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Monkeypox (mpox) is an infectious disease caused by the mpox virus and can

potentially lead to fatal outcomes. It resembles infections caused by viruses from

other families, challenging identification. The pathogenesis, transmission, and

clinical manifestations of mpox and other Orthopoxvirus species are similar due

to their closely related genetic material. This review provides a comprehensive

discussion of the roles of various proteins, including extracellular enveloped virus

(EEV), intracellular mature virus (IMV), and profilin-like proteins of mpox. It also

highlights recent diagnostic techniques based on these proteins to detect this

infection rapidly.
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Introduction

Mpox (formerly referred to as monkeypox) is a zoonotic infectious disease caused by the

monkeypox virus (MPXV) that belongs to the Orthopoxvirus (OPXV) genus of the Poxviridae

family (Gubser et al., 2004). It results in symptoms that start with fever, headache, and back pain

and are followed by systematic rash and blisters (Magnus et al., 1959; Cho and Wenner, 1973).

These symptoms are similar to infections caused by other members of the same genus, such as

the variola virus (VARV) and vaccinia virus (VACV). In addition, mpox resembles infections

caused by viruses from other families. For example, chickenpox, caused by the varicella-zoster

virus, a member of the Herpesvirus family, exhibits symptoms similar to MPXV infections

(Chauhan et al., 2023). Since the clinical presentation of these diseases in humans shares

similarities, diagnosing mpox relying on the observable symptoms is challenging.

Mpox has the potential to lead to a fatal outcome, resulting in a mortality rate ranging

from 1% to 10%, depending on the specific clade of the MPXV strain causing the infection

and the level of access to advanced healthcare services (Adalja and Inglesby, 2022). At

present, no specific treatment is available for the MPXV infection. However, supportive

care plays a vital role in managing the symptoms, including using medications to alleviate

fever and pain. The smallpox vaccine can provide partial protection (85%) against
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monkeypox, but its effectiveness is not guaranteed in all cases (Fine

et al., 1988). Hughes et al. (2014) discovered a specific epitope of the

MPXV through a monoclonal antibody designed for the heparan

binding site on the MPXV envelope protein. Hence, this finding

paved the way for more specific serologic assays for mpox detection

(Al-Musa et al., 2022).

Current MPXV detection methods include viral isolation,

electron microscopy, immunohistochemistry, and PCR (polymerase

chain reaction)/rtPCR (reverse transcription PCR) (Li et al., 2006;

McCollum and Damon, 2014; Karagoz et al., 2023). However, these

techniques require advanced technical skills, state-of-the-art

laboratories, and specialized training and fail to meet the demand

for timely and rapid identification of MPXV infection (McCollum

and Damon, 2014; Halvaei et al., 2023). Consequently, there is a need

for reliable detection approaches to accurately identify MPXV-

infected individuals and control the spread of the disease. In this

paper, our focus centers on the pathogenesis and biological traits of

mpox while also detailing the characterization of MPXV envelope

proteins, including A29L, H3L, E8L, M1R, L1R, C19L, A35R, B6R,

and the profilin-like mpox A42R protein. These proteins are

highlighted as potential targets for a range of detection methods.

Additionally, we provide an overview of recent advancements in

rapid detection techniques for mpox.
Epidemiology

The first case of mpox was found in a nine-month-old infant in

1970 in the Democratic Republic of Congo (DRC). Since 1970, there

has been an increase in mpox outbreaks, mainly occurring on the

African continent (Breman et al., 1980; Alakunle et al., 2020).

Specifically, between 1970 and 1995, 388 out of 418 recorded cases
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of mpox were documented in Zaire (currently known as DRC)

(Shchelkunov et al., 2001). Since May 2022, mpox cases have been

reported in Europe and North America. As of February 29, 2024, the

ongoing mpox outbreak has resulted in over 94,707 laboratory-

confirmed cases, including 181 deaths. Approximately 715 cases have

been reported worldwide monthly (World Health Organization, 2024).

These cases are spread across 117 countries, of which only seven had

previously reported cases of MPXV before 2022 (Figure 1). Due to the

rising global cases, the World Health Organization (WHO) designated

MPXV as a public health emergency of international concern (PHEIC)

on July 23, 2022 (World Health Organization, 2022). According to the

latest data received, the number of laboratory-confirmed cases reported

monthly has increased by 1.6% compared to January, with the majority

of cases originating from the USA (31.9%) and Europe (31.2%) (World

Health Organization, 2024).
Biological features

MPXV is characterized as an enveloped double-stranded (ds)

DNA virus, and its genome size is approximately 197 kb, encoding

nearly 190 proteins (Shchelkunov et al., 2002; Kumar et al., 2022).

The virus structure includes a lipoprotein envelope, a viral core, and

two lateral bodies, as depicted in Figure 2A (Witt et al., 2023). The

genome comprises two variable regions on both the right and left

sides and a conserved large central genomic region occupied with

core genes. The variable regions are composed of genes responsible

for encoding proteins related to virulence and determining host

range, where significant differences between MPXV and VARV

occur. Meanwhile, the core region encodes structural proteins and

essential enzymes, which share 96.3% similarity with the core region

of the VACV (Shchelkunov et al., 2001).
GRAPHICAL ABSTRACT
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The ds nature of MPXV’s genetic material has advantages and

disadvantages from a detection perspective. Unlike positive-sense

single-stranded (ss) RNA viruses, like SARS-CoV-2, which can

directly initiate the synthesis of viral proteins upon entering the

host cell, DNA viruses need to first convert their DNA to RNA

before expressing viral proteins (Durmus ̧ and Ülgen, 2017).

Consequently, MPXV can stay in the body longer before

exhibiting noticeable symptoms in infected individuals (Bhalla

and Payam, 2023). Hence, it can lead to the unnoticed spread of

infection within the community. This phenomenon most likely

played a role in the undetected spread of MPXV in various

geographical areas, challenging researchers to develop new

approaches, including diagnostic tools and biosensors. However,

the advantage of DNA viruses is that they are comparatively more

straightforward and more accurate in detecting using PCR tests

than RNA viruses. DNA virus detection does not require reverse

transcription before PCR (Bhalla and Payam, 2023).

Poxviruses, including MPXV, are recognized for their

distinctive structure, which is typically brick-shaped or oval, with
Frontiers in Cellular and Infection Microbiology 03
a size ranging from 200 to 250 nm (Cho and Wenner, 1973). Based

on the genome sequence, MPXV is phylogenetically classified into

two clades: clade 1, which is found in central Africa and the Congo

basin, and clade 2, which is from West Africa. However, the

phylogenomic analysis, including those from the 2022 outbreaks,

revealed that these outbreaks were caused by a recently evolved

clade called “hMPXV-1A” lineage B.1 (Luna et al., 2022).
Pathogenesis

The virus can be transmitted from animals to humans or from

humans to humans via direct and close contact, spreading through

blood, body fluids, and dermal or mucosal injuries. During human-

to-human transmission, MPXV enters through the upper

respiratory tract, including the oropharynx and nasopharynx, or

via intradermal routes (Li et al., 2022b). The clinical features of

MPXV highly resemble smallpox disease, which also presents 10-14

days of incubation followed by two days of skin rash formation. Like
FIGURE 1

Distribution of confirmed MPXV cases worldwide as of February 29, 2024 (adapted with permission from World Health Organization, 2024).
BA

FIGURE 2

(A) Structure of MPXV; (B) Schematic representation of an MPXV replication cycle, including (1) viral attachment, (2) fusion, (3) replication, (4) viral
assembly, and (5) release from the host cell (created via BioRender.com).
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smallpox, the development of rash includes phases such as macular,

popular, vesicular, and pustular (Weaver and Isaacs, 2008; Hughes

et al., 2014). Hence, the differentiation of these diseases by clinical

presentation is quite challenging.

As with other poxviruses, MPXV replication occurs in the

cytoplasm and undergoes through virally encoded RNA

polymerase. As depicted in Figure 2B, MPXV pathogenesis

includes viral particle attachment, fusion, viral genome

replication, virion assembly, and release from the infected host

cell. During these steps, two types of infectious forms of MPXV are

produced: extracellular enveloped virus (EEV) and intracellular

mature virus (IMV). The EEV is released through exocytosis and

comprises a lipid membrane wrapped around the intracellular IMV

particle originating from the Golgi apparatus or endosomes. On the

other hand, the IMV is released during cell lysis and has a stable

lipoprotein envelope, making it suitable for transmission between

animals (Gong et al., 2022; Shi et al., 2022).

The entry fusion step involves a complex interaction with

multiple receptors, namely heparan sulfate, glycosaminoglycans,

and chondroitin (Montanuy et al., 2011; Hughes et al., 2014;

Khanna et al., 2017). It has also been proposed that genes

responsible for viral replication enzymes and structural proteins

are highly homologous among OPXVs (Shi et al., 2022). Senkevich

et al. (2005) proposed that the fusion entry mechanism is conserved

among the poxvirus family, which suggests that this primary

mechanism developed early in their evolution and remains

unchanged. Hence, MPXV can possess standard features in its

entry-fusion step with other members, especially VACV.
MPXV proteins

The genes encoding the MPXV structural proteins are located

within the highly conserved central genomic region and expressed

in different forms of the mpox virus. The EEV form of MPXV

expresses 25 membrane proteins, including C19L, A35R, and B6R

(Table 1). In contrast, the IMV form expresses proteins such as A29,

M1R, E8L, H3L, and L1R (Shchelkunov et al., 2002). According to

Freyn et al. (2022), specific MPXV proteins, homologs of VACV,

such as M1 and A29, are involved in the cellular entry process of

mature virus (MV), and A35 and B6 are identified as contributors to

the transmission mechanism on the enveloped virus (EV) surface.

Among these proteins, A35 has been identified as an essential factor

for poxvirus virulence. Studies have shown that the loss of A35

protein resulted in a 1000-fold attenuation in virulence (Freyn et al.,

2022). Moreover, studies indicate that antibodies against the L1R

protein, located in the outer membrane of MV, can prevent the

virus from infecting cells, suggesting that L1R might also have a role

in the viral entry step (Shi et al., 2022).
IMV proteins

A29
MPXV A29, the ortholog of VACV A27, is a protein found on

the viral envelope, particularly on IMV. It plays a crucial role in
Frontiers in Cellular and Infection Microbiology 04
viral replication, the fusion of the virus with the host cell membrane,

and viral egress (Shchelkunov et al., 2002; Gao et al., 2023).

Additionally, MPXV A29 is the primary target in immunoassays

that aim to detect MPXV (Shi et al., 2022). Shi et al. (2022)

demonstrated the interaction of MPXV A29 protein with

glycosaminoglycans (GAGs). They proposed a model for MPXV

host entry, which includes (1) attachment of MPXV virion to the

host cell surface through binding to heparan sulfate (HS), (2)

initiation of fusion by host cell protease, and (3) eventual entry of

virions into the host cell.

MPXV A29 shares a composition similarity of 94.54% with the

VACV A27 (Wang et al., 2023a). Both proteins consist of 110

amino acids, which are categorized into functional parts, including

an N-terminal signal peptide, a heparin-binding site (HBS), an a-
helical coiled-coil domain, and a C-terminal anchoring domain

(Vaázquez and Esteban, 1999). The HBS sequences of VACV 27A

(STKAAKKPEAKR) and MPXV A29 (STKAAKNPETKR) differ in

a single amino acid that occurred in a specific “KKPE” sequence

that is essential for heparin-binding (Shih et al., 2009; Shi et al.,

2022). However, despite this slight difference in the HBS sequence,

Hughes et al. (2014) demonstrated that MPXV A29 and VACV 27A

have a similar binding affinity to heparin.

H3L
The H3L antigen is expressed in the MV form, facilitating

binding to host cells and enhancing infectivity (Lin et al., 2000).

Additionally, it was discovered that anti-H3L antibodies can protect

animals from a fatal attack (Davies et al., 2005). Moreover, H3L was

identified as a target for T and B cells in vaccinated mice and

humans (Davies et al., 2005). Specifically, H3L contains at least two

recognized human leukocyte antigen (HLA) class I-restricted T-cell

epitopes that can trigger a potent interferon (IFN) response. This

makes H3L a focus of cellular immune responses (Ostrout

et al., 2007).

Yefet et al. (2023) demonstrated that MPXV antigen H3L

stimulates the production of antibodies and B cells in MPXV

recoverees. They also reported that such individuals have a higher

frequency of H3L-specific IgG+ B cells than those recently

vaccinated against the virus (Yefet et al., 2023). Meanwhile, a

report by Khlusevich et al. (2022) suggests that substituting

residue 233A in H3L may disrupt a B-cell epitope, making it

unrecognizable by anti-VACV polyclonal antibodies.

H3L is 93.52% homologous to VACV antigen H3L (Yefet et al.,

2023). Yang et al. (2023a) chemically synthesized six MPXV

protective antigens (PAs) and found that H3L had the lowest

cross-reactivity compared to A29L, M1R, E8L, B6R, and A35R.

Its cross-reactivity value against the VACV TianTan strain (VTT) -

elicited anti-serum was 33%. They also reported that, upon

examining the amino acid sequences of H3 and H3L, it was

observed that the 233rd residue in H3L underwent a mutation

from alanine to serine. This mutation likely contributed to the

limited cross-reactivity of H3L against the anti-serum elicited by

VTT. Mice vaccinated with recombinant H3L protein developed an

elevated level of neutralizing antibodies (mean 50% plaque

reduction neutralization test (PRNT50) 1:3,760) against VACV,

allowing them to withstand intranasal exposures with fatal virus
frontiersin.org
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concentrations (Davies et al., 2005). As a result, the H3L protein is

one of the main focus areas for MPXV vaccine development (Wang

et al., 2023a).

E8L
E8L is an IMV surface membrane protein of 304 amino acids

(Shchelkunov et al., 2002). According to UniProt, E8L (Q8V4Y0) is

made up of three domains, namely the virion surface (1-275),

transmembrane (276-294), and intra-virion domain (295-304)

(Fantini et al., 2022). In a recent study by Fang et al. (2023), the

E8L antigen was chosen for a polyvalent mRNA vaccine, and it was

observed that its expression in 293T cells led to localization in the

endomembrane. E8L works as a cell surface binding protein and

specifically binds to chondroitin, regulating viral entry (Alkhalil

et al., 2009).

It was previously shown that lipid rafts containing negatively

charged gangliosides are one of the common entrance pathways

OPXV uses (Byrd et al., 2013). Consequently, Fantini et al. (2022)

identified the ganglioside-binding domain on the MPXV E8L

protein. Using a multiparametric approach, they identified three

linear epitopes overlapping with the annular ganglioside-binding

motif of E8L, including amino acid sequences 43–62, 94–113, and

204–223. Consequently, these epitopes were suggested as

immunogens in a vaccine formulation specific to the mpox.

M1R
M1R, an extensively preserved myristoylated surface membrane

protein within IMV, plays a crucial role in the assembly and entry of

viral particles (Tang et al., 2023; Zhang et al., 2023). As Yefet et al.

(2023) highlighted, M1R is 98.4% homologous to the L1R of VACV.

Meanwhile, Yang et al. (2023a) discovered that M1R has the most

considerable cross-reactivity rate of 94% out of six MPXV PAs. This

cross-reactivity may be due to B-cell epitopes, particularly those

found in regions 69–91 aa and 137–155 aa regions, which overlap

with those found in L1 (Heraud et al., 2006). Senkevich et al. (2002)

mentioned that VACV L1R is found on the IMV membrane. In

intracellular viruses, the outer domain of the L1R has three

intramolecular disulfide bonds that face the cytoplasm.

M1R and L1R are essential targets for neutralizing antibodies in

smallpox and cowpox viruses (CPXV) (Papukashvili et al., 2022).

Fang et al. (2023) reported that M1R can be found in structures

resembling the plasma membrane or inclusion bodies. Another

study by Franceschi et al. (2015) demonstrated that M1R is essential

for safeguarding mice against challenges, but its efficacy needs to be

improved through Modified Vaccinia Ankara (MVA) vaccination.

Despite their protective potential, booster vaccinations are

necessary to ensure adequate protection (Franceschi et al., 2015).

L1R
L1R is a myristoylated membrane protein with a molecular

weight ranging from 23 to 29 kDa, which shows significant

conservation across OPXV (Su et al., 2005). It is situated on the

surface of IMV and positioned beneath the envelope on EEV and

can affect particle entry (Franke et al., 1990; Ravanello and Hruby,

1994; Wolffe et al., 1995). The general structure of L1R common to
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OPXVs comprises a cluster of a-helices that wrap a pair of two-

stranded b-sheets linked by four loops (Su et al., 2005). Research

suggests the L1R protein might play a role in the viral entry-fusion

process. However, according to the surface plasmon resonance

(SPR) analysis, the MPXV L1R exhibits notably low affinity for

HS, resulting in an resonance unit (RU) value of -1.3, in contrast to

the MPXV A29 protein, which showed an RU value of

approximately 400. Similarly, the L1R’s affinity to other GAGs,

such as DS, chondroitin sulfate A (CSA), and chondroitin sulfate E

(CSE), was insignificant (Shi et al., 2022). Also, the L1R protein is in

charge of virion assembly. Since it is present on the surface of IMV,

it is also a potent subject for evoking neutralizing antibodies (Karki

et al., 2018). Moreover, monkeys vaccinated with L1R exhibited low

levels of MPXV-neutralizing antibodies at the challenge despite

having elevated anti-L1R antibodies detected by immunogen-

specific ELISAs. This suggests that the DNA vaccine-induced

anti-L1R response may have included a significant proportion of

non-neutralizing antibodies. Additionally, these sera demonstrated

higher levels of VACV-neutralizing antibodies, suggesting that

vaccination with the MPXV L1R ortholog might be advantageous

for protecting against mpox (Hooper et al., 2004).

By incorporating the tissue plasminogen leader sequence (tPA)

into L1R, Golden et al. (2008) generated neutralizing antibody

responses, demonstrating a geometric mean titer (GMT) of 489.

Notably, this robust neutralization response was achieved with just

two vaccinations. In the study conducted by Hooper et al. (2004),

they investigated the efficacy of the L1R DNA vaccine in generating

IMV-neutralizing antibodies and providing safety. The DNA

vaccines were governed using a gene gun, and the results revealed

increased levels of L1R-specific antibodies in the sera of the two

vaccinated monkeys after the booster shot. Consequently, gene gun

vaccination with either the 4pox DNA vaccine or the L1R DNA

vaccine induced a lasting memory response, persisting for at least

one to two years (e.g., monkey L201-1) (Hooper et al., 2004). Hence,

alleviating the illness could result from lowering the effective

challenge dose through neutralizing the challenging virus.
EEV proteins
F13

F13 (P37) is a critical envelope protein that is comprised of 372

amino acids. The MPXV gene C19L encodes it and is also called F13

(Patel et al., 2023). The F13 protein is located on the inner surface of

the EEV outer membrane (Schmutz et al., 1995; Smith and

Vanderplasschen, 1998). It is responsible for viral packaging and

release from the host cell, facilitating viral spread and multiplication

(Srivastava et al., 2023). Additionally, studies have shown that the

P37 protein interacts with host membrane proteins Rab9 and TIP47

to create a virus-specific wrapping complex that is essential for the

enveloped virus (Shiryaev et al., 2021; Srivastava et al., 2023). In

addition to its primary function, the F13 protein also serves as an

enzyme and participates in lipid metabolism (Bárcena et al., 2000).

Several studies emphasized the importance of the P37 protein in

the MPXV virus as a potential target for FDA-approved drugs.

Shiryaev et al. (2021) noted that it has some significant benefits for

virtual screening, like its relatively small size and the fact that
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homologs are absent in humans. The study performed high-

throughput virtual screening (HTVS) to identify FDA-approved

drugs with higher binding affinity against MPXV. Similarly, Patel

et al. (2023) predicted the 3D structure of the F13 envelope protein

using Alphafold (Figure 3A), built a homology model, and

evaluated it using docking, binding pose metadynamics, and

molecular dynamics (MD). Likewise, another study found 15

multitargeting FDA-approved drugs that may inhibit P37 (viral

packing and release), topoisomerase 1 (viral DNA replication and

transcription), and thymidylate kinase (viral DNA synthesis)

(Srivastava et al., 2023).

Li et al. (2022a) found that the F13 sequence is highly conserved

in MPXV and VARV, and similarity ranges from 97.58% to 99.73%.

Similarly, Srivastava et al. (2023) conducted a protein-protein blast

analysis, revealing a sequence alignment similarity of 99.9%

between MPXV and VACV. As a result, tecovirimat, formerly

approved for treating smallpox, has shown potential for treating

mpox. They identified the structure of the MPXV F13 protein and

its residues interacting with tecovirimat through molecular

simulations. Furthermore, MD analysis confirmed the drug’s

efficacy against mpox (Li et al., 2022a). Additionally, there are

recent studies that provide an overview of potential antivirals

against P37 (Wang et al., 2023b; Ashley et al., 2024) and other

mpox proteins (Bajrai et al., 2022; Kaur et al., 2023).

A35R
A35R, a homolog of VACV A33R, is an envelope glycoprotein

of EV, contributing to the formation of actin-containing microvilli

and facilitating the effective cell-to-cell spread of viral particles

(Roper et al., 1998; Perdiguero and Blasco, 2006). According to

Wang et al. (2023a), the A35R protein shares 95.03% similarity with

the A33R protein from VACV. Su et al. (2010) found that VACV

A33R is a homodimeric transmembrane protein that undergoes O-

and N-glycosylation at the N-125 and N-135 sites, while MPXV

A35R does not possess the corresponding N-125 site. Moreover, it

was shown that a few amino acid differences between these two

proteins could influence the effectiveness of the smallpox vaccine in

providing cross-protection against mpox. For instance, the anti-A33
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monoclonal antibodies (mAbs) 1G10 and 10F10 showed high

specificity for VACV A33R. However, in the case of MPXV

A35R, 10F10 demonstrated an affinity to MPXV A35R, while

1G10 resulted in no binding (Golden and Hooper, 2008). The 3D

structure of MPXV A35R was predicted by Zheng et al. (2022) using

AlphaFold2 (Figure 3B). Consequently, the study showed the

structural similarity of MPXV A35R and VACV A33R, especially

in their globular domains (Zheng et al., 2022).

Fang et al. (2023) generated a polyvalent mRNA vaccine

candidate, MPXVac-097, using five MPXV antigens such as

A35R, B6R, A29L, E8L, and M1R linked by tandem dimer

peptide linkage. As a result, after the second and third doses of

the MPXVac-097 vaccination, antibody titer levels of A35R and E8L

increased significantly, indicating a robust antibody response.

However, the response was moderate to M1R and low to A29L

and B6R antigens. The localization of the A35R protein to the

plasma membrane was identified after expressing the A35R antigen

in 293T cells (Fang et al., 2023). Three anti-MPXV A35 nanobodies

from a non-immunized alpaca heavy-chain antibody (VHH) library

were recently designed (Meng et al., 2023). As a result, VHH-1

demonstrated the highest affinity and specificity against MPXV

A35R, with a half-maximal effective concentration EC50 of 0.010 µg/

mL. Similarly, as the result of analysis using the protein A biosensor,

VHH-1 demonstrated binding to the mpox A35R protein with an

affinity constant of 54 nM, determined via the biolayer

interferometry (BLI) assay, thereby providing a fundamental basis

for the potential advancement of the diagnostic instruments for the

mpox virus (Meng et al., 2023).

B6R
B6R is a glycoprotein that undergoes reversible lipid

modifications called palmitoylation (Tang et al., 2023). These

modifications are considered a crucial mechanism of protein

trafficking to the membrane. Hence, it is essential for localizing

B6R on the surface membrane of infected cells and the EEV (Guan

and Fierke, 2011; Tang et al., 2023). B6R is the homolog of VACV

B5R, showing a similarity of 96.53% (Wang et al., 2023a). Like B5R,

B6R is vital for the efficient spreading of infection and is involved in
B CA

FIGURE 3

Predicted 3D structures of MPXV proteins: (A) F13 (adapted with permission from Patel et al., 2023); (B) A35R (adapted with permission from Zheng
et al., 2022); and (C) A42R (adapted with permission from Minasov et al., 2022).
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the regulation of the complement system of the host cell (Smith and

Vanderplasschen, 1998; Tang et al., 2023). B5R also contributes to

formulating EEV during the wrapping steps of IMV (Bell et al.,

2004). Fang et al. (2023) selected the MPXV B6R antigen as one of

the candidates for inclusion in a polyvalent mRNA vaccine

candidate, MPXVas-097. As discussed earlier, they showed a low

antibody titer after a three-dose vaccination. The same study

identified that its expression in 293T cells led to localization in

perinuclear structures. Moreover, the B6R protein was recognized

as the primary target for rt-PCR assay targeting MPXV. Li et al.

(2006) designed an rt-PCR assay, namely a B6R assay, specifically

detecting B6R envelope protein. As a result, all 15 strains of MPXV

were detected at 10 ng with the B6R assay, and no cross-reaction

was observed with other OPXV and bacterial strains.
Profilin-like proteins

A42R
The A42R protein is encoded by the gp153 locus of the MPXV

virus, and its amino acid sequence highly resembles profilin

proteins (Minasov et al., 2022). Profilins are actin-binding

proteins that regulate and aggregate actin filaments (Pinto-Costa

and Sousa, 2020). It was found that VACV A42R, homolog to

profilin, shares 98% similarity with MPXV virus A42R, and it is a

late synthesized protein that exhibits a weak affinity for actin

(Minasov et al., 2022). In the previous studies, knockout of the

open reading frames (ORF) for VACV A42R and CPXV A42R

showed that they are not crucial for poxvirus replication in vivo

(Blasco et al., 1991). However, according to the authors, they may

play a vital role during viral replication in various cell lines

(Minasov et al., 2022).

Minasov et al. (2022) identified the structure of MPXV A42R

protein (Figure 3C) through the single-wavelength anomalous

dispersion (SAD) technique using X-ray diffraction data collected

from crystals of seleno-methionine derivatized protein at a

resolution of 1.52 Å. The principle of X-ray diffraction lies in the

interaction of X-rays with the electron clouds on the crystal atoms,

creating the diffraction pattern (Liebschner et al., 2019). The protein

has an asymmetric structure composed of two polypeptide chains,

chains A and B. Chain A is a full-length chain containing 133 amino

acid residues. It begins with N-terminus alanine, which originates

from the tobacco mosaic virus protease. On the other hand, chain B

lacks N-terminal alanine and starts from the second amino acid up

to the 133rd. Generally, the structure contains a seven-stranded

antiparallel beta-sheet encircled by three alpha helices and a

partially formed helix (Minasov et al., 2022). Structural analysis of

MPXV A42R with bovine and human profilin proteins uncovered

notable differences in critical functional regions. Specifically, it was

revealed that, unlike profilins, MPXV A42R has a weak affinity for

actin and no affinity for poly (l-proline). In addition to this, A42R

may establish specific interactions with phosphatidylinositol lipids.

This suggests that understanding the function of cellular profilin

may not be sufficient to predict the role of MPXV A42R (Minasov

et al., 2022).
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Rapid detection techniques

Several detection techniques for mpox are being used

nowadays. For instance, lateral flow assay (LFA), also known as

immunochromatography, is driven by capillary action and provides

quick detection employing colloidal gold nanoparticles as

immunolabels, producing results in 10-15 minutes at a cheap cost

and with simple standardization (Urusov et al., 2019;Wang et al., 2022;

Ye et al., 2023). Immunology-based LFA assays are popular for quick

test times and convenience (Qriouet et al., 2021). Ye et al. (2023)

developed a colloidal gold immunochromatographic method for

monkeypox virus detection that uses the A29 17-49 peptide sequence

as the immunogen and produces monkeypox-specificmAbs. Rapid test

strips were developed using the double-antibody sandwich approach,

which has great specificity and sensitivity. It was found that two specific

antibodies, namely mAb-7C5 and 5D8, resulted in the best sensitivity

and detection of the limit of 50 pg mL−1 for the A29 protein (Table 2).

Moreover, the test strips did not show cross-reactivity with other

OPXVs, including VACV and CPXV, and other infections, such as

SARS-CoV-2 and influenza A and B (Ye et al., 2023).

Yang et al. (2023b) established a dual-signal nanotag-based

lateral flow immunoassay (LFIA) system for swift and sensitive

detection of the A29L protein. They investigated the ideal reaction

time for LFIA, examining the T-line’s signal-to-noise ratio (SNR)

across various time intervals. The findings indicated that a reaction

period of 15 minutes proved adequate for quantitatively detecting

MPXV. The dual-signal SiO2-Au core dual-QD shell (DQD)

nanocomposite (Si-Au/DQD)-based LFIA has a colorimetric

sensitivity of 0.5 ng/mL and fluorescence sensitivity of 0.021 ng/

mL, outperforming the standard AuNP-based LFIA and ELISA

procedures by 238 and 3.3 times, respectively (Yang et al., 2023b).

Virus proteins, including mpox, were also analyzed using

alternative techniques such as SPR. Shi et al. (2022) showed the

interaction of MPXV A29 protein with GAGs, HS, dermatan (DS),

CSA, and CSE using SPR. As a result, the obtained dissociation

constant (KD) values (Table 2) indicated that MPXV A29 exhibited

a strong affinity for GAGs, including HS, DS, and CS. Likewise, the

same study employed SPR to study the affinity of the MPXV L1R

protein to GAG. Shabani et al. (2023) designed a new synthetic anti-

MPXV C19L antibody (antibody 62) based on a heavy chain of

human antibodies and a small peptide fragment at its beginning.

The docking and molecular simulation analysis of the designed

anti-MPXV C19L antibodies were applied to select the one with

superior stability. The interaction between the C19L protein and the

synthetic and wild-type anti-C19L antibodies was analyzed using

SPR. The findings showed that synthetic antibodies’ KD value was

lower than wild antibodies, 0.1 and 0.8 nM, respectively, meaning

that synthetic antibodies had a higher affinity for MPXV C19L

protein (Shabani et al., 2023). In this manner, SPR enabled a label-

free, direct, and real-time quantitative assessment of molecular

interactions (Shi et al., 2022).

Because of its low cost, speed, high sensitivity, specificity, and

noninvasiveness, surface-enhanced Raman spectroscopy (SERS) has

been frequently utilized to detect harmful microorganisms (Huang

et al., 2021). Unlabeled detection eliminates the need for attaching
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molecular markers like specific antibodies and nucleic acid sequences

onto nanoparticle surfaces, simplifying the preparation of the

enhanced substrate and allowing for rapid sample detection (Zhang

et al., 2023). Zhang et al. (2023) also emphasized that despite SERS’s

robust detection features, some technical hurdles in unlabeled virus

identification must be overcome, such as the difficulty in recording

signals and insufficient applicability because of the size distinction

between SERS “hot spots” and viruses. Consequently, they used silver

nanoparticles incubated with iodine ions and aggregated with

calcium ions as substrates to resolve the limitation of unlabeled

MPXV detection of the SERS. As a result, the new approach showed

the detection of MPXV A29L protein at a concentration as low as 5

ng/mL and MPXV DNA at levels as low as 100 copies/mL within 2

minutes, which is close to the lower limit of PCR detection but faster.

Furthermore, SERS has shown excellent potential for quantitatively

detecting MPXV as it was able to identify four distinct MPXV

proteins, including A29L, M1R, B6R, and A35R, in the serum in 5

minutes (Zhang et al., 2023).

Electrochemical biosensors are another attractive approach that

offer typical rapid testing times, convenient device portability, and

compact device size, which lower sample volumes required for

testing and remove sample pretreatment steps, making them

suitable for point-of-care applications (POC). To ensure optimal

use in POC settings, electrochemical devices must be reproducible
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and easily accessible, allowing them to be disposable and removing

the requirement for trained personnel (Torres et al., 2021). de Lima

et al. (2023) reported the first electrochemical POC assay for MPXV

protein detection using a paper-based laser-scribed graphene (LSG)

nanobiosensor (Figure 4A). The results showed that the test

required a small amount of sample (2.5 µL), detection within

15 min, and a limit of detections (LODs) of 3.0 × 10–16 g mL–1

for A29 protein and 7.8 × 10–3 PFU L–1 for titered MPXV. The

analytical curves for A29 protein and MPXV viral loads at various

concentrations showed a linear correlation with a determination

coefficient (R2) of 0.998 and 0.996, respectively (Figures 4B, C).

Additionally, no instances of cross-reaction were detected when the

nanobiosensor was tested alongside other poxvirus and non-

poxvirus strains (de Lima et al., 2023).
Conclusion and future directions

Mpox, a zoonotic disease caused by MPXV, presents challenges

in diagnosis due to symptom similarities with other infectious

diseases. Despite the current decrease in confirmed infection cases,

addressing the ongoing threat of mpox remains imperative, especially

considering its potential emergence in previously non-endemic areas.

Therefore, rapid and specific detection methods are crucial for
TABLE 2 Current approaches for rapid MPXV protein detection.

Method Description Target protein Detection
time

Detection
limit

Reference

LFA Immunochromotographic assay based on colloidal
gold nanoparticles on the double-antibody sandwich
principle for detection of mpox

A29 15 min 50.0 pg/mL Ye et al., 2023

LFIA Colorimetric-fluorescent dual-signal nanotag-based
LFIA sensor

A29L 15 min 0.5 and 0.0021
ng/mL

Yang
et al., 2023b

SPR Immediate and non-labeled assessment of affinity and
binding kinetics in real-time

A29 - KD for
HS 2.6 × 10−7

M;
DS 6.2 × 10−7

M; CSA 8.4 ×
10−7 M;
CSE 3.1 ×
10−7 M

Shi et al., 2022

C19L - KD between
synthetic
antibody 62
and C19L
protein was 0.1
nM, and WT
C19L antibody
and C19L
protein was
0.8 nM

Shabani
et al., 2023

Label-
free SERS

Enhanced precision and sensitivity, along with quicker
outcomes, achieved by integrating molecular data with
the plasmonic characteristics of
metallic nanostructures

A29L, M1R, B6R, and A35R in
the serum

5 min 5 ng/
mL (A29L)

Zhang
et al., 2023

EIS Paper-based highly porous AuNS-treated LSG
electrochemical sensor

A29L 15 min 3.0 × 10–16

g/mL
de Lima
et al., 2023
LFA, Lateral Flow Assay; SPR, Surface Plasmon Resonance; KD, dissociation constant; HS, heparan sulfate; DS, dermatan sulfate; CSA, chondroitin sulfate A; CSE, chondroitin sulfate E; SERS,
Surface-Enhanced Raman Spectroscopy; LFIA, Lateral Flow Immunoassay; EIS, electrochemical impedance spectroscopy; AuNS, gold nanostructures; LSG, laser-scribed graphene.
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controlling its global spread. Consequently, this review provided a

comprehensive overview of the characterization of mpox proteins

and the development of rapid techniques for MPXV detection.

Specifically, we highlighted pathogenesis, the roles and structural

characteristics of EEV (C19L, A35R, and B6R), IMV (A29, M1R, E8L,

H3L, and L1R), and profilin-like proteins. Additionally, recent studies

in diagnostic techniques such as LFA, LFIA, SPR, SERS, and EIS

using these mpox proteins demonstrated promising paths for rapid

detection of MPXV. Recently, viral detection methods based on

aptamers have been developed with considerable success (Xi et al.,

2021; Shola David and Kanayeva, 2022). Unlike protein

biorecognition elements, including antibodies, nucleic acid

aptamers can be readily paired with various electrochemical and

optical sensing methods, opening new avenues for sensitive and rapid

detection (Zhang et al., 2023). However, it is crucial to note that

despite the advancements, there is still a gap in understanding most

mpox proteins. Notably, while the 3D structure of A42R has been

revealed, predicted 3D structures are available for proteins C19L and

A35R, while others still need to be explored. This emphasizes the

necessity for further research on mpox protein structure and

function. Enhancing knowledge of mpox proteins is essential for

improving diagnostic techniques to address emerging viral

infections effectively.
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