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Visceral leishmaniasis is a potentially devastating neglected tropical disease

caused by the protozoan parasites Leishmania donovani and L. infantum

(chagasi). These parasites reside in tissue macrophages and survive by

deploying a number of mechanisms aimed at subverting the host immune

response. CD4+ T cells play an important role in controlling Leishmania

parasites by providing help in the form of pro-inflammatory cytokines to

activate microbiocidal pathways in infected macrophages. However, because

these cytokines can also cause tissue damage if over-produced, regulatory

immune responses develop, and the balance between pro-inflammatory and

regulatory CD4+ T cells responses determines the outcomes of infection. Past

studies have identified important roles for pro-inflammatory cytokines such as

IFNg and TNF, as well as regulatory co-inhibitory receptors and the potent anti-

inflammatory cytokine IL-10. More recently, other immunoregulatory molecules

have been identified that play important roles in CD4+ T cell responses during VL.

In this review, we will discuss recent findings about two of these molecules; the

NK cell granule protein Nkg7 and the anti-inflammatory cytokine TGFb, and
describe how they impact CD4+ T cell functions and immune responses during

visceral leishmaniasis.
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Visceral leishmaniasis

Leishmaniasis is a significant neglected tropical disease caused by protozoan parasites of

the genus Leishmania (Burza et al., 2018). The severity of Leishmania infections ranges from

self-resolving skin sores known as cutaneous leishmaniasis (CL) to severe, systemic forms

known as visceral leishmaniasis (VL) (Burza et al., 2018). VL is characterised by

hepatosplenomegaly (simultaneous enlargement of the spleen and liver), pancytopenia

(low levels of all blood cell types) and chronic inflammation in the bone marrow, lymph

nodes and visceral organs. Typically, VL is fatal within two years if anti-parasitic
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chemotherapy is not administered, with the cause of death generally

due to secondary infections, haemorrhages, and immunosuppression

(Burza et al., 2018). In addition, as seen in the Indian sub-continent,

some treated VL patients can develop Post-Kala-azar Dermal

Leishmaniasis (PKDL), a disease characterised by skin rashes

caused by parasites remaining in the skin without systemic parasite

burden (Zijlstra, 2016). In East Africa, PKDL has a different

pathogenesis and can develop concurrently with VL (Musa et al.,

2002) Currently, 20 species of the genus Leishmania have been

identified. Clinical manifestations of these pathogens in humans

vary in severity due to interactions between parasite traits, vector

biology, and host attributes (Colmenares et al., 2002).

The majority of Leishmania infections manifest as CL. Despite

its self-resolving nature, CL can result in substantial social

stigmatisation due to permanent scarring after the disease has

resolved. Around 10% of CL cases progress to stronger

manifestations that can result in severe disfigurements, such as

mucocutaneous leishmaniasis, diffuse/disseminated CL, and

leishmaniasis recidivans (Burza et al., 2018). Estimates by WHO

point to 600,000 to 1 million cases of CL globally per year, while the

total annual VL cases are estimated to be 50,000 to 90,000,

approximately one-tenth that of CL. Despite its relatively low

incidence, VL is the main contributor to deaths caused by

Leishmaniasis due to its high lethality in untreated patients. VL is

endemic in the Indian subcontinent, East Africa, and South

America (Alvar et al., 2012). Two Leishmania species are

responsible for most VL cases: L. donovani and L. infantum. The

former is endemic in India and East Africa, while the latter is found

in Central Asia, Central and South America, the Middle East, and

the Mediterranean Basin (Alvar et al., 2012).
Current status of disease control

Deaths from VL are predominantly found in underdeveloped

regions, as poor infrastructure, malnutrition, and diseases, such as

HIV, enhance the lethality of VL (Burza et al., 2018). Historically,

India, Nepal, and Bangladesh accounted for over 50% of global VL

cases. In 2005, these countries committed to eliminating VL as a

health concern by 2015 (Burza et al., 2018). Elimination targets were

set to one case per 10,000 people per year at the district or sub-district

level, an incidence rate at which the disease is no longer a public

health concern. Although the deadline has since been extended past

2015, significant progress has been made in eliminating VL, as the

number of reported cases in these endemic countries declined by

96.2% from 2007 to 2021 (Organization, 2022).

Despite the substantial achievements in the effort against VL,

the disease remains one of the top parasitic diseases regarding

mortality and outbreak potential. Globally, an estimated 350 million

people remain vulnerable to VL (Alvar et al., 2013). Factors behind

the high outbreak potential include the conflict-driven migration of

non-immune populations into endemic areas (Al-Salem et al.,

2016), the emergence of VL in non-endemic areas by unknown

means (Shrestha et al., 2019), and possible loss of herd immunity

due to the declining number of cases in endemic regions (Rijal et al.,

2019). In addition, the COVID-19 pandemic and subsequent
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reallocation of public health resources has significantly hampered

efforts to control VL (Uwishema et al., 2022; Paul and Singh, 2023),

and areas that have successfully reduced their incidence rates below

the elimination target may see a resurgence of cases that lead to the

return of their VL endemic status (Toor et al., 2020). Therefore,

continued vigilance and effort are required to secure current gains

and progress towards eliminating VL as a disease of public

health concern.
Treatment of visceral leishmaniasis

Traditional treatments for VL are based on pentavalent

antimonial chemotherapies. Despite their effectiveness, these

treatments also induced potent side effects and faced increasing

drug resistance after decades of use (Sundar et al., 2000; Sundar and

Chakravarty, 2010). Newer medicines, such as oral miltefosine and

amphotericin B, exhibit lower toxicity but are also challenged by

mounting drug resistance (Srivastava et al., 2011; Sundar et al.,

2012; Alvar et al., 2013). Elimination of VL is complicated by

asymptomatic patients who act as potential reservoirs of the

parasite, and there are no approved effective vaccines available

against human leishmaniasis (Dinc, 2022). These pressing issues

highlight the need for novel approaches in VL treatments, such as

immune-based therapies that enhance the host’s response against

the parasite.
Transmission cycle of
Leishmania parasites

Transmission of Leishmania parasites occurs during the blood

feeding of female Phlebotomine sand flies, in which the parasites in

their motile, flagellated promastigote form are first regurgitated into

the dermal layer of the host (Bates, 2007) (Figure 1). As the

Leishmania species are obligate intracellular parasites,

promastigotes must rapidly locate phagocytes, such as

macrophages and neutrophils, to survive and replicate (Alexander

et al., 1999). This is aided by the pro-inflammatory properties of the

sandfly saliva, which acts as a chemo-attractant to phagocytes (Zer

et al., 2001; Guimaraes et al., 2016). To further increase the

efficiency of phagocytosis, the lipophosphoglycan (LPG) coat of

Leishmania hijacks the body’s complement system to promote

complement-mediated opsonisation while avoiding complement-

mediated lysis of the parasite (Franco et al., 2012).

Once phagocytosed, Leishmania parasites transform into their

round, immotile amastigote form. The LPG coat protects against

reactive oxygen and nitrogen species (ROS and RNS) while

establishing the parasite inside the phagolysosome (Franco et al.,

2012). In addition, Leishmania parasites can delay the assembly of

inducible nitric oxide synthetase (iNOS) on the phagolysosome

(Pandey et al., 2016), decrease the rate of RNS production (Gaur

et al., 2007), and disrupt the induction of iNOS and NOS through

inhibition of oxidative stress (Olivier et al., 2012). These

mechanisms create a favourable niche that enables the survival

and replication of Leishmania parasites inside phagocytic cells.
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Murine models of experimental
visceral leishmaniasis

Due to the impracticality of studying infected human organs,

much of the current literature on VL is derived from experimental

murine models. Unlike humans, common susceptible mouse

strains such as C57BL/6 and BALB/c do not succumb to

experimental visceral leishmaniasis (EVL) but instead develop an

acute infection in the liver, followed by a life-long chronic infection

in the spleen (Kumar and Nylen, 2012). This distinct pattern of

immunity is not seen in human patients, as human VL manifests as

a spectrum ranging from asymptomatic to severe disease

characterised by multi-organ involvement (Faleiro et al., 2014).

Parallels do, however, exist between the two, as asymptomatic VL

patients exhibit effective immune responses akin to the mouse liver

during infection. In contrast, symptomatic VL patients show

impaired immune reactions similar to the mouse spleen (Faleiro

et al., 2014). Studies on murine EVL can yield insights into immune

networks that dictate parasite elimination versus persistence in

human patients.

During murine EVL, liver infections are acute and self-

resolving, with the reduction in parasite load occurring alongside

granuloma formation. After the intravenous injection of L.

donovani, resident macrophages (Kupffer cells in the liver - KCs)

harbour the most parasites (McElrath et al., 1988; Honore et al.,

1998). Due to their naturally impaired innate capacity to kill

intracellular pathogens, the parasite load increases rapidly during

the first weeks of infection (Wilson et al., 1996). Signalling between

KCs drives their migration and fusion, resulting in the formation of

the immunological complex known as granulomas, which consists

of a core of fused KCs, an outer sheath of motile lymphocytes and a

mix of other immune cells recruited by chemokine signalling from

KCs (Murray, 2001).
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Approximately one week after infection, recruited T cells

accumulate in granulomas to become the predominant cell type

(Stern et al., 1988). Although it was previously assumed that T cells

were primed in the spleen and migrated to the liver to combat the

infection, recent studies have shown that parasite-specific CD4+ T

cells may be primed in other tissues and are sufficient to confer

immunity (Engwerda and Kaye, 2000). Both CD4+ and CD8+ T cells

are essential for granuloma formation (Stern et al., 1988). Still,

whereas CD4+ T cells can be activated by both KCs and granuloma-

associated dendritic cells (DCs) (Stanley and Engwerda, 2007), the

activation of CD8+ T cells is restricted to KCs (Beattie et al., 2010).

Granulomas enable potent inflammatory cytokines produced by

T helper 1 (Th1) cells, such as IFNg and TNF, to be directed against

concentrated pockets of parasitised KCs, which maximises their

leishmanicidal capacity (Stanley and Engwerda, 2007). This results

in effective clearance of the infection in the liver (Kaye et al., 2004).

In addition, TNFa also plays a crucial role in the assembly and

maturation of granulomas because, in its absence, granuloma

formation is delayed, resulting in uncontrolled parasite growth in

the first weeks of infection (Engwerda et al., 2004b). Granuloma

maturation is attained by 2 to 4 weeks post-infection, and parasite

burden declines rapidly up to the 8th week of infection (Murray,

2001). A sterile cure is not achieved in the liver; instead, a small

population of parasites persist (Stanley and Engwerda, 2007). As the

immune system will continue to mount a minor but sustained

response against this small parasite population, its presence is

thought to confer immunity to the host through constant antigen

exposure, a process known as concomitant immunity (Stanley and

Engwerda, 2007).

The progression of EVL in the mouse spleen occurs in a

contrasting manner to the liver. Here granulomas do not form,

instead parasites accumulate, and a chronic infection is established

(Kaye et al., 2004). As a blood filter organ, the spleen removes
FIGURE 1

Lifecycle of Leishmania parasites. Dimorphic Leishmania parasites reside in the female Phlebotomine sand fly gut as flagellated extracellular
promastigotes. Transformation to the immotile intracellular amastigote form occurs after phagocyte uptake of the parasite. Via numerous
mechanisms, Leishmania parasites are able to resist lysis and replicate in phagocytes. Rupture of the host phagocyte leads to the continuation of
the infection.
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foreign particles and pathogens from the blood (Mebius and Kraal,

2005). The splenic macrophages phagocytose around 95% of

parasites introduced by intravenous injection (Gorak et al., 1998).

Unlike KCs of the liver, these macrophages have a much stronger

innate capacity to kill phagocytosed parasites, with around 50% of

the initial inoculum being killed in the first 24 hours post-infection

(Gorak et al., 1998).

Despite the initial anti-parasitic response in the murine spleen,

chronic infection is eventually established by the third week after

infection (Engwerda et al., 2004a). Multiple factors contribute to the

failure of parasite control in the spleen, and the elevated levels of the

anti-inflammatory cytokines IL-10 and TGFb play a major role, as

they result in the dampening of effector functions across a broad

spectrum of immune cells such as macrophages, DCs and T cells

(Nylen and Sacks, 2007). Additionally, as the infection progresses,

the expression of exhaustion markers such as LAG-3, CTLA-4 and

PD-1 on splenic T cells also increases (Jin et al., 2011), leading to the

loss of effector functions such as the production of inflammatory

cytokines and cytotoxic molecules (Edwards et al., 2023). This

functional exhaustion in the spleen is most apparent in CD4+ T

cells (Edwards et al., 2023).

A defining feature of VL in humans and mice is the enlargement

of the spleen (splenomegaly) that occurs as the infection progresses

to its chronic phase (Engwerda and Kaye, 2000). This change in

spleen size and mass is accompanied by a loss of splenic

microarchitecture, which includes the disruption of the marginal

zone and white pulp, as well as the hypertrophy of the red pulp

(Kaye et al. , 2004). Interestingly, this loss of splenic

microarchitecture is driven by TNF, the same inflammatory

cytokine that plays a crucial role in the formation of granulomas

and the subsequent clearance of parasite burden in the liver (Stanley

and Engwerda, 2007). These disruptions lead to impaired cellular

interactions, most notably between T cells and antigen-presenting

cells (APCs), which further impairs the protective immune response

in the spleen (Stanley and Engwerda, 2007).
CD4+ T cell responses during
visceral leishmaniasis

CD4+ T cells play critical roles in our body’s defence against

pathogens (Tubo and Jenkins, 2014). They undergo specialisation

after activation, yielding subsets that produce vital cytokines driving

responses crucial for containing and eliminating specific infections.

An essential facet of these responses is the emergence of specialised

CD4+ T cells after pathogen control, initiating an anamnestic

response upon reinfection (Kunzli and Masopust, 2023; Osum

and Jenkins, 2023).
T helper 1 cells

Th1 cells are a subset of CD4+ T cells characterised by the

production of inflammatory cytokines such as IFNg and TNF,

driven by the master transcription factor T-bet (Szabo et al.,

2003). For VL, generating an effective Th1 cell response is
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essential for controlling the infection (Reiner and Locksley, 1995;

Murray and Delph-Etienne, 2000; Rosas et al., 2006; Singh and

Sundar, 2018). APCs such as DCs are activated upon their

phagocytosis of Leishmania antigens, and they subsequently

process and present these antigens to naïve CD4+ T cells via

MHC II. Signalling via the T cell receptor (TCR), along with co-

stimulation via CD28, induces the production of IFNg by T cells,

and IFNg in turn synergises with CD40 to stimulate IL-12

production by the APC, and also cooperates with TCR signalling

to drive the first wave of T-bet expression (Schulz et al., 2009).

Production and signalling of IL-12 by APCs results in the nuclear

translocation of signal transducer and activation of transcription 4

(STAT4) in naïve CD4+ T cells. This results in a second wave of T-

bet upregulation, as well as expression of the IL-12 receptor

subunits, which then stabilises the Th1 cell fate after cessation of

TCR signalling (Schulz et al., 2009). Continued signalling by IL-12

is also required to maintain IFNg production by differentiated Th1

cells (Yap et al., 2000).

The production of pro-inflammatory cytokines such as IFNg
and TNFa by Th1 cells plays a key role in controlling VL infection.

IFNg is a potent macrophage activating factor, and its signalling

activates naïve macrophages by driving their polarization into the

inflammatory classically activated (M1) state (Tomiotto-Pellissier

et al., 2018). The importance of IFNg signalling in macrophages

during VL is demonstrated by impaired parasite control in mice

with macrophage-specific IFNg signalling defects (Yap et al., 2000).

TNF acts synergistically with IFNg, and together, they increase the

production of ROS and RNS, allowing parasitised macrophages to

lyse the phagocytosed Leishmania amastigotes more effectively

(Fromm et al., 2015).

As mentioned, an effective Th1 cell response is instrumental in

parasite clearance in VL. Unsurprisingly, peripheral blood

mononuclear cells (PBMCs) from symptomatic VL patients

typically do not proliferate or produce limited IFNg in response

to Leishmania antigen (Sacks et al., 1987; White et al., 1992).

Further, many symptomatic patients also present negative for

leishmanin skin tests, indicating impaired cellular immune

response against Leishmania antigens (Gidwani et al., 2009).

Interestingly, PBMCs from cured patients regain their Th1 cell

response to Leishmania antigens, only to revert to the symptomatic

state upon co-culture with PBMCs collected before treatment from

the same patient (Carvalho et al., 1989). These results indicate the

presence of a cell-mediated immunosuppressive mechanism that

regulates Th1 cell responses in symptomatic VL patients.
T helper 2 cells

T helper 2 (Th2) cells are a subset of CD4+ T cells characterised

primarily by the production of IL-4, as well as IL-5, IL-9 and IL13

(Walker and McKenzie, 2018). IL-4 signalling is key to the

polarisation and maintenance of Th2 cells (Zhu, 2015). By

activating STAT6 in naïve CD4+ T cells, IL-4 signalling drives the

expression of the transcription factor GATA3, which synergises

with STAT5 to promote IL-4 expression, forming a positive

feedback loop that stabilises the Th2 programme (Yagi et al.,
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2011; Zhu, 2015). Th2 cells are mainly known to play an important

role in promoting the healing of localised wounds caused by

helminth infections (Chen et al., 2012), but in the context of

Leishmania infections, Th2 cells generally promote parasite

pathogenesis by suppressing inflammation (Sher and Coffman,

1992). It has been demonstrated in mouse models that IL-4-

secreting CD4+ T cells exacerbated Leishmania infections (Scott

et al., 1988). Similar results were also observed in humans, where

VL patients who were nonresponsive to treatment had significantly

higher levels of IL-4 production by T helper cells (Thakur et al.,

2003). During VL, IL-4 and IL-13 inhibit Th1 cell activity and

impair the production of reactive oxygen and nitrogen species in

macrophages (Ho et al., 1992; Becker, 2004), while IL-5 and IL-9

also moderately promote VL progression (Uyttenhove et al., 1988;

Nashed et al., 2000).
T helper 17 cells

T helper 17 (Th17) cells are a subset of CD4+ T cells

characterised primarily by the production of IL-17, IL-21 and IL-

22 (Ouyang et al., 2008). The molecular basis of Th17 cell

differentiation is complex, as different cytokine combinations can

polarise naïve CD4+ T cells into Th17 cells with notable

heterogeneity in the expression of immunoregulatory and

proinflammatory genes (McGeachy et al., 2007; Ghoreschi et al.,

2010; Lee et al., 2012). Th17 cells are defined as non-pathogenic or

pathogenic based on their ability to induce tissue inflammation or

autoimmunity (Schnell et al., 2023). Non-pathogenic Th17 cells can

be polarised from naïve CD4+ T cells via the combination of IL-6

and transforming growth factor-beta (TGFb), while pathogenic

Th17 cells require IL-6 in combination with IL-1b and IL-23 or

IL-6 in combination with TGFb and IL-23 (Ghoreschi et al., 2010;

Lee et al., 2012). The transcription factor RORgt is central to the

Th17 cell programme (Ciofani et al., 2012). In addition, IL-6 and

IL-23-induced STAT3 signalling is required for Th17 development

(Yang et al., 2007), and STAT4 has been shown to support IL-17

production downstream of IL-12 (Mathur et al., 2007).

Th17 cells have mainly been recognised for their involvement in

autoimmunity and control of fungal infections (Schnell et al., 2023),

but their role in VL is less definitive due to contradictory results

obtained from past studies. For example, levels of IL-17 and IL-22

were significantly increased following treatment of L. donovani

infected mice, suggesting Th17 cytokines are associated with

protection against VL infection (Khatonier et al., 2021). In

addition, treatment-mediated protection against VL was able to

be partially reversed in mice with the use of monoclonal antibodies

against IL-17 and IL-23 (Ghosh et al., 2013). In human VL patients,

Th17 cytokines were observed to be strongly associated with

protection during a severe outbreak (Pitta et al., 2009). These

results point to a protective role for Th17 cells during VL.

Despite this, Il17a-/- mice were highly resistant to VL infection, as

indicated by significant reductions in parasite levels compared to

their wild-type (WT) counterparts, suggesting that IL-17 instead

promotes susceptibility (Terrazas et al., 2016). These contradicting
Frontiers in Cellular and Infection Microbiology 05
results could be due to the heterogeneity of Th17 cells caused by

variations in the local cytokine environment of the diseased tissue.
Regulatory T (Treg) cells

Anti-inflammatory cytokines such as IL-10 and TGFb dampen the

immune response by suppressing effector functions of T cells and APCs

(Prud’homme, 2007; Ouyang et al., 2011). During VL, the production

of anti-inflammatory cytokines determines the course of infection

(Kima and Soong, 2013). A significant source of these anti-

inflammatory cytokines is regulatory T (Treg) cells, which can be

divided into two major subsets: natural (nTreg) and induced (iTreg).

nTregs originate in the thymus, where thymocytes that show an

intermediate level of self-reactivity develop expression of the

transcription factor FOXP3 and subsequently emerge as a lineage

distinct from conventional CD4+ T cells (Curotto de Lafaille and

Lafaille, 2009). Under homeostatic conditions, nTregs are essential in

keeping T cell responses controlled, as deficiencies in their number and

function are associated with numerous autoimmune diseases (Long

and Buckner, 2011). In contrast to nTregs, iTregs arise in the periphery

from conventional CD4+ T cells in response to localised signals

(Schmitt and Williams, 2013). Certain iTregs, such as the type 1

regulatory T (Tr1) cells, are essential in mediating the balance between

parasite control and preventing inflammation-mediated tissue damage.

Past studies in human VL patients indicate an ineffective Th1

cell response occurs in patients unable to clear the parasite (Sacks

et al., 1987; White et al., 1992). This failure is not due to defects in

inflammatory cytokine production but rather due to the emergence

of immunoregulatory mechanisms (Engwerda et al., 2014). IL-10 is

often elevated in symptomatic VL patients and patients who

develop PKDL after successful treatment for VL (Gasim et al.,

1998). nTregs constitute a significant source of IL-10 during

homeostasis. However, their contributions during VL are

restricted to the preservation of splenic architecture and

restriction of leukocyte expansion (Bunn et al., 2018). Instead, IL-

10 from Tr1 cells is a significantly greater contributor to the

suppression of the Th1 cell response during VL (Stager et al.,

2006; Jankovic et al., 2007; Ansari et al., 2011; Schwarz et al.,

2013; Bunn et al., 2018).
Type 1 regulatory T cells

Tr1 cells are commonly defined as IL-10-producing Th1 cells

(Chihara et al., 2016). Studies suggest the emergence of Tr1 cells,

driven by IL-12 and IL-27 signalling (Awasthi et al., 2007; Apetoh

et al., 2010; Neumann et al., 2014) and the transcription factors

Blimp-1 (Neumann et al., 2014) and c-Maf (Apetoh et al., 2010), is

likely a negative feedback mechanism that prevents excessive Th1-

driven inflammation (Anderson et al., 2007; Sakaguchi et al., 2008).

In Th1 cells, IL-12 promotes Blimp-1 expression via STAT4

(Neumann et al., 2014), while IL-27 drives IL-10 production

through activation of STAT1 and STAT3 pathways (Stumhofer

et al., 2007).
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During VL, Tr1 cells promote pathogenesis by accumulating in

the spleen and liver, and becoming the dominant source of IL-10

production, thereby dampening the effector functions of T cells and

APCs, rendering the anti-parasitic immune response there

ineffective (Nylen et al., 2007). Elevated levels of BLIMP1 mRNA

have been identified in CD4+ T cells of VL patients (Montes de Oca

et al., 2016), and the induction of BLIMP1 in CD4+ T cells is

dependent on IL-27 and IL-12 signalling (Heinemann et al., 2014),

both of which are elevated in the serum of VL patients (Khoshdel

et al., 2009; Ansari et al., 2011). Further, Tr1 cells exert their

immunomodulatory functions by producing anti-inflammatory

cytokines IL-10 and TGFb and expressing co-inhibitory receptors

(CIRs) such as LAG3, PD-1 and CTLA4 (Song et al., 2021; Edwards

et al., 2023).

The immunoregulatory axis between inflammatory Th1 cells

and regulatory Tr1 cells plays a key role during VL (Figure 2), as the

balance of this axis is a key deciding factor between parasite control

and persistence. Understanding the molecular mechanisms

affecting this balance is a key step towards developing novel

immune-based therapies against VL and other chronic

inflammatory diseases where the Th1-Tr1 cell axis plays critical

roles, such as cancer (Chaudhary and Elkord, 2016) and

autoimmune diseases (Jeon et al., 2019).
Emergence of natural killer granule protein
7 as a molecule of interest

Natural killer granule protein 7 (Nkg7) was discovered in 1993

as a 17 kDa type I integral membrane protein in human natural

killer (NK) and T cells (Turman et al., 1993). The protein was found

to be localised to the cytotoxic granule membranes of NK cells.

During degranulation, the protein translocates from the granule

membrane to the cell membrane, indicating a possible role in

regulating the effector functions of several immune cell subsets

(Medley et al., 1996). In the years after its discovery, the functional
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role of Nkg7 remained an underexplored topic, and detailed studies

on Nkg7 have only begun to emerge in recent years. Although little

is known regarding its mechanistic function, current literature

suggests that Nkg7 significantly promotes cytotoxic and

inflammatory activity in multiple immune cell subsets.

Previously, Nkg7 has been identified as part of the gene signature

in Th1 and cytotoxic cells (Lund et al., 2005; Brouard et al., 2007;

Jenner et al., 2009; Fu et al., 2015; Ayers et al., 2017), and the

transcription factor T-bet had been found to bind to the promoter of

Nkg7 (Jenner et al., 2009). More recently, Nkg7 was found to be

upregulated in intratumor antigen-specific CD8+ T cells and NK cells,

with Nkg7-deficient mice exhibiting impaired control of tumour

growth (Li et al., 2022). Functionally, Nkg7 marks a subset of NK

cell-derived extracellular vesicles enriched in granzyme B and Fas

(Aarsund et al., 2022), and is also closely involved in numerous

processes essential for the cytolytic activity of CD8+ T cells, such as

cytolytic granule formation, trafficking, calcium release and synapse

formation (Lelliott et al., 2022; Wen et al., 2022). Furthermore, Nkg7

has also been identified in the gene signatures of cytotoxic CD4+ T

cells and their precursors (Patil et al., 2018), and Nkg7-expressing

CD4+ T cells are enriched in vaccine-induced protective immune

responses (Woodring et al., 2022).

Recent work identified Nkg7 as a gene of interest in VL.

Differentially expressed genes (DEGs) in CD4+ T cells were identified

in humans by comparing gene expression of peripheral CD4+ T cells in

the same VL patients before and after drug treatment (Ng et al., 2020).

Mouse splenic and liver CD4+ DEGs were obtained by comparing the

naïve and infected states (day 56 post-infection). DEGs shared by both

human and mouse splenic CD4+ T cells were defined as a core

“inflammatory” signature imparted on CD4+ T cells during VL, and

within this group, Nkg7 was the most DEG (Ng et al., 2020). An

important role for Nkg7 in the development of Th1 cells via IL-12-

mediated STAT4 signalling was shown using Nkg7-deficinet mice (Ng

et al., 2020) (Figure 3A).

Examination of Nkg7 expression using a GFP reporter mouse

revealed that while it is primarily expressed in NK and NKT cells in the
FIGURE 2

Infection with Leishmania parasites results in the generation of the anti-parasitic Th1 cell response. IL-12 produced by antigen presenting cells
(APCs) induce the differentiation of naïve CD4+ T cells into inflammatory T helper 1 cells (Th1), defined as T-bet+ IFNg+ CD4+ T cells. Inflammatory
cytokines IFNg and TNF produced by Th1 cells increases intracellular killing of phagocytosed parasites in macrophages by enhancing production of
intracellular nitrogen and oxygen species (RNS/ROS). Type 1 regulatory (Tr1) cells, defined as IFNg+ IL-10+, emerge from the Th1 cell population
through IL-27 signalling and dampens the anti-parasitic response via IL-10. Both Th1 and Tr1 cells express T-bet, and co-inhibitory receptors (CIRs)
are upregulated on Tr1 cells.
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naïve state, its expression by CD4+ T cells increased rapidly during

experimental VL, peaking at day 28 post-infection (p.i.) in both spleen

and liver (Ng et al., 2020), indicating a possible functional role of Nkg7

in these cells. In vitro polarisation experiments conducted on naïve

CD4+ T cells of the same reporter mice showed high levels of Nkg7

expression in cells cultured under Th1 and Tr1 cell conditions, with the

latter inducing the highest level ofNkg7 expression out of all polarising

conditions tested (Ng et al., 2020). Thus, NKG7 expression in this

context suggests it is associated with the activation status of CD4+ T

cells and not necessarily pro- or anti-inflammatory functions.

Furthermore, in vitro titration experiments showed that Nkg7

expression in CD4+ T cells increased in a dose-dependent manner

with the addition of IL-27, while the reverse occurred with the addition

of TGFb (Ng et al., 2020). TGFb is a known antagonist of Blimp-1

expression (Neumann et al., 2014), an aforementioned key regulator of

the development of Tr1 cells. These results suggest that Nkg7 may play

an important role in the development and function of Tr1

cells (Figure 3B).

It was recently demonstrated that CD4+ T cells from IL-27

receptor-deficient mice (IL27ra-/-) exhibit changes in metabolic

activity during EVL (Montes de Oca et al., 2020). In particular, it

was noted that IL27ra-/- CD4+ T cells have a greater frequency of

cells with high mitochondrial mass but low mitochondrial potential,

compared to wild-type (WT) CD4+ T cells. Given that Nkg7

expression can be induced by IL-27 signalling, it is possible that,

by extension, loss of Nkg7 expression may mediate metabolic

activity in CD4+ T cells. In support of this role, it was recently

noted that Nkg7 is required for optimal acidic store-operated

calcium entry (Wen et al., 2022), a process that proceeds

degranulation in several cytolytic immune cell subsets.
The regulatory role of transforming growth
factor b on CD4+ T cells

TGFb is a pleiotropic cytokine with numerous roles in the

immune system (Sanjabi et al., 2017). TGFb is initially translated as
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a ~50kDa precursor protein containing both TGFb and the latency-

associated peptide (LAP) (Robertson and Rifkin, 2016). Following

dimerisation, this complex is associated with the latent TGFb
binding protein (LTBP), forming the large latent complex (LLC)

(Miyazono et al., 1991). LAP is then excised in the trans-Golgi by

furin-type enzymes while maintaining a non-covalent association

with TGFb, the complex of which is called small latent complex

(SLC) (Hyytiainen et al., 2004). The LLC is then exported from the

cell, where it binds to the extracellular matrix (ECM) via LTBP (Koli

et al., 2005), becoming sequestered in the process. Alternatively,

TGFb could also be bound on the surface of Treg cells via GARP

(glycoprotein A repetitions predominant), and this is thought to

enhance TGFb activation by concentrating it on the cell surface

(Tran et al., 2009). Activation of latent TGFb can occur physically

(e.g. integrin-mediated) or chemically (e.g. protease-mediated)

(Robertson and Rifkin, 2016).

TGFb signalling is initiated by binding of the protein to the type

II TGFb receptor (TGFbRII), followed by the recruitment of type I

TGFb receptor (TGFbRI), which results in the formation of a

heterodimer (Figure 3). Co-receptors, such as betaglycan, can

modulate sensitivity to TGFb isoforms (Cheifetz et al., 1990).

Following the formation of a heterodimer complex, TGFbRII
phosphorylates TGFbRI, and TGFbRI subsequently phosphorylates

SMAD proteins (SMAD2/3) at two serine residues located near

the C-terminal (Shi and Massague, 2003). The subsequent

conformational change of the SMAD proteins allows them to bind

to the common mediator SMAD4 via their MH2 domains, resulting

in the formation of an SMAD complex (Kawabata et al., 1998). This

then exposes a nuclear localisation signal and conceals a nuclear

export signal, resulting in the nuclear accumulation of this complex

and changes in gene expression (Feng and Derynck, 2005).

Additionally, TGFb is also able to signal in an SMAD-independent

manner, such as the JNK, p38 and Erk signalling pathways

(Zhang, 2009).

The immunosuppressive effect of TGFb on the Th1 cell

response has been demonstrated in both murine and human VL.

Splenocytes and liver granuloma cells of the susceptible BALB/c
BA

FIGURE 3

The emerging roles of Nkg7 and TGFb in VL. (A) Following Leishmania donovani infection, CD4+ T cell Nkg7 expression increases and promotes IL-
12 signalling via STAT4 phosphorylation, thereby promoting Th1 cell development. (B) TGFb signalling to CD4+ T cells inhibits Nkg7 expression
resulting in reduced Th1 and Tr1 cell development.
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strain produced reduced amounts of IFNg in response to

Leishmania antigen stimulation when compared to the genetically

resistant C3H.HeJ strain (Wilson et al., 1998). This reduction was

reversed when a neutralising TGFb antibody was added to the

culture, and levels of TGFb were also found to be lower in the

genetically resistant strain (Wilson et al., 1998). Further, TGFb
producing FOXP3+ Tregs accumulate at sites of infection,

suggesting that TGFb may play an immunosuppressive role in VL

(Rodrigues et al., 2009). In humans, PBMCs of VL patients with

drug-resistant parasites also produced significantly greater amounts

of TGFb in response to L. donovani antigen stimulation (Elmekki

et al., 2016). Interestingly, L. donovani can exploit the suppressive

functions of TGFb to aid its survival (Barral-Netto et al., 1992;

Barral et al., 1993), and it does so by expressing a cathepsin B-like

cysteine protease to cleave the biologically active TGFb from its

latent complex (Somanna et al., 2002). Although numerous human

and animal studies have highlighted the importance of TGFb
during VL, there remains a lack of knowledge detailing its effects

on CD4+ T cell activity.

TGFb is highly involved in the function and polarisation of

CD4+ T cells. The primary effect of TGFb signalling is akin to that

of IL-10 in CD4+ T cells. T cell proliferation and macrophage

activation, both of which are crucial to mounting an effective

response against VL, are suppressed by the anti-inflammatory

actions of TGFb (Kehrl et al., 1986; Ding et al., 1990).

Interestingly, it has been shown that TGFb has a potent

inhibitory effect on Blimp1 expression in CD4+ T cells (Salehi

et al., 2012; Neumann et al., 2014). As Blimp-1 is indispensable

for the generation of Tr1 cells, this result suggests that TGFb may

also inhibit Tr1 cell formation. It is unclear the extent to which this

may counteract the anti-inflammatory actions of TGFb.
In addition, TGFb can induce the expression of FOXP3 in

conventional CD4+ T cells, which in turn suppresses the activation

and effector function of Th1 cells via the production of anti-

inflammatory cytokines (Chen et al., 2003). However, it has been

established that Foxp3-expressing Treg cells have limited

involvement in suppressing anti-VL immunity (Bunn et al.,

2018). Isoforms of TGFb, such as TGFb1 and TGFb3, also play

an important role in the generation of Th17 cells. Together with IL-

6, TGFb1 can polarise naïve CD4+ T cells into Th17 cells (Mangan

et al., 2006). Further exposure to IL-23 induces the endogenous

production of TGFb3, which in turn acts as a potent driver of the

pathogenic signature in Th17 cells (Lee et al., 2012). Given that Th1

cells dominate the adaptive immune response against VL, it is

probable that the effect of TGFb on Th17 differentiation is relatively

inconsequential in this disease model.

The transcription factor TCF1 is highly expressed in T cells,

playing an important regulatory role in both early and mature

stages of T cells, although its effects vary between different T cell

subsets (Zhao et al., 2022). In CD4+ T helper cells, TCF1 restrains

Th1 and Th17 cell differentiation (Steinke and Xue, 2014), whilst

promoting that of Th2 cells (Yu et al., 2009). In CD8+ T cells, TCF1

is indispensable for the generation and maintenance of a stem-like

population responsible for replenishing exhausted effector cells

during chronic infections (Utzschneider et al . , 2016).
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Interestingly, ablation of TGFb signalling results in reduced

protein expression of TCF1 on CD8+ T cells in the lung during

influenza (Wu et al., 2020), and in the spleen during LCMV

infections (Hu et al., 2022). Studies examining the role of TCF1

in EVL are currently lacking. However, given its nature as a chronic

infection, it is likely that the findings would reflect the results of

other chronic models. The versatile actions of TCF1 and its link to

TGFb make it probable that altering TGFb signalling will result in

extensive changes to the biology of effector and memory T cells.
Concluding remarks

TGFb is a pleiotropic cytokine that is involved in multiple

aspects of CD4+ T cell biology, such as the generation of regulatory

T cells and the differentiation and function of effector subsets. Due

to a lack of detailed functional studies on TGFb during VL, it is

unclear how these effects may interact and contribute to poor

disease outcomes. Furthermore, TGFb signalling is a potent

antagonist to Nkg7 expression on CD4+ T cells (Figure 3), but the

nature of this interaction is unclear, and the biological implications

of this interaction remain unknown. These gaps in our knowledge

should be filled, as both TGFb and Nkg7, and their associated cell

signalling pathways, represent potential host-directed targets that

could improve anti-parasitic immunity in response to either

vaccination to drug treatment to prevent or treat VL.
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