role in

defending cells against oxidative stress. It can eliminate reactive

oxygen species (ROS) and repair proteins damaged by oxidation,

thereby maintaining cellular integrity and functionality (Liu et al.,

2022). Additionally, Trx is involved in the control of gene expression

and signal transduction pathways. By interacting with various cellular

proteins, it can modulate their activity and thus influence essential

cellular processes such as cell proliferation, apoptosis and the

immune response (Tonelli et al., 2018; Tsubaki et al., 2020). In the

plant kingdom, Trx is known to regulate crucial functions including

photosynthesis, growth, flowering, as well as seed development and

germination. In addition, studies suggest its involvement in cell-to-

cell communication (Mata-Pérez and Spoel, 2019; Martı ́ et al., 2020).
When looking at parasites, there is increasing evidence that Trx is

involved in various physiological processes. For example, in P.

falciparum, Trx functions as a heparin-binding protein, and specific

antibodies targeting this protein have shown that they can inhibit

merozoite invasion into human erythrocytes. Furthermore, mice

immunized with the protein showed significant protection against

lethal infection (Wang et al., 2018). Similarly, in Schistosoma

japonicum (S. japonicum), Trx has been identified as a highly
Frontiers in Cellular and Infection Microbiology 06
abundant protein in adults and is thought to be involved in

interactions between the parasite and host cells. Antibodies

specifically targeting Trx have shown an anti-S. japonicum effect

(Angeles et al., 2019; Wanlop et al., 2022). In addition, Trx also plays

important roles in Babesia microti, Trypanosoma brucei and

Wuchereria bancrofti (Gorai et al., 2022; Kaurov et al., 2022; Piao

et al., 2022). However, the characterization of Trx in other parasites is

still missing. This study focuses on the analysis of Trx21 in T. gondii

and demonstrates its potential as a therapeutic target.

T. gondii contains a large number of proteins that play different

functions throughout its life cycle. Among them, Trx is a major protein

family that plays an important role in the invasion and proliferation of

T. gondii. For example, T. gondii Trx4 was a dense granule protein and

partially co-localized with GRA1 and GRA5 of T. gondii, which knock-

out strains resulting in impaired host cell invasion capacity in both RH

and Pru strains (Zhang et al., 2024). By contrast, T. gondii CTrp26 and

CTrx1 were located in the cytoplasm of T. gondii, which knock-out

strains without influencing the ability of T. gondiiRH strain to replicate

and egress (Zhang ZW et al., 2021). T. gondii Trx21 is a

transmembrane protein containing the “Thioredoxin-like domain”

and three “GAG-binding motifs”. Consensus sequences for “GAG-

binding motif” were determined as [-X-B-B-X-B-X-] and [-X-B-B-B-

X-X-B-X-], where B is the probability of a basic residue and X is a

hydropathic residue (Cardin and Weintraub, 1989). In this study, T.

gondii Trx21 was truncated into a shorter fragment for protein

expression and purification in vitro based on the position of the

transmembrane region, conserved domain, and functional motifs,
FIGURE 4

The antioxidant and cell adhesion assay of recombinant Trx21. (A) Lane pUC19 represented plasmid alone with no incubation; Lane MCO
represented plasmid in the MCO reaction mixture without recombinant protein; The concentrations of Trx-21-GST recombinant proteins ranged
from 25 to 800 mg/mL; 800 mg/mL GST-Tag protein was used as control in the MCO reaction mixture. NF: nicked form of the plasmid; SF:
supercoiled form of the plasmid. (B, C) The adhesion property of T. gondii Trx to different cells was detected by Western blot and IFA, respectively.
(B) For IFA, monoclonal mouse anti-GST was the primary antibody, and Alexa Fluor 488 goat anti-mouse IgG (Invitrogen) was the secondary
antibody. Scale bar: 10 mm. (C) For Western blot, monoclonal mouse anti-GST was the primary antibody, and AP-conjugated goat anti-mouse IgG
was the secondary antibody.
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which focused on the functions of cell adhesion and antioxidant

(Figure 1; Supplementary Figure S1) (Kogut et al., 2022). The

truncated Trx21 was purified by fusing His and GST tags using the

E. coli prokaryotic expression system, with molecular mass of 31 kDa

(His-tagged) and 55 kDa (GST-tagged), respectively. The SDS-PAGE

and Western blot results showed that recombinant His-tagged and

GST-tagged proteins were detected in specific bands, indicating high

specificity (Figure 2). For preparation of Trx21 polyclonal antibodies,

BALB/c mice were immunized with the recombinant Trx21-His

protein and the antibody titers were detected by ELISA test, which

met the requirements for further experiments (Supplementary Figure

S2). Subcellular localization analysis by IFA revealed that T. gondii

Trx21 was widely distributed in the cytoplasm of T. gondii, with the

fluorescence intensity being higher in the intracellular compared to the

extracellular (Figure 3). As thioredoxin, T. gondii Thioredoxin

reductase and Plasmodium berghei Trx are two important proteins

for parasites, knocking them out affects parasites proliferation and host

interaction (Xue et al., 2017; Gao et al., 2023). Trx21

(TGME49_216510) is an essential gene for T. gondii survival as

predicted by its low CRISPR-phenotype score of -4.83 (Sidik et al.,

2016), and subsequent knockout studies on Trx21 will investigate

whether it has similar functions as these two proteins above. After

bioinformatics analysis, it was found that there are three GAG-binding

motifs on the Trx21 protein. Glycosaminoglycans are a type of

heteropolysaccharide mainly present in the tissues and cells of higher

animals, including chondroitin sulfate, dermatitis sulfate, keratin

sulfate, hyaluronic acid, heparin, and heparin sulfate. Studies have

shown that pathogenic proteins containing GAG-binding motifs play

an important role in their interactions with the host (Wang et al., 2018;

Gao et al., 2023; He et al., 2024; Nagy et al., 2024; Oliveira et al., 2024).

To gain further insight into the cell adhesion function of T. gondii

Trx21, we performed an adhesion assay using recombinant Trx21-GST

protein and GST-Tag protein (Negative control) incubated with Vero

cells. The results of IFA showed that Trx21 adhered to the surface of

Vero cells and exhibits scattered fluorescence distribution, while no

fluorescence was observed in the control group (Figure 4B).

Meanwhile, the Western blot results also demonstrated that Trx21

can adhere to Vero cells (Figure 4C). These results indicated a specific

interaction between T. gondii Trx21 and the glycosaminoglycans of the

cell surface by GAG-binding motifs. In the future, the adhesion of T.

gondii Trx21 to different host cells can be detected, and GAG-binding

motifs can also be mutated to observe adhesion function. Thioredoxins

(Trxs) function through a redox mechanism in which the reversible

oxidation of two cysteine thiol groups to form a disulfide bond enables

interaction with a variety range of proteins. Related studies have shown

that when the thiol group in two cysteine molecules approaches and

undergoes an oxidation reaction, a disulfide bond is formed to connect

the two cysteinemolecules, thereby resisting external oxidative damage.

Besides, this mechanism not only protects organisms from oxidative

damage but also confers antioxidant functions (Joardar et al., 2020;

Gęgotek and Skrzydlewska, 2023). T. gondii Trx21 contains two

cysteine residues (453 and 456 aa), which may help T. gondii resist

external oxidative damage. An in vitro assay was performed to evaluate

the antioxidant activity of Trx21-GST, the linear form pUC19 plasmids

in MCO system are converting to supercoiled form when adding

Trx21-GST protein, which revealed that Trx21-GST had a
Frontiers in Cellular and Infection Microbiology 07
concentration-dependent antioxidant ability (Figure 4A). Numerous

studies have highlighted the importance of the “-CXXC-” motif (Two

adjacent cysteine residues) in the antioxidant function of Trx, while

reports suggest that “-CXXS-”motif (Adjacent cysteine and serine) and

“-CXXT-” motif (Adjacent cysteine and threonine) also exhibit

antioxidant activity (Fomenko and Gladyshev, 2002; Božok et al.,

2018, 2003; Hillier et al., 2022). In this study, only “-CXXC-” motif

was analyzed, and in the future, this motif can be eliminated

or mutated into “-CXXS-” and “-CXXT-” to further analyze its

antioxidant function.
Conclusions

In conclusion, T. gondii Trx21, a protein with GAG-binding

motifs and thioredoxin domain, plays an important role in host

interaction and antioxidant. Subsequently, Trx21 point mutation

protein or gene knockout/overexpression strains can be constructed

to further investigate protein function, contributing to the

advancement of novel T. gondii therapeutic targets researches.
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