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Over the past decade, advancements in high-throughput sequencing

technologies have led to a qualitative leap in our understanding of the role of

the microbiota in human diseases, particularly in oncology. Despite the low

biomass of the intratumoral microbiota, it remains a crucial component of the

tumor immune microenvironment, displaying significant heterogeneity across

different tumor tissues and individual patients. Although immunotherapy has

emerged a major strategy for treating tumors, patient responses to these

treatments vary widely. Increasing evidence suggests that interactions between

the intratumoral microbiota and the immune system can modulate host tumor

immune responses, thereby influencing the effectiveness of immunotherapy.

Therefore, it is critical to gain a deep understanding of how the intratumoral

microbiota shapes and regulates the tumor immune microenvironment. Here,

we summarize the latest advancements on the role of the intratumoral

microbiota in cancer immunity, exploring the potential mechanisms through

which immune functions are influenced by intratumoral microbiota within and

outside the gut barrier. We also discuss the impact of the intratumoral microbiota

on the response to cancer immunotherapy and its clinical applications,

highlighting future research directions and challenges in this field. We

anticipate that the valuable insights into the interactions between cancer

immunity and the intratumoral microbiota provided in this review will foster

the development of microbiota-based tumor therapies.
KEYWORDS

intratumoral microbiota, immunotherapy, tumor immune microenvironment,
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1 Introduction

For a long period, it was widely believed that the tumor interior

was a sterile environment. It wasn’t until the early 21st century, with

the advancement of high-throughput sequencing technologies, that

we were able to thoroughly investigate the microbiota within tumor

tissues (Knippel et al., 2021; Sholl et al., 2022). In a global study,

Nejman et al. conducted 16S rRNA sequencing on 1,010 tumor

specimens and 516 adjacent non-tumor specimens from seven

cancer types. They discovered that all of these cancer types,

including ovarian cancer, glioma, and osteosarcoma, harbored

DNA from bacteria that are not directly exposed to the external

environment, and that each type of tumor exhibited a unique

microbiota composition. This study opened a new chapter in the

field of intratumoral microbiota research (Nejman et al., 2020).

Subsequent extensive research has confirmed the presence of

microbiota in various types of cancer. Microbiota within tumors

have long been recognized as a significant component of the tumor

microenvironment (TME) (Dudgeon and Dunkley, 1907; Epstein

et al., 1964; Warren and Marshall, 1983; Wotherspoon et al., 1991).

Researchers now recognize the critical role of the intratumoral

microbiota-driven host-tumor immune responses in influencing the

efficacy of cancer immunotherapy (Matson et al., 2021). However,

the impacts of microbiota that have colonized different tissues and

organs on TME vary significantly. The gut barrier provides the

largest host-microbiota interface and the greatest microbial

diversity. Currently, research on the causal relationship between

intratumoral microbiota and tumor immune responses primarily

focuses on the gut microbiota. Derosa et al. systematically

elucidated the relationships between distinct gut bacteria and

local or systemic immune responses, summarizing tumor

treatment interventions based on the gut microbiota (Derosa

et al., 2021). Pham et al. summarized the relationships between

the composition of the gut microbiota or microbiota-derived

metabolites and the response to immune checkpoint blockade

(ICB) therapy, proposing various strategies to modulate the

microbiota composition within patients to enhance ICB efficacy

and reduce adverse effects (Pham et al., 2021). The gut microbiota

can utilize its components or metabolites to modulate tumor

immunity, extending from the initial location in the gut to distant

organs (Aghamajidi and Maleki Vareki, 2022; Lu et al., 2022;

Ozcam and Lynch, 2024). However, it is noteworthy that

extragastrointestinal tumors each possess their own microbiota,

with distinct impacts on systemic immunity and the immune

microenvironment that influence the progression of various types

of tumors (Liang et al., 2023). It is essential to comprehensively

explore the complex interactions among microbiota and host

immune responses to elucidate the effects of tumor

immunotherapy. Existing studies lack a systematic summary of

the relationships among extragastrointestinal tumor microbiota and

immune responses. Therefore, this review summarizes the intricate

relationships between tumor immunity and intratumoral

microbiota, both within and outside the gut, and attempts to

explore their potential associations with tumor immunotherapy.

Finally, based on our extensive research in these areas, we aim to
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promote the development of personalized strategies for tumor

immunotherapy, ultimately improving treatment outcomes for

cancer patients.
2 Genesis of intratumoral microbiota

The microbiota present within tumor tissues comprising the

TME are collectively referred to as the intratumoral microbiota, and

include bacteria, fungi, viruses, and mycoplasmas (Tang et al., 2013;

Aykut et al., 2019; Poore et al., 2020). So far, microbiota have been

detected in over 20 types of malignant tumors. There are four

potential routes through which microbiota reach the intratumoral

space: (1) resident microbiota originating in the same tissue where

the tumor arises; (2) bloodstream transport of microbiota to the

tumor site, a process that may also accompany cancer cell

metastasis; (3) retrograde flow of gut microbiota through the

common bile duct, common hepatic duct, and main pancreatic

duct to tumor sites in the liver, bile ducts, and pancreas; and (4)

oral-derived microbiota (Figure 1).
3 Heterogeneity of the
intratumoral microbiota

There is considerable heterogeneity in the composition and

abundance of the intratumoral microbiota across different tumor

types. This heterogeneity arises from the distinct native microbiota

of each organ, symbiotic microbiota entering the tumor site through

various routes, and interactions between the TME and intratumoral

microbiota. Current studies indicate that microbial distribution

varies significantly among different tumor types, and the

intratumoral microbial landscape may also differ among various

subtypes of the same tumor. The composition of the intratumoral

microbiota is predominantly bacterial, with lower relative

abundances of fungi and mycoplasmas (Narunsky-Haziza et al.,

2022). Xue et al. used 16S rRNA gene sequencing to reveal that the

most abundant microbial genera in pancreatic cancer patients were

found among Proteobacteria, Bacteroides, and Firmicutes. In

colorectal cancer (CRC) tissues, there was enrichment of

Fusobacterium and Bifidobacterium. Inflammatory bacteria, such

as Fusobacterium nucleatum and Pseudomonas aeruginosa, were

significantly predominant in oral squamous cell carcinoma (OSCC)

tissues. Ovarian cancers exhibited a high proportion of human

papilloma virus (HPV)-positive cells, while breast cancer tissues

contained relatively low levels of bacteria (Xue et al., 2023). Guo

et al. analyzed the intratumoral microbiota of 62 patients with

pancreatic ductal adenocarcinoma (PDAC) and found that

Acinetobacter, Pseudomonas, and Sphingomonas were highly

associated with tumorigenesis and had the potential to induce

inflammation, leading to carcinogenesis (Guo et al., 2021).

Minarovits et al. discovered that, compared to normal colon

tissues, CRC tissues harbored higher abundances of microbiota

including F. nucleatum, Fusobacterium periodonticum, Gemella

morbillorum, and Peptostreptococcus stomatis (Minarovits, 2021).
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Conde-Perez et al. analyzed the microbiota of saliva, gingival

crevicular fluid, feces, and non-tumor and tumor intestinal tissue

samples from 93 CRC patients and 30 healthy individuals without

digestive system diseases. They developed an excellent noninvasive

fecal detection method for early diagnosis of CRC using a label

design composed of the genera Bacteroides, Acinetobacter,

Pseudomonas, and Clostridium (Conde-Perez et al., 2024). A

microbiomic study of mouthwash samples from 51 healthy

individuals and 197 OSCC patients at different stages reconfirmed

the association of the phylum Fusobacteria with this type of

carcinoma (Yang et al., 2018). Nicolaro et al. found a close

association between Schistosoma haematobium infection and the

high incidence of bladder cancer (Nicolaro et al., 2020). In epithelial

cells of lung cancers, microbiota including P. aeruginosa,

Streptococcus pneumoniae, and other Streptococcus spp. were

found to modulate the ERK and PI3K signaling pathways, which

have been implicated in the development of non-small cell lung

cancer (NSCLC) (Tsay et al., 2018).
4 Carcinogenesis of the
intratumoral microbiota

Several primary modes of interaction may exist between the

intratumoral microbiota and developing cancer (Garrett, 2015): (1)

promotion of tumorigenesis via increases in host genomic

instability and mutations, such as the DNA damage induced by

the colibactin toxin of polyketide synthase (pks)+ strains of

Escherichia coli, which lead to CRC (Chen et al., 2023); (2)

regulation of tumor cell signal transduction, in which microbiota
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such as Helicobacter pylori and F. nucleatum are thought to mediate

the Wnt/b-catenin pathway to promote cancer formation (Buti

et al., 2011; Rubinstein et al., 2013; Wang et al., 2023); (3) tumor

progression influenced by modulation of the host immune system,

with studies indicating that intratumoral microbiota induce pro-

inflammatory responses and promote tumor proliferation through

activation of the NF-kB or STAT3 pathways (Bhatt et al., 2017,

Garrett, 2015); (4) regulation of tumorigenesis, metastasis, and drug

resistance through metabolic products, as evidenced by the Fu et al.

study showing that intratumoral bacteria can enhance the resistance

of host cells to mechanical stress from blood flow, thereby

promoting breast cancer metastasis (Fu et al., 2022); and (5)

modulation of the epigenetic status of tumor cells, particularly in

gastric cancer, where intratumoral microbiota such as Kytococcus

sedentarius and Actinomyces oris are significantly associated with

methylation changes in immune-related genes of cancer cells, thus

affecting gene expression (Yue et al., 2023).
5 Effects of the intratumoral
microbiota on the tumor
immune microenvironment

The TIME has been likened to a battlefield of tumor immune

promotion and inhibition, playing crucial roles in tumor initiation,

development, metastasis, and response to treatment. One of the

most notable features of the intratumoral microbiota is its

vulnerability to surveillance and recognition by the immune

system, thereby triggering specific immune responses (Cogdill

et al., 2018). The intratumoral microbiota shapes and regulates
FIGURE 1

Elucidating the genesis of intratumoral microbiota, including: resident microbiota originating in tumors, the microbiota conveyed by the blood
circulatory system, oral-derived microbiota and retrograde flow of gut microbiota. Graphics created with figdraw.com.
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the TIME via several mechanisms: In the first mechanism,

activation of inflammatory signaling pathways and release of

cytokines via interactions with pattern recognition receptors

(PRRs), such as Toll-like receptors (TLRs), affects the

recruitment, maturation, and function of immune cells (Abreu

and Peek, 2014; Hoste et al., 2015; Rutkowski et al., 2015;

Pushalkar et al., 2018; Liwinski et al., 2020; Zhang et al., 2021).

For example, F. nucleatum promotes the expression of CCL20 in

tumor cells in CRC, inducing the polarization of M2 macrophages

and enhancing the metastatic ability of cancer cells (Xu et al., 2021).

The second mechanism involves regulation of tumor immunity

through metabolites, with Luu et al. demonstrating that short-chain

fatty acids such as valerate and butyrate enhance the antitumor

activities of CTLs and CAR-T cells through metabolic and

epigenetic reprogramming (Luu et al., 2021). Promotion of

tumor-associated inflammation, in which chronic inflammation

caused by long-term microbial infection in the TME contributes

to tumor development and immune evasion, is the third

mechanism. F. nucleatum, for example, is considered an immune-

suppressive microbe that can induce the release of large amounts of

inflammatory factors (Gur et al., 2015). The fourth mechanism

involves microbes altering the physical properties of the TME, such

as the pH or oxygen concentration, through the production of

exogenous substances. These physical changes can impact the

function of immune cells and the behavior of tumor cells.

The intratumoral microbiota also regulates host tumor

immunity through various mechanisms. Some microbiota activate

the host immune system to enhance immune surveillance of

the tumor, while others help tumor cells escape immune

system attacks by inducing immune tolerance or activating

immunosuppressive pathways.

Mechanisms by which intratumoral microbiota enhance

antitumor immune responses include the following. The first

mechanism involves regulation of tumor immune responses

through various signaling pathways, including the ROS, b-
catenin, TLR, ERK, NF-kB, and STING pathways. Lam et al.

demonstrated that the intratumoral microbiota modulates the

pro-tumor/anti-tumor balance within the TIME through a

STING-IFN I-dependent mechanism, reprogramming

intratumoral macrophages to promote antitumor immunity and

the efficacy of ICB therapy (Lam et al., 2021). In another example,

enterogenic Bacteroides fragilis toxin degrades E-cadherin and

activates b-catenin, promoting CRC formation by amplifying

Tregs and Th17 cells (Sears and Garrett, 2014). The activation of

T cells and NK cells mechanism includes bacteria in melanoma that

activate DCs, thereby triggering T cells immune responses (Choi

et al., 2023). In other examples, metabolites of Lactobacillus

plantarum L168, such as I3A, improve colorectal tumorigenesis

through epigenetic regulation of CD8+ T-cell immunity (Zhang

et al., 2023), while clinical outcomes in patients with HPV-positive

OSCC are superior to those with HPV-negative cancer, attributable

to the presence of higher numbers of infiltrating IFNg+CD8+ T

lymphocytes, IL-17+ CD8+ T lymphocytes, myeloid DCs, and pro-

inflammatory chemokines (Partlova et al., 2015). The third and

fourth mechanisms involve formation of tertiary lymphoid
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structure (TLS) and enhancement of antigen presentation,

respectively. In the latter, peptides from intratumoral bacteria are

presented by antigen-presenting cells to further activate tumor-

specific T-cell responses. An analysis of 17 melanoma metastases

revealed 283 unique human leukocyte antigen (HLA)-I and HLA-II

peptides derived from 41 different bacterial species. Recurrent

bacterial peptides were identified in tumors from different

patients as well as in different tumors from the same patient

(Kalaora et al., 2021). Secretion of vesicles is the fifth mechanism,

as shown by Kim et al., who discovered that outer membrane

vesicles (OMVs) obtained from Gram-negative bacteria possess the

ability to induce the production of cytokines CXCL10 and IFN-g,
thereby generating long-term antitumor immune responses (Kim

et al., 2017) (Figure 2).

Mechanisms by which intratumoral microbiota promote tumor

development through inflammation or immune dysregulation

include the following. The first is upregulation of ROS, as

exhibited by F. nucleatum, which induces impairment of

autophagic flux, enhancing the expression of proinflammatory

cytokines via ROS in adenocarcinoma cells (Tang et al., 2016).

The second mechanism involves modulation of cytokine

production. Tipa of H. pylori stimulates the secretion of TNF-a
and chemokines via the NF-kB signaling pathway, promoting

gastric cancer development (Suganuma et al., 2012). Utilizing in

situ spatial profiling and single-cell RNA sequencing techniques,

invasive bacteria were shown to recruit bone marrow cells in oral

squamous cell carcinoma and CRC, inducing inflammation through

the JAK-STAT signaling pathway and promoting tumor growth by

secreting interleukins and chemokines (Galeano Nino et al., 2022).

Inhibition of T cells and NK cells activity is the third mechanism, as

evidenced by direct interaction between the Fap2 protein of F.

nucleatum and the inhibitory receptor TIGIT, thereby inhibiting the

cytotoxic activity of NK cells and T cells (Gur et al., 2015). An

example of the fourth mechanism, upregulation of immune

checkpoint molecule expression, is the immune evasion of gastric

cancer promoted by H. pylori CagA-mediated upregulation of PD-

L1 levels in exosomes (Wang et al., 2023). The fifth mechanism,

activation of immune suppressive cells, is exhibited by

Staphylococcus aureus, HBV, HCV, and HPV, all of which

promote the progression of prostate and liver cancer by inducing

immune suppression mediated by Tregs (Adurthi et al., 2008;

Ouaguia et al., 2019; Ma et al., 2020; Gao et al., 2022) (Figure 2).
6 Immunoregulation of the
intratumoral microbiota in
human cancers

There is significant heterogeneity in the intratumoral

microbiota across different tumor tissues, with distinct microbiota

shaping unique TIME. In the next section, we elucidate the research

progress on the influence of intratumoral microbiota on the

immune responses of various tumor types and summarize their

clinical applications (Table 1).
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6.1 Breast cancer

In comparison to healthy breast tissue, breast tumor tissues

exhibit a reduced bacterial load, particularly with a notable

deficiency in beneficial bacteria such as Lactococcus and

Streptococcus. The deficiency weakens the antibacterial immune

response, thereby facilitating the development of breast cancer

(Xuan et al., 2014). A comprehensive case-control study involving

2,266 patients with primary, invasive breast cancer and 7,953

healthy women demonstrated that prolonged cumulative use of

antibiotics is associated with an increased risk of breast cancer

incidence and mortality. The correlation is likely due to bacterial

dysbiosis, which diminishes bacteria-dependent immune cells

(Velicer et al., 2004). Tzeng et al. discovered a deficiency of

Propionibacterium in breast cancer. They reasoned that, because

the abundance of this bacteria is positively correlated with the

expression of genes related to T cells activation, the absence of

Propionibacterium may promote tumor growth by inhibiting local

T cells immunity (Tzeng et al., 2021). A balanced and diverse

microbiota is likely to play a crucial role in maintaining immune

surveillance and preventing cancer development. The absence of

certain specific microorganisms could disrupt this balance, leading

to impaired local immunity and potentially facilitating tumor

growth. In the future, clinical researchers could explore treating

breast cancer by orally administering beneficial bacteria to promote

their migration to the mammary gland via the gut-breast axis.

Alternatively, efforts could focus on directly transplanting beneficial

bacteria into tumor tissues to enrich therapeutic approaches for

breast cancer. The influence of bacterial metabolites in breast cancer

tissues on immunity and the efficacy of immunotherapy has
Frontiers in Cellular and Infection Microbiology 05
garnered increasing attention. In patients with triple-negative

breast cancer (TNBC), the Clostridiales-related metabolite

trimethylamine N-oxide (TMAO) was found to induce pyroptosis

in tumor cells by activating the endoplasmic reticulum stress kinase

PERK, thereby enhancing CD8+ T cell-mediated antitumor

immunity (Wang et al., 2022).
6.2 Lung cancer

It is currently believed that the microbiota in lung cancer

primarily influences tumor progression by altering the TIME and

modulating local immune responses. Chronic inflammation induced

by intratumoral bacteria can promote the growth and metastasis of

lung cancer (Sommariva et al., 2020). Early epidemiological studies

have indicated that bacterial infections are commonly present in lung

cancer cases, negatively impacting lung cancer treatment and overall

patient survival. Utilizing advanced high-throughput sequencing

technologies, an increasing number of studies have demonstrated

a correlation between local microbial dysbiosis and lung cancer

(Qiao et al., 2015; Perez-Cobas et al., 2023). Jin et al. showed that

local commensal bacteria in the lung stimulate bone marrow cells to

produce Myd88-dependent IL-1b and IL-23, which induce the

proliferation and activation of Vg6+Vd1+gd T cells, leading to the

production of IL-17 and other effector molecules, thereby promoting

inflammation and tumor cell proliferation (Jin et al., 2019). Antibiotic

aerosol inhalation therapy has been shown to reduce the number of

bacteria in the lungs of mice, activate tumor-infiltrating T cells and

NK cells, decrease the number of immunosuppressive Tregs, and

enhance local antitumor immune responses (Le Noci et al., 2018).
FIGURE 2

The intratumoral microbiota orchestrates a complex modulation of immune regulatory mechanisms within the tumor. Graphics created
with figdraw.com.
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6.3 Colorectal cancer

CRC tissues exhibit enrichment of Fusobacterium species.

Research has shown that F. nucleatum can bind and activate the

human inhibitory receptor CEACAM1 to inhibit the activities of T

cells and NK cells, suggesting that CEACAM1 inhibitors could be

used to treat Fusobacterium-colonized CRC (Gur et al., 2019). Many

CRC researchers have focused on the interaction mechanisms

between the gut microbiota and host metabolism. An integrated

analysis of single-cell transcriptomics, microbiomics, metabolomics,

and clinical cohort data of colorectal adenomas and CRCs confirmed

that, during the progression from colorectal adenoma to CRC, there

is a loss of gut symbiotic bacteria with urease activity, such as
Frontiers in Cellular and Infection Microbiology 06
Bifidobacterium. This promotes the transition of macrophages to

an immunosuppressive subtype, thereby promoting the development

of CRC (Chen et al., 2023). Galeano Nino et al. discovered using

spatial transcriptomics that, although CRC tissues contain a variety of

bacteria, their distribution is uneven. Tumor regions colonized by

bacteria exhibit high immunosuppressive activity, have fewer

antitumor T cells compared to other regions, and show upregulated

expression of immune checkpoint molecules, inhibiting T cells

activity. This may help explain how the intratumoral microbiota of

cancer patients influences the efficacy of immune checkpoint

inhibitors (ICIs) (Galeano Nino et al., 2022). Mima et al. analyzed

clinical data from 598 CRC samples and found that the amount of F.

nucleatum in tumor tissues is negatively correlated with the density of
TABLE 1 Regulation and application of the intratumoral microbiota-driven immune responses used for cancer assessment and therapy.

Classification
Tumor type

Immunomodulatory
mechanism

Microbiota
features

Effect Ref.

Cancer Theraphy
BC Activate T cells

Blautia, Ruminococcus,
Faecalibacterium, Dorea,
Tyzzerella, Roseburia

Enhance
immunotherapy
response

(Wang et al., 2022)

Melanoma Activate T cells Lactobacillus reuteri
Enhance
immunotherapy
response

(Bender et al., 2023)

CRC Improve the antigen-presenting of DCs Bifidobacterium
Enhance
immunotherapy
response

(Shi et al., 2020)

Melanoma Activate T cells

Aclinetobacter,
Actinomyces, Comamonas,
Corynebacterium,
Enterobacter,
Roseomonas, Streptococcus

The target of
immunotherapy in
different patients

(Kalaora et al., 2021)

CRC Immune gene mutation Dialister, Casaltella
Evaluate survival
in patients

(Byrd et al., 2023)

CRC
Facilitate the immune surveillance
of T cells

Lachnospiraceae
Inhibit
cancer development

(Zhang et al., 2023)

PDAC
Activate T cells ,
Upregulate PD-1 expression

Proteobacteria ,
Bacteroidetes , Firmicutes

Enhance
immunotherapy
response

(Pushalkar et al., 2018)

GC
T cell activation,
Upregulate PD-1 and CTLA-
4 expression

Epstein-Barr virus
Enhance
immunotherapy
response

(Panda et al., 2018)

CRC Promote chronic inflammation F. nucleatum
Evaluate prognosis
in patients

(Yang et al., 2017)

Cancer Assessment
GC Inactivate T cells Methylobacterium

Evaluate prognosis
in patients

(Peng et al., 2022)

PC Activate T cells

Pseudoxanthomonas,
Streptomyces,
Saccharopolyspora,
Bacillus clausii

Evaluate survival
in patients

(Riquelme et al., 2019)

LC Upregulate PD-1 expression Acinetobacter jungii
Evaluate survival
in patients

(Zhang et al., 2022)

NPC Inhibit T cells infiltration
Corynebacterium,
Staphylococcus

Evaluate risk of
malignant progression

(Qiao et al., 2022)

Melanoma Enhance T cells infiltration
Lachnoclostridium,
Flammeovirga,
Gelidibacter, Acinetobacter

Evaluate survival
in patients

(Zhu et al., 2021)
BC, Breast cancer; GC, Gastric cancer; PC, Pancreatic cancer; LC, Lung cancer; CRC, Colorectal cancer; PDAC, Pancreatic ductal adenocarcinoma; NPC, Nasopharyngeal carcinoma.
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CD3+ T cells, suggesting that F. nucleatum may promote the

development of CRC by downregulating T cells-mediated adaptive

immunity (Mima et al., 2015).
6.4 Pancreatic cancer

The microbiota in pancreatic cancer tissues exerts a carcinogenic

effect by influencing the host immune system. Riquelme et al.

discovered that the intratumoral microbiota of long-term

survivors of pancreatic cancer was significantly enriched with

Pseudoxanthomonas, Streptomyces, Saccharopolyspora, and Bacillus

clausii. Furthermore, the two most abundant bacterial species

identified in the tumors of long-term survivors reportedly possess

immunoregulatory functions (Riquelme et al., 2019). Porphyromonas

gingivalis promotes pancreatic cancer progression by creating an

inflammatory microenvironment through the recruitment of

neutrophils that release neutrophil elastase (Tan et al., 2022).

Pushalkar et al. found that, compared to normal pancreatic tissue,

both murine and human PDAC tissues possess a significantly more

abundant microbiota, producing a tolerogenic immune program via

selective activation of specific TLRs in monocytes (Pushalkar et al.,

2018). Another noteworthy microbial group in pancreatic cancer is

fungi, which have recently been reported to play a critical role in tumor

formation. Aykut et al. demonstrated that Malassezia spp. are

abundant in invasive PDAC tissues, promoting pancreatic cancer

formation through activation of mannose binding lectin (Aykut

et al., 2019).
7 Clinical application of the
intratumoral microbiota
in immunotherapy

The clinical efficacy of ICBs in solid tumors is impressive;

however, there is significant variability of efficacy among different

patients and cancer types (Helmink et al., 2019; Xie et al., 2022). The

intratumoral microbiota has emerged as an important factor

influencing ICB response, potentially through mechanisms such as

infiltration and activation of intratumoral CD8+ T cells and

upregulated expression of PD-L1. A study found that patients with

metastatic gastric cancer benefited from treatment with the PD-L1

antibody avelumab, possibly attributable to higher levels of

lymphocyte infiltration (Panda et al., 2018). Recent research

demonstrated that gut-derived Lactobacillus reuteri migrates to the

tumor site and produces I3A in an AhR-dependent manner,

thereby inducing the cytotoxic activity of CD8+ T cells and

enhancing the efficacy of anti-PD-L1 therapy (Bender et al., 2023).

Anker et al. reported that a patient-derived prostate-specific microbe,

CP1, possesses local immunostimulatory properties and can be used

to reprogram a “cold” TIME, sensitizing it to anti-PD-1

immunotherapy and improving therapeutic outcomes (Anker et al.,

2018). The characteristics of the intratumoral microbiota can also

serve as prognostic biomarkers for predicting patient responses to

ICB treatment. Vetizou et al. found that the antitumor effects of
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CTLA-4 blockade in melanoma patients depend on the type of

Bacteroides species present (Vetizou et al., 2015).

Certain intratumoral microbiota promote the formation of an

suppressive TIME, leading to the development of drug resistance. This

microbial influence can be mitigated through antibiotic therapy.

During CRC treatment, F. nucleatum predominantly invades the

hypoxic interior of colorectal tumors, causing the tumor growth rate

in mice to surge by 30-fold. Huang’s team developed a novel antibiotic,

LipoAgTNZ, whose core component is a silver-tinidazole complex

encapsulated in nanoliposomes for precise delivery to the tumor site.

LipoAgTNZ enhances the antitumor immune response by increasing

CD3+CD8+ T cells and CD44+CD62+memory T cells, while reducing

immunosuppressive tumor-associated M2 macrophages. Treatment

with LipoAgTNZ rapidly eradicates colonizing microbiota, such as F.

nucleatum and E. coliNissle, leading to a long-term survival rate of 71%

in CRC-bearing mice, which is significantly higher than that in the

control group (Wang M. et al., 2023). Geng et al. prepared antibiotic-

delivering nanocarriers that precisely target breast cancer tissues and

effectively eliminate intratumoral F. nucleatum without disrupting the

diversity and abundance of the systemic microbiota. This ultimately

reprograms the TIME, improving the efficacy of PD-L1 blockers. This

approach led to a tumor inhibition rate exceeding 90% and significantly

extended the median survival of 4T1 tumor-bearing mice (Geng et al.,

2024). Nevertheless, microbiota dysbiosis resulting from antibiotic

therapy can be a long-term issue, persisting after treatment ends and

not always easily reversed or corrected. Therefore, the pros and cons of

antibiotic use must be carefully weighed, especially in long-term and

immunotherapy-related treatments.

As a crucial component of the TIME, the intratumoral microbiota

has potential for the development of novel diagnostic or prognostic

markers. In 2020, two extensive studies examined the intratumoral

microbiota across more than 30 cancer types. Riquelme et al. using

targeted 16S rRNA amplicon sequencing of tumor DNA samples from

pancreatic adenocarcinoma patients with different survival outcomes,

discovered that long-term survivors (overall survival ≥ 5 years) had

higher intratumoral microbial diversity than short-term survivors.

They identified a signature feature of the microbiota, namely

Pseudoxanthomonas-Streptomyces-Saccharopolyspora-B. clausii, that

was highly predictive of long-term survival, indicating that the

intratumoral microbiota might serve as a prognostic tool for

determining patient survival (Riquelme et al., 2019). A study on the

intratumoral microbiota of 802 nasopharyngeal carcinoma (NPC)

patients showed that the tumor tissues were predominantly

colonized by Corynebacterium and Staphylococcus. Patients with a

higher bacterial load had lower disease-free survival rates and a

negative correlation with T cells infiltration, suggesting that

intratumoral bacterial load could be a powerful prognostic tool (Qiao

et al., 2022). Ghaddar et al. identified tumor-associated bacterial

subgroups related to cancer characteristics and immune activity that

can be used to predict clinical prognosis and manage clinical outcomes

in pancreatic cancer (Ghaddar et al., 2022).

Based on the selective colonization characteristics of microbiota

in different tumor tissues, intratumoral microbiota can also serve as

vectors to target tumors, delivering drugs (e.g. immunomodulators,

ICIs, antibiotics) for precise tumor eradication. Tal Danino’s team

constructed a genetically engineered strain of E. coli named “SLIC”
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that produces monoclonal antibodies targeting PD-L1 and CTLA-4,

thereby activating T cells to attack cancer cells (Gurbatri et al., 2020).

This team also designed a non-pathogenic strain of E. coli that

specifically lyses within tumors and releases CD47 monoclonal

antibodies, enhancing the activation of tumor-infiltrating T cells

and improving the survival of tumor-bearing mice (Chowdhury

et al., 2019). Canale et al. utilized synthetic biology to develop an

engineered probiotic strain of E. coli Nissle 1917 that colonizes

tumors and secretes L-arginine, thereby increasing the number of

tumor-infiltrating T cells (Canale et al., 2021). Zhu et al. developed a

probiotic food-grade Lactococcus lactis-based vaccination (FOLactis),

which leads to significant tumor regression by increasing the number

of conventional type 1 DCs in the TIME and restoring CTL

responses. More importantly, it can synergize with PD-1 inhibitors

to convert “cold tumors” into “hot tumors” (Zhu et al., 2022).
8 Future perspectives and challenges

Significant progress in elucidating the role of intratumoral

microbiota in tumor immunity have uncovered therapeutic

mechanisms and inspired the development of strategies for

diagnosing and treating cancer by targeting these microbiota. These

insights pave new avenues for personalized cancer therapy. Immune-

regulating metabolites within the microbiota, such as microbial

peptides, are abundantly present in the TIME, eliciting robust local

and systemic immune responses. These microbial metabolites

enhance tumor antigenicity and bolster tumor immune responses,

suggesting their potential future application as tumor vaccines or

adjuvants for tumor eradication. Although immunotherapy is a

potent modality for combating tumors, it is imperative to assess the

feasibility of immunotherapeutic regimens by monitoring each

patient’s immune system characteristics before or during treatment.

The TIME is crucial for tumor maintenance and therapeutic

response, and the intratumoral microbiota, as a key component of

TIME, significantly regulate the tumor immune milieu. Therefore, to

systematically evaluate and optimize immunotherapy regimens, the

impact of intratumoral microbiota on tumor immune responses

should be incorporated into patient immune monitoring.

Molecular subtyping of tumors is fundamental for achieving

precise cancer treatment. Over the past few decades, next-

generation sequencing technologies have provided mutation data

on the nucleic acids, proteins, and epigenetics of tumor tissues. These

studies have significantly enhanced the understanding of tumor

heterogeneity and expanded the methodologies for tumor

classification. With continuous advancements in detection

sensitivity and a deeper comprehension of tumors and their

microenvironment, the dimensions of tumor classification have

substantially broadened. There exists considerable compositional

heterogeneity in the intratumoral microbiota across different tumor

types and individual patients, which may emerge as a novel clinical

pathological feature. In the future, intratumoral microbial signatures

may serve as potential markers for tumor classification, thereby

guiding diagnostic and therapeutic strategies and prognostic

evaluation. Although recent achievements in correlating tumor

microbiota with tumor immunity have not yet been widely
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implemented, it is anticipated that targeted interventions and

predictive analyses of specific intratumoral microbiota will optimize

immunotherapy, enhance treatment efficacy, and contribute to the

development of more precise cancer therapies.

The influence of the intratumoral microbiota on the host immune

system is profoundly intricate, with multifaceted interactions that need

to be meticulously elucidated to enhance the efficacy of

immunotherapy. Presently, this is an emerging field beset by

numerous challenges. Firstly, the biological composition of the

intratumoral microbiota is highly complex, displaying significant

variability across different tumor types, individuals, and even within

distinct regions of the same tumor. Host factors, including genetic

background, lifestyle, medication usage, and immune status, exert

substantial influence on the tumor microbiota, affecting both its

composition and functional mechanisms, thereby compounding the

complexity of research. This complexity poses a formidable challenge

in comprehending how the intratumoral microbiota modulates the

TIME and subsequent treatment responses. Secondly, although high-

throughput sequencing technologies can provide extensive data

regarding the characteristic of the intratumoral microbiota, there

remain significant limitations in terms of sensitivity, specificity, and

quantitative accuracy. The regulatory role of the intratumoral

microbiota on the immune system holds immense potential for

tumor diagnosis and prognostic evaluation and may be particularly

instrumental in enhancing the efficacy of tumor immunotherapy.

However, overcoming the aforementioned challenges and

transforming research achievement to effective treatment strategies

will require technological advancements and rigorous

clinical validation.
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