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Osteoporosis (OP) is characterized by decreased bonemineral density (BMD) and

increased fracture risk, poses a significant global health burden. Recent research

has shed light on the bidirectional relationship between gut microbiota (GM) and

bone health, presenting a novel avenue for understanding OP pathogenesis and

developing targeted therapeutic interventions. This review provides a

comprehensive overview of the GM-bone axis, exploring the impact of GM on

OP development and management. We elucidate established risk factors and

pathogenesis of OP, delve into the diversity and functional changes of GM in OP.

Furthermore, we examine experimental evidence and clinical observations

linking alterations in GM composition or function with variations in BMD and

fracture risk. Mechanistic insights into microbial mediators of bone health, such

as microbial metabolites and products, are discussed. Therapeutic implications,

including GM-targeted interventions and dietary strategies, are also explored.

Finally, we identify future research directions and challenges in translating these

findings into clinical practice.
KEYWORDS
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Introduction

Osteoporosis (OP), a common skeletal disorder characterized by low bone mineral

density (BMD) and microarchitectural deterioration of bone tissue, poses a significant

public health concern globally (Pouresmaeili et al., 2018). It is associated with an increased

risk of osteoporotic fractures (OPF, or fragility fractures, low-trauma fractures), resulting in

substantial morbidity, mortality, and healthcare costs. The pathogenesis of OP involves an

imbalance between bone resorption and formation processes, leading to compromised

bone strength and increased susceptibility to fractures, particularly in the spine, hip, and

wrist (Sozen et al., 2017). Factors contributing to OP include aging, hormonal changes

(especially estrogen deficiency in postmenopausal women), genetic predisposition,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2024.1416739/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1416739/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1416739/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1416739/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2024.1416739&domain=pdf&date_stamp=2024-09-25
mailto:lihui327@163.com
https://doi.org/10.3389/fcimb.2024.1416739
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2024.1416739
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Hao et al. 10.3389/fcimb.2024.1416739
nutritional deficiencies (e.g., calcium, vitamin D), sedentary

lifestyle, and certain medications (e.g., glucocorticoids/GCS)

(Bhattarai et al., 2020; Cheng et al., 2022a; Erdelyi et al., 2023;

Smit et al., 2024). Other risk factors such as excessive alcohol

consumption and tobacco use can also exacerbate the

development of OP (Yang et al., 2021; Khiyali et al., 2024).

The gut microbiota (GM) refers to the complex community of

microorganisms, including bacteria, viruses, fungi, and protozoa,

that reside in the gastrointestinal tract. These microorganisms play

crucial roles in multiple functions, including digestion, metabolism,

and immune regulation, and are integral to host physiology and

health (Thursby and Juge, 2017; Hou et al., 2022). The composition

of GM is influenced by various factors, including diet, host genetics,

age, medications, and environmental exposures. Dysbiosis is a term

used to describe an imbalance in the GM. This imbalance can result

from factors such as antibiotic use, poor diet, or illness and is

associated with a range of health issues, including gastrointestinal

disorders, metabolic conditions, and immune dysregulation.

Alterations in GM composition and function, has been implicated

in the pathogenesis of various diseases, including metabolic

disorders like obesity and type 2 diabetes (Moreno-Indias et al.,

2014), inflammatory conditions such as rheumatoid arthritis and

inflammatory bowel disease (Li and Wang, 2021; Shan et al., 2022),

gastrointestinal diseases like irritable bowel syndrome (Shaikh et al.,

2023), and even neurological disorders like Parkinson’s disease and

depression (Dinan and Cryan, 2017).

Recent research has highlighted the bidirectional interaction

between GM and bone health, emphasizing the importance of

deciphering the GM-bone axis in OP pathogenesis and

management (Lyu et al., 2023). The GM influences bone

metabolism through mechanisms such as nutrient absorption,

immune modulation, and production of microbial metabolites.

Understanding these interactions may reveal novel therapeutic

targets for OP prevention and treatment. Moreover, dietary

interventions and probiotics targeting GM composition hold

promise for optimizing bone health and reducing the risk of OP

or OPF. Exploring the GM-bone axis represents a paradigm shift in

OP research, with implications for personalized approaches to

disease management and improved clinical outcomes.
Pathogenesis and risk factors of op

Bone remodeling dynamics

Bone remodeling is a continuous physiological process

responsible for maintaining skeletal integrity and adapting to

mechanical stresses. This dynamic equilibrium between bone

resorption and formation is tightly regulated by various cellular

and molecular mechanisms, involving osteoclasts, osteoblasts,

osteocytes, and bone matrix proteins (Bolamperti et al., 2022;

Rowe et al., 2024). Osteoclasts, multinucleated cells originating

from hematopoietic progenitors in the bone marrow, are

specialized for bone resorption. They adhere to the bone surface

and create an acidic microenvironment that facilitates the

dissolution of the mineralized bone matrix through the secretion
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of hydrochloric acid and proteolytic enzymes such as cathepsin K,

which results in the release of calcium and phosphate ions into the

bloodstream (Bar-Shavit, 2007). Osteoblasts, on the other hand, are

derived from mesenchymal stem cells (MSCs) and are responsible

for the synthesis and deposition of new bone matrix, which

subsequently undergoes mineralization to form mature bone

tissue. This matrix is primarily composed of type I collagen and

other non-collagenous proteins that provide the framework for

mineral deposition (Florencio-Silva et al., 2015). Once osteoblasts

become entrapped in the bone matrix, they differentiate into

osteocytes, which play a crucial role in mechanotransduction and

the regulation of both osteoclast and osteoblast activity through

signaling pathways.

The equilibrium between bone resorption and formation is

tightly regulated by a complex interplay of systemic and local

factors. Systemic factors include hormones such as estrogen,

which inhibits bone resorption by inducing osteoclast apoptosis

and reducing the production of pro-resorptive cytokines;

parathyroid hormone (PTH), which in low intermittent doses

stimulates bone formation but in chronic elevation can increase

bone resorption; and calcitonin, which directly inhibits osteoclast

activity. Local factors involve cytokines like interleukin-6 (IL-6) and

tumor necrosis factor-a (TNF-a), which promote osteoclast

differentiation and activity, and growth factors such as insulin-

like growth factor-1 (IGF-1) and transforming growth factor-b
(TGF-b), which enhance osteoblast proliferation and function

(Feng and McDonald, 2011; Singh et al., 2012). Disruption of this

balance, characterized by increased bone resorption or decreased

bone formation, results in bone loss and increased fracture risk, as

observed in OP.

Mechanical loading also plays a pivotal role in bone remodeling

by stimulating osteocytes to produce signaling molecules that

regulate osteoblast and osteoclast activity (Robling and Turner,

2009; Du et al., 2020). Adequate mechanical loading is essential to

maintain bone density and structure; conversely, reduced

mechanical loading, as seen in sedentary lifestyles or prolonged

bed rest, leads to bone loss.

Understanding the cellular and molecular mechanisms

underlying bone remodeling provides insights into the pathogenesis

of OP and highlights potential therapeutic targets for preventing and

treating this condition. Efforts to modulate the activity of osteoclasts

and osteoblasts, either through pharmacological agents or lifestyle

interventions, are critical in maintaining bone health and reducing

fracture risk in individuals with OP.
Established risk factors for OP

As summarize in Figure 1, established risk factors for OP

include aging, hormonal changes (especially estrogen deficiency

in postmenopausal women), genetic predisposition, nutritional

deficiencies (such as calcium and vitamin D), sedentary lifestyle,

certain medications, excessive alcohol consumption, and tobacco

use. These factors collectively contribute to the deterioration of

BMD and increase the susceptibility to fractures and other

skeletal complications.
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Age
Aging is a major risk factor for OP, as bone mass typically peaks

in early adulthood and gradually declines with age. Older adults are

at increased risk of bone loss due to decreased osteoblast activity,

hormonal changes, and cumulative exposure to other risk factors

over time (Pignolo et al., 2021).

Gender
Women are at higher risk of OP compared to men, primarily

due to the decline in estrogen levels associated with menopause.

Estrogen plays a crucial role in maintaining BMD by suppressing

osteoclast activity and promoting osteoblast function.

Consequently, postmenopausal women experience accelerated

bone loss and are more susceptible to OPF (Almeida et al., 2017;

Charde et al., 2023).

Hormonal imbalances
Hormonal imbalances, including estrogen deficiency in women

and androgen deficiency in men, contribute to OP development.

Other endocrine disorders, such as hyperparathyroidism,

hyperthyroidism, and adrenal insufficiency, can disrupt bone

metabolism and increase fracture risk (Cheng et al., 2022a).

Genetics
Genetic factors play a significant role in determining BMD and

fracture risk. Family history of OP or OPF, as well as genetic
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polymorphisms associated with bone turnover, mineralization, and

skeletal structure, contribute to individual susceptibility to OP

(Ralston, 2002; Makitie et al., 2019).

Nutritional deficiencies
Inadequate intake of calcium, vitamin D, and other essential

nutrients essential for bone health increases the risk of OP. Calcium

is required for bone mineralization, while vitamin D facilitates

calcium absorption and bone metabolism regulation (Khazai

et al., 2008).

Lifestyle factors
Sedentary lifestyle, smoking, excessive alcohol consumption,

and low body mass index (BMI) are associated with increased OP

risk. Physical inactivity and tobacco use adversely affect bone

metabolism, while excessive alcohol intake interferes with calcium

absorption and hormone levels (Padilla Colon et al., 2018; Niemela

et al., 2022).

Medications
Certain medications, such as GCS, anticonvulsants, proton

pump inhibitors (PPIs), and aromatase inhibitors (AIs), are

associated with bone loss and increased fracture risk (Panday

et al., 2014; Wang et al., 2023b). These medications may affect

bone remodeling dynamics, calcium absorption, or hormone levels,

leading to OP development.
FIGURE 1

Established risk factors for osteoporosis.
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GM composition and function

Diversity of gut microbiota

The GM is a complex ecosystem consisting of bacteria, archaea,

fungi, viruses, and other microorganisms. Bacteria are the most

abundant and extensively studied components of the GM, with

thousands of different species identified to date. The composition of

the GM varies significantly among individuals, influenced by factors

such as age, diet, genetics, medications, and environmental

exposures (Matijasic et al., 2020; Salazar et al., 2023).

Recent advancements in high-throughput sequencing

technologies have enabled comprehensive characterization of GM

composition at the taxonomic and functional levels (Wei et al.,

2021a; Kwa et al., 2023). Key bacterial phyla inhabiting the human

gut include Firmicutes, Bacteroidetes, Actinobacteria,

Proteobacteria, Fusobacteria, and Verrucomicrobia (Rinninella

et al., 2019). Within these phyla, numerous genera and species

exhibit considerable diversity, contributing to the overall

complexity of GM.
Functions of GM in the
gastrointestinal tract

Nutrient metabolism
GM contribute to the digestion and fermentation of dietary

components, including complex carbohydrates, fiber, and resistant

starches, producing metabolites such as short-chain fatty acids

(SCFAs), amino acids, vitamins, and other bioactive compounds

(Portincasa et al., 2022). SCFAs, particularly acetate, propionate,

and butyrate, serve as energy sources for colonocytes, modulate

immune responses, and influence host metabolism (Nogal

et al., 2021).
Immune regulation
GM play a vital role in shaping host immune responses,

maintaining immune homeostasis, and protecting against

pathogens. Commensal bacteria interact with intestinal epithelial

cells and immune cells, such as dendritic cells (DCs), macrophages,

and T lymphocytes, influencing the development and function of

the mucosal immune system (Zheng et al., 2020; Mazziotta et al.,

2023). Dysbiosis, characterized by alterations in GM composition,

has been associated with immune dysregulation and increased

susceptibility to inflammatory and autoimmune diseases.
Barrier function
GM contribute to the maintenance of gut barrier integrity by

promoting epithelial cell proliferation, enhancing mucin

production, and modulating tight junction protein expression

(Gierynska et al., 2022). By reinforcing the gut barrier, GM help

prevent the translocation of harmful pathogens and microbial

antigens from the intestinal lumen into systemic circulation,

thereby reducing the risk of systemic inflammation and infection.
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Metabolic regulation
GM influence host metabolism through various mechanisms,

including energy harvest, regulation of lipid metabolism, bile acid

metabolism, and modulation of glucose homeostasis (Ghazalpour

et al., 2016; Martin et al., 2019). Alterations in GM composition and

function have been implicated in the pathogenesis of metabolic

disorders, such as obesity, insulin resistance, and type 2 diabetes

mellitus (T2DM) (Crudele et al., 2023).
Bidirectional interaction between GM
and bone health

GM has emerged as a key regulator of bone metabolism,

exerting both direct and indirect effects on bone health.

Understanding the bidirectional interaction between GM and

bone is essential for elucidating the mechanisms underlying OP

pathogenesis and developing novel therapeutic strategies (Wang

et al., 2022f; Lyu et al., 2023).
Influence of GM on bone metabolism

Evidences from preclinical and clinical studies indicate that

GM composition influences bone metabolism and contributes to

variations in BMD and bone strength. Experimental studies in

germ-free (GF) animal models, devoid of GM, have demonstrated

altered bone phenotypes characterized by decreased BMD,

impaired bone microarchitecture, and compromised bone

strength compared to conventionally raised animals .

Reconstitution of GF animals with specific microbes or

microbial metabolites has been shown to partially restore BMD

and integrity, highlighting the role of GM in regulating bone

metabolism. Furthermore, alterations in GM composition,

induced through dietary interventions, probiotics, antibiotics, or

fecal microbiota transplantation (FMT), have been associated with

changes in bone turnover markers (BTMs), calcium absorption,

and skeletal phenotypes in animal models. Clinical and animal

studies have also reported associations between GM dysbiosis and

OP prevalence, low BMD, and fracture risk in humans (refer to

Tables 1, 2 below). Collectively, these findings support the notion

that GM play a significant role in modulating bone metabolism

and influencing skeletal health.
Mechanisms of GM-bone axis

The mechanisms of the GM-bone axis involve multiple

pathways. Firstly, GM contribute to nutrient metabolism and

absorption, particularly calcium and vitamin D, essential for

bone mineralization and remodeling (Wang et al., 2022a).

Secondly, GM interact with the host immune system,

influencing local and systemic immune responses, with dysbiosis

potentially leading to chronic inflammation and bone loss

(D’Amelio and Sassi, 2018). Thirdly, GM produce various
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TABLE 1 Summary of animal studies investigating or linking the effects
of GM on bone metabolism.

Animal
models

Main findings Refs

Aging
mice

Dietary intervention with diallyl trisulfide
alleviates age-related bone loss by improving
bone microstructure, promoting collagen
synthesis, and upregulating osteogenic gene
expression, potentially mediated by alterations
in GM composition and serum metabolism.

(Zhang
et al., 2023a)

Aging
mice

Fructus Ligustri Lucidi mitigated OP and
improved cognitive function by modulating GM
diversity, antioxidant activity, and levels of
TMAO and Sirtuin 6.

(Li et al., 2019)

Aging
mice

Lactobacillus plantarum TWK10 (TWK10)
improved muscle strength, prevented aging-
related loss of muscle strength, attenuated
decline in learning and memory abilities,
preserved bone mass, altered GM composition,
increased SCFAs-producing bacteria, and
reversed aging-associated accumulation of
pathogenic bacterial taxa in mice.

(Lee
et al., 2021)

Aging
mice

Gut microbiota transplantation (GMT) from
old mice reduces lean mass percentage but does
not significantly affect bone mass in young
recipient mice.

(Lawenius
et al., 2023)

Aging
mice;
OVX mice

D-mannose attenuated bone loss induced by
senility and estrogen deficiency in mice,
mediated by increased Treg and GM-dependent
anti-inflammatory effects.

(Liu
et al., 2020a)

Aging rats

The study investigated the association between
GM and senile OP, revealing reduced alpha
diversity, altered F/B ratio, and enrichment of
Helicobacter related to OP.

(Ma
et al., 2020a)

Aging rats

Senile OP rats exhibited altered GM
composition, characterized by decreased
diversity, increased abundance of certain
species, along with enrichment of
metabolic pathways.

(Wang
et al., 2022c)

Aging rats
FMT from young rats alleviated bone loss in
aged rats with senile OP by improving GM
composition and intestinal barrier function.

(Ma
et al., 2021)

Alcohol-
induced
OP rats

Long-term alcohol consumption induced OP,
with more severe effects observed in older rats
compared to youngers. Alcohol consumption
also altered GM composition, exacerbating OP
through activation of T lymphocytes and
cytokine production, particularly in older rats
with lower GM diversity and
regulatory capacity.

(Cheng
et al., 2021)

DEX-
induced
OP rats

Epigallocatechin gallate prevented bone loss
induced by dexamethasone (DEX), preserved
BMD and microstructure, increased
GM diversity.

(Han
et al., 2023)

DEX-
induced
OP rats

Astragalus polysaccharides were found to
restore BMD, repair bone microarchitecture,
decrease ACP5 and pro-inflammatory cytokines,
and modulate GM composition.

(Liu
et al., 2020b)

DEX-
induced
OP rats

Fermentation of Astragalus polysaccharides
with Lactobacillus acidophilus improved
calcium absorption and OP more effectively

(Zhou et al.,
2023)

(Continued)
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TABLE 1 Continued

Animal
models

Main findings Refs

than the unfermented mixed solution, through
alterations in GM composition and increased
levels of active metabolites.

DIO rats
The study identified alterations in GM
abundance and fecal metabolites in disuse-
induced osteoporosis (DIO) rats.

(Qiao
et al., 2022)

EIO rats

Chronic ethanol led to OP (ethanol-induced
osteoporosis, EIO) and intestinal dysbiosis, with
increased serotonin positively correlating with
GM and metabolites changes.

(Liu
et al., 2022)

FMT rats

Transfer of GM from senile OP rats to young
rats induced OP, increased BTMs, decreased
bone volume, altered GM composition, and
impaired intestinal barrier integrity.

(Wang
et al., 2022b)

GF mice

GM modulates inflammatory responses induced
by sex steroid deficiency, leading to trabecular
bone loss, and probiotic treatments effectively
reduce gut permeability, intestinal and bone
marrow inflammation, and protect against
bone loss.

(Li et al., 2016)

GF mice
GM regulates bone mass by modulating the
immune status in bone marrow, affecting
osteoclast-mediated bone resorption.

(Sjogren
et al., 2012)

GF mice

Long-term antibiotic feeding alters GM
composition, reduces BMD and leads to
changes in trabecular microstructure,
accompanied by decrease in estrogen levels.

(Guo
et al., 2022a)

GF mice

Despite successful colonization with GM of
either mouse or human origin, microbial
colonization did not significantly alter bone
mass or related parameters in GF mice.

(Quach
et al., 2018)

GIOP
mice

The study demonstrates that glucocorticoid-
induced osteoporosis (GIOP) is mediated by
alterations in GM composition and intestinal
barrier function, with microbiota depletion or
probiotic treatment preventing trabecular bone
loss and restoring Wnt10b expression.

(Schepper
et al., 2020)

GIOP
mice

Tuna bone powder demonstrates efficacy in
alleviating GIOP mice by modulating signaling
pathways, suppressing pro-inflammatory
cytokines, repairing the intestinal barrier, and
enhancing the abundance of anti-inflammatory
gut bacteria and SCFAs.

(Li
et al., 2020b)

GIOP
mice

Korean Red Ginseng extract prevented
glucocorticoid-induced bone loss by modulating
GM composition, gut barrier function and
immune cell populations.

(Chargo
et al., 2024)

GIOP rats

Lactobacillus plantarum improved bone
microstructure, increased GM diversity, altered
GM composition, and modulated metabolites
related to bone metabolism.

(Li et al., 2023)

GIOP rats

Oral administration of Lactobacillus plantarum
LP45 prevented bone defects in GIOP rats,
improving bone histomorphometry, BMC,
BMD, and femoral biomechanics. Additionally,
LP45 restored the imbalance in BTMs and the
RANKL/OPG signaling pathway.

(Jiang
et al., 2023)

(Continued)
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1416739
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Hao et al. 10.3389/fcimb.2024.1416739
TABLE 1 Continued

Animal
models

Main findings Refs

HFD mice

The study revealed that high-fat diet (HFD)
induced bone loss in mice, accompanied by
expansion of bone marrow adipose tissue and
inhibition of bone formation. Analysis showed
significant alterations in GM composition and
serum metabolites associated with HFD-induced
bone loss.

(Lu
et al., 2021a)

HFD mice

Long-term HFD induced bone loss, associated
with GM dysbiosis, increased gut permeability,
and systemic inflammation; treatment with
fructooligosaccharides (FOS) and/or
galactooligosaccharides (GOS) alleviated bone
loss by restoring GM diversity, reducing gut
permeability, and decreasing inflammation.

(Zhang
et al., 2021)

Hindlimb
unloaded
mice

Asperosaponin VI improved bone
microarchitecture in by reversing bone loss
indicators and regulating specific GM,
particularly Clostridium, and its metabolites.

(Niu
et al., 2023)

Hindlimb
unloaded
rats

Cordymin treatment in increased bone
mechanical strength and bone volume while
regulating GM composition, improving BMD
and reducing trabecular separation.

(Qi
et al., 2024)

Mice

Eclipta prostrata could prevent OP by
modulating GM, inhibiting osteoclasts,
increasing osteoblasts, and regulating bone
absorption and formation.

(Zhao
et al., 2019)

Mice

Oral administration of Lactobacillus rhamnosus
GG attenuated tenofovir disoproxil fumarate-
induced bone loss by promoting trabecular
bone microarchitecture, cortical bone volume,
intestinal barrier integrity, Treg expansion, and
downregulating osteoclastogenesis-related
cytokines, through GM modulation and altered
metabolite composition.

(Liu
et al., 2019)

Mice

Antibiotic-induced dysbiosis in mice led to
lower BMD and increased serum levels of
RANKL and Ang II. Probiotic treatment
promoted fracture healing in these mice,
potentially by inhibiting the RAS/RANKL/
RANK pathway.

(Guo
et al., 2022b)

Mice

Exercise prevented HFD-induced bone
pathology, improving trabecular bone volume
and reducing marrow adiposity, altered the GM
composition by reducing the F/B ratio.

(McCabe
et al., 2019)

OVX mice

FMT mitigated ovariectomy-induced bone loss
by modulating GM composition, enhancing
intestinal barrier function, and reducing pro-
osteoclastogenic cytokine release.

(Zhang
et al., 2022b)

OVX mice

GM composition, particularly the Firmicutes/
Bacteroidetes (F/B) ratio, is closely linked to OP
development. Furthermore, probiotic
supplementation with Lactobacillus salivarius
LI01 from the Firmicutes phylum was effective
in preventing OP by modulating glutathione
synthesis and reducing reactive oxygen species.

(Yuan
et al., 2022)

OVX mice
OVX mice fed Bacteroides vulgatus exhibited
increased bone resorption and poorer
bone microstructure.

(Lin
et al., 2023)

(Continued)
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TABLE 1 Continued

Animal
models

Main findings Refs

OVX mice

Warmth exposure at 34°C protects against
ovariectomy-induced bone loss by increasing
trabecular bone volume, connectivity density,
and thickness, with warmth and warm
microbiota transplantation reversing
transcriptomics changes, enhancing periosteal
bone formation, and promoting bacterial
polyamine biosynthesis.

(Chevalier
et al., 2020)

OVX mice

The study reveals that gold nanospheres prevent
ovariectomy-induced OP by modulating GM
diversity and composition, reducing
trimethylamine-N-oxide (TMAO)-related
metabolites, and inhibiting pro-osteoclastogenic
and proinflammatory cytokine release.

(Chen
et al., 2023c)

OVX mice

Dietary isoquercetin improves OP by
modulating GM, improving gut barrier
function, suppressing inflammatory cytokines,
promoting osteoblast
proliferation/differentiation.

(Wu
et al., 2023)

OVX mice

Velvet antler extract administration in OVX
mice leads to improved bone-related
biochemical markers in serum, enhanced bone
microstructure, and modulation of GM.

(Pan
et al., 2023)

OVX mice

GM imbalance exacerbates bone loss, depletion
of GM improves bone mass and strength, with
targeting the G-protein-coupled bile acid
receptor (TGR5).

(Guan
et al., 2023)

OVX mice

Treatment with Prevotella histicola prevents
estrogen deficiency-induced bone loss by
modulating gut permeability and inhibiting
osteoclast activity.

(Wang
et al., 2021)

OVX mice

Oral administration of kefir-fermented peptides
prevents PMOP, accompanied by modulation of
GM structure, including restoration of certain
bacterial genera to normal levels.

(Tu
et al., 2020)

OVX mice

Compound deer bone extract (CDBE) improved
serum bone-related biochemical indicators,
trabecular microstructure, and intestinal flora in
OVX mice.

(Xue
et al., 2021)

OVX mice

(R)-ketamine administration ameliorated the
reduction in cortical and total BMD, through its
anti-inflammatory effects mediated by changes
in the GM composition.

(Wan
et al., 2022)

OVX mice

Bovine raw milk-derived extracellular vesicles
inhibited osteoclast differentiation, improved
microarchitecture, restored osteoporotic
biomarkers, enhanced intestinal permeability,
reduced endotoxin levels, modulated GM
composition, increased SCFAs, and decreased
pro-inflammatory cytokines and osteoclast
differentiation-related factors.

(Hao
et al., 2024)

OVX mice

Heat-killed Lacticaseibacillus paracasei GMNL-
653 exhibited anti-inflammatory effects, restored
GM dysbiosis, maintained intestinal barrier
integrity, reduced inflammatory markers,
modulated bone-related gene expression,
influenced host metabolic pathways, and
potentially involved specific genes in
antiosteoporotic activity.

(Jhong
et al., 2022)

(Continued)
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TABLE 1 Continued

Animal
models

Main findings Refs

OVX mice

Supplementation of acid-hydrolysed high
amylose corn starch (AH-HAS) in diets
increased Bifidobacterium spp. abundance,
upregulated IL-10 expression in the colon,
downregulated receptor activator of NF-kB
ligand and IL-7 receptor genes in bone marrow,
and attenuated ovariectomy-induced bone loss.

(Tousen
et al., 2019)

OVX mice

Lactobacillus plantarum NK3 and
Bifidobacterium longum NK49 administration
alleviated Gardnerella vaginalis-induced
vaginosis and ovariectomy-induced OP in
female mice by suppressing NF-kB-linked TNF-
a expression through the regulation of GM.

(Kim
et al., 2019)

OVX mice

Estrogen deficiency-induced disruption of GM
composition leads to intestinal barrier
dysfunction and gut leakage, contributing to
osteoclastogenesis. Icariside I (GH01) treatment
restores GM composition, intestinal barrier
function, and host immune status, effectively
ameliorating bone loss and OP by targeting the
gut-bone signaling axis.

(Chen
et al., 2023a)

OVX mice

Regular and quantitative perfusion of Prevotella
histicola (Ph) mitigated bone loss in OVX-
induced OP mice by suppressing
osteoclastogenesis, promoting osteogenesis,
reducing pro-inflammatory cytokine release,
and improving GM composition and diversity.

(Zhang
et al., 2023c)

OVX mice

Ovariectomy-induced OP was associated with
lower BMD and altered serum bone marker
levels, along with changes in GM composition
and increased intestinal inflammation. However,
remodeling the GM through antibiotic
treatment and FMT did not significantly impact
OP outcomes, suggesting a minor role of GM in
this condition.

(Kosaka
et al., 2021)

OVX mice

Orally administered lactulose prevented
ovariectomy-induced bone loss by inhibiting
osteoclastogenesis, increasing intestinal tight
junction proteins, modulating pro- and anti-
inflammatory cytokines, preserving Treg cells,
altering GM composition, and
increasing SCFAs.

(Chen
et al., 2020b)

OVX mice

Cinnamic acid demonstrated enhanced
osteoblast differentiation, improved BMD,
increased GM diversity, and restored GM
composition changes induced by ovariectomy.

(Hong
et al., 2022)

OVX mice

Treatment with Bacteroides vulgatus ATCC
8482 in ovariectomized mice ameliorated bone
loss and microstructure destruction in the
lumbar vertebra by reducing GM dysbiosis,
down-regulating colonic inflammation
pathways, decreasing serum TNF-a levels, and
inducing expression of BTMs ALP and Runx2.

(Yuan and
Shen, 2021)

OVX mice

Decreased abundance of Clostridium
sporogenes (C. spor.) and its metabolite, indole
propionic acid (IPA), was observed in OVX
mice. IPA suppressed osteoclast differentiation
by stabilizing pregnane X receptor (PXR) and

(Peng
et al., 2024)

(Continued)
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enhancing its binding with P65, ultimately
protecting against estrogen deficiency-induced
bone loss. Oral administration of C. spor.-
encapsulated silk fibroin hydrogel or IPA
mitigated OVX-induced bone loss.

OVX mice

Bifidobacterium treatment improved BMD,
bone volume, and trabecular number by
suppressing inflammation, osteoclast generation,
and enhancing mucosal barrier protection.

(Zhang
et al., 2024)

OVX mice

Nodakenin treatment improved bone
microstructure, BTMs, and intestinal mucosal
integrity in OVX mice by modulating the GM
composition and metabolites.

(Liu
et al., 2024)

OVX mice

Lactobacillus brevis AR281 significantly
improved bone microarchitecture and
biomechanical strength in OVX mice by
attenuating bone resorption, decreasing the
RANKL/OPG ratio and pro-inflammatory
mediators, modulating GM, and suppressing
osteoclastogenesis through the TRAF6/NF-kB/
NFATc1 pathway.

(Yu
et al., 2022)

OVX mice

Agastache rugosa demonstrated therapeutic
effects on OP by promoting osteoblast
differentiation, suppressing bone loss,
elevating osteogenic markers, reversing
GM changes.

(Hong
et al., 2021)

OVX mice

Rothia alleviated bone loss by repairing
intestinal mucosal barrier injury, optimizing
intestinal permeability, reducing intestinal
inflammation, and regulating GM imbalance

(Li et al., 2024)

OVX mice

GM depletion in mice protected against bone
loss and cartilage degradation in OP by
modulating the composition of the GM,
resulting in increased BMD, bone volume
fraction, trabecular number, and decreased
levels of inflammatory markers.

(Yin
et al., 2024)

OVX mice

Lactobacillus reuteri protected OVX mice from
bone loss by suppressing osteoclast bone
resorption markers and activators, reducing
osteoclastogenesis, and modifying GM.

(Britton
et al., 2014)

OVX mice

BX, derived from Psoralea corylifolia L.,
alleviated OP by improving bone parameters
and bone formation markers. BX also
modulated GM and restored
metabolic disorders.

(Wei
et al., 2024)

OVX rats

Lactobacillus rhamnosus GG (LGG) treatment
alleviated estrogen deficiency-induced OP by
promoting osteogenesis, modulating Th17/Treg
balance, improving intestinal barrier function,
and regulating the GM composition.

(Guo
et al., 2023)

OVX rats

Exogenous overexpression of neuropeptide Y
exacerbated bone loss and colonic
inflammation, impaired intestinal barrier
integrity and altered GM composition.

(Chen
et al., 2023d)

OVX rats
Qing’e Pills administration in OVX rats
increased BMD, altered GM composition,

(Xie
et al., 2022)

(Continued)
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TABLE 1 Continued

Animal
models

Main findings Refs

inhibited inflammatory factors TNF-a and IL-6,
and increased levels of SCFAs.

OVX rats

Moringa oleifera leaf (MLP) significantly
increased BMD, improved bone metabolism-
related indicators and bone microstructure,
modulated GM composition, and activated ERK
and VAV3 protein expression while decreasing
p-ERK and JNK protein expression.

(Hu
et al., 2023)

OVX rats

Icariin (ICA) administration in OVX rats
improved bone microarchitecture and correlated
with changes in GM composition and
fecal metabolites.

(Wang
et al., 2022e)

OVX rats

Puerarin treatment in OVX rats improved bone
density and integrity by modulating GM
composition, increasing SCFAs, and repairing
intestinal mucosal integrity.

(Li
et al., 2020a)

OVX rats

Quinoa improved OP-related biochemical
parameters, bone density, and trabecular
structure, by repairing intestinal barrier
function, regulating GM composition, and
influencing various metabolic pathways.

(Dou
et al., 2024)

OVX rats

Chondroitin sulfate calcium complex (CSCa)
improved BMD, femur microstructure, and
serum BTMs. Besides, it altered GM
composition and fecal metabolites.

(Shen
et al., 2021)

OVX rats
Ovariectomy led to significant changes in GM
composition and function, with increased
diversity and taxonomic differences observed.

(Ma
et al., 2020b)

OVX rats

Calcium supplementation combined with inulin
positively influences GM composition and
function, leading to improved BMD, bone
mineral content (BMC), femur mechanical
strength, and decreased serum bone markers.

(He
et al., 2022)

OVX rats

Konjac oligosaccharides (KOS) effectively
mitigated bone loss by promoting gut barrier
repair, reducing pro-inflammatory cytokines,
promoting the growth of beneficial gut bacteria
like Bifidobacterium longum, and restoring
Treg/Th17 balance in bone marrow.

(Ai
et al., 2024)

OVX rats

Arecanut seed polyphenol (ACP) improved
trabecular microstructure, associated with
increased expression of lysozyme and
maintenance of Paneth cells, leading to
modulation of GM composition and
improvement of OP by controlling
inflammatory reactions.

(Mei
et al., 2021)

OVX rats

Jiangu granule restored GM composition,
increased SCFAs, promoted Treg cell
proliferation, and modulated cytokine levels,
ultimately preventing bone loss and enhancing
bone strength through the “GM-SCFAs-Treg/
Th17″ axis.

(Sun
et al., 2022)

OVX rats
Diosgenin improved bone microstructure and
prevented weight gain, also modulating the
composition and function of GM.

(Song
et al., 2023)

OVX rats
GM alterations at the species level, including
increased abundance of Helicobacter rodentium,

(Wang
et al., 2022d)

(Continued)
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Lachnospiraceae bacterium 10 1, and
Lachnospiraceae bacterium A4, were observed
in OVX rats, along with changes in functional
metabolism pathways.

OVX rats

Parathyroid hormone improved bone
parameters and altered GM composition and
function, increasing abundance of probiotic
bacteria and reducing pathogenic bacteria.

(Zhou
et al., 2022)

OVX rats

Probiotic attenuated inflammatory alveolar bone
loss by modulating GM, improving gut barrier
function, suppressing oestrogen deprivation-
induced inflammatory.

(Jia
et al., 2021)

OVX rats

Berberine reduced alveolar bone loss and
improved bone metabolism by increasing
butyrate-producing GM, enhancing intestinal
barrier integrity, reducing intestinal
permeability, and attenuating IL-17A-related
immune responses.

(Jia
et al., 2019)

OVX rats

Soy-whey dual-protein improved BMD,
microstructure, and biomechanics, reduced
serum OCN and PTH levels, decreased bone
marrow adipocytes while increasing osteoblasts,
and regulated key regulatory factors like
osteoprotegerin. DP altered fecal metabolites
and GM, influencing fat metabolism-related
molecules and bacterial taxa.

(Zhang
et al., 2022a)

OVX rats
Supplementation of white LED exposure with
infrared light positively affected bone
metabolism by altering GM.

(Lu
et al., 2021b)

OVX rats

Erythrina cortex extract demonstrated bone
protective effects by improving BMD and
microarchitecture, modulating GM composition
and increasing serum levels of SCFAs.

(Xiao
et al., 2021)

OVX rats

Bifidobacterium longum supplementation
increased BMD, BMC, and bone formation
parameters while decreasing bone resorption,
ultimately alleviating bone loss.

(Parvaneh
et al., 2015)

PMOP
mice

Changes in the GM and metabolites in
feces and serum were identified as crucial
factors in the occurrence and development
of PMOP.

(Wen
et al., 2020)

SAMP6
mice

Dietary supplementation with
fructooligosaccharide and glucomannan
modified GM, increased calcium content in
femoral bones, and reduced bone resorption
and systemic inflammation in senescence-
accelerated mouse prone 6 (SAMP6) mice.

(Tanabe
et al., 2019)

SAMP6
mice

Eucommia ulmoides leaf extract increased GM
diversity and F/B ratio, elevated SCFAs, and
ameliorated OP.

(Zhao
et al., 2020)

SCD mice

Antibiotic treatment in sickle cell disease (SCD)
mice rescued bone loss by improving intestinal
barrier function, reducing inflammation, and
enhancing osteoblast function, suggesting a link
between GM dysbiosis and bone loss in SCD.

(Tavakoli and
Xiao, 2019)

TLR5KO
mice

Chronic antibiotic treatment disrupted the GM,
leading to impaired bone tissue material

(Guss
et al., 2017)

(Continued)
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metabolites such as SCFAs and bile acids, which act as signaling

molecules affecting host metabolism and immune function,

thereby influencing bone remodeling processes (Yoon et al.,

2023). Additionally, GM influence hormonal regulation

pathways involved in bone metabolism, including estrogen,

vitamin D, and PTH signaling, with dysbiosis potentially

disrupting hormone levels and receptor activation, leading to

imbalances in bone homeostasis and increase fracture risk

(Iwobi and Sparks, 2023). Lastly, GM produce microbial-derived

factors like lipopolysaccharides (LPS) and extracellular vesicles,

which interact with host cells and modulate inflammatory and

signaling pathways relevant to bone remodeling (Chen

et al., 2023b).
Experimental evidence and
clinical observations

Findings from animal studies

Animal studies have provided valuable insights into the

relationship between GM and bone health. GF animals, devoid of

gut microbiota, exhibit altered bone phenotypes characterized by

reduced BMD and compromised bone microarchitecture compared

to conventionally raised animals. Experimental manipulation of

GM composition through dietary interventions, probiotics,

antibiotics, or FMT has further elucidated the impact of GM on

bone metabolism. Reconstitution of GF animals with specific

microbial strains or microbial metabolites has been shown to

attenuate bone loss and improve skeletal phenotypes, highlighting

the therapeutic potential of modulating GM for bone health.

Mechanistic studies in animal models have revealed potential

pathways through which GM influence bone metabolism,

including nutrient absorption, immune modulation, and

production of microbial metabolites. SCFAs, bile acids, and

secondary bile acids derived from gut microbial fermentation

have been implicated as key mediators of the GM-bone axis,
TABLE 1 Continued

Animal
models

Main findings Refs

properties and reduced bone strength,
independent of changes in bone geometry.

TLR9-/-
mice

TLR9 deletion leads to low bone mass and
chronic inflammation characterized by CD4+ T
cell expansion and elevated inflammatory
cytokines, promoting osteoclastogenesis and
bone loss. Dysbiosis in the GM contributes to
systemic inflammation and bone loss in
TLR9-/- mice, while increased myelopoiesis in
the bone marrow exacerbates inflammation-
induced osteoclastogenesis and bone loss.

(Ding
et al., 2022)

UC mice

Bifidobacterium lactis BL-99 alleviates dextran
sodium sulfate-induced ulcerative colitis (UC),
reduces inflammation, preserves intestinal
barrier, and prevents bone loss.

(Lan
et al., 2022)
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TABLE 2 Summary of clinical studies examining GM alterations or
interventions among patients with low BMD.

Participants
or Patients

Summaries Refs

Elderly Chinese
Han individuals

Common variants in the R-spondin/Wnt
signaling genes, particularly rs10920362 in
LGR6 and rs11178860 in LGR5, are associated
with OP risk. Alterations in GM composition,
particularly Actinobacteria, Bifidobacteriaceae,
and Bifidobacterium, are linked to these
genetic variants and OP risk.

(Di
et al.,
2021)

Elderly
individuals

Elderly patients with fragility hip fractures had
specific alterations in their gut microbiota
composition compared to controls.

(Rosello-
Anon
et al.,
2023)

OP and
ON patients

Microbial taxa, including Firmicutes,
Bacteroidetes, Gemmatimonadetes, Chloroflexi,
Blautia, Parabacteroides, and Ruminococcaceae,
differ between OP and controls.

(Wang
et al.,
2017)

OP patients

The study found that differences in GM
composition, particularly lower abundance of
Bifidobacterium, are associated with reduced
absorption of cholecalciferol and lower
circulating concentrations of 25(OH)D3 in
patients with severe OP compared to
primary OP.

(Cheng
et al.,
2022b)

OP patients

Bacillus acidophilus plays a role in OP by
modulating GM diversity and influencing the
proliferation, differentiation, and maturity of
osteoblasts and osteoclasts.

(Chen
et al.,
2020a)

OP patients

Yigu decoction positively influence the GM
structure and function in OP patients, led to
improvements in BMD and induced changes in
GM composition and metabolites.

(Zhang
et al.,
2023b)

OP patients

The study establishes a causal link GM and OP
using two-sample Mendelian randomization
analysis, identifying specific GM taxa
associated with the risk of OP.

(Zeng
et al.,
2024)

OP patients

The study found that OP individuals exhibited
alterations in GM composition compared to
controls, with specific taxa associated with
reduced BMD.

(Wei
et al.,
2021b)

OP patients

Elevated levels of GM metabolite TMAO are
correlated with decreased BMD in OP patients.
TMAO regulates BMSCs function by activating
the NF-kB signaling pathway, leading to
enhanced adipogenesis, reduced osteogenesis,
increased reactive oxygen species (ROS)
release, and elevated pro-inflammatory
cytokine production.

(Lin
et al.,
2020)

OP patients
OP is associated with alterations in GM
composition, particularly enrichment of
Dialister and Faecalibacterium genera.

(Xu
et al.,
2020)

OP patients
The study identifies the genus Lachnospira as a
potential biomarker for OP.

(Ul-Haq
et al.,
2022)

PMOP patients

GM composition differs in PMOP patients
compared to controls, with microbial
abundances correlating more strongly with
total hip than lumbar spine BMD/T-score.
Using feature selection, Fusobacteria and

(Huang
et al.,
2023)
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affecting osteoclast and osteoblast activity, bone remodeling

dynamics, and skeletal homeostasis. Table 1 provides a summary

of recent animal studies investigating or linking the effects of GM on

bone metabolism.
Clinical observations in human studies

Clinical studies in human populations have provided further

evidence supporting the association between GM dysbiosis and OP

prevalence, BMD changes, and fracture risk. Analysis of GM

composition in osteoporotic individuals has revealed alterations

in GM diversity and abundance compared to healthy controls.
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Epidemiological studies have identified associations between dietary

patterns, GM composition, and bone health outcomes. High-fiber

diets rich in fruits, vegetables, and whole grains, which promote a

diverse GM profile, have been associated with higher BMD and

reduced fracture risk. Conversely, diets high in saturated fats,

refined sugars, and processed foods, which disrupt GM

composition, may contribute to bone loss and OP development.

Table 2 summarizes clinical studies examining GM alterations or

interventions among patients with low BMD.

Overall, both experimental evidence from animal studies and

clinical observations in human populations support the notion of a

bidirectional interaction between GM and bone health. Further

research is needed to elucidate the underlying mechanisms and

determine the clinical utility of GM-targeted interventions for OP

prevention and management.
Therapeutic implications and
management strategies

GM-targeted interventions

GM-targeted interventions aim to modulate GM composition

and activity to promote bone health and mitigate OP risk. Several

approaches have been proposed and investigated in preclinical and

clinical studies.

Probiotics
Probiotics are live microorganisms that confer health benefits

when administered in adequate amounts (Nagpal et al., 2012).

Certain probiotic strains, such as Lactobacillus and Bifidobacterium

species, have been shown to positively influence bone metabolism and

improve skeletal phenotypes in animal models (Schepper et al., 2017).

Clinical trials investigating the efficacy of probiotic supplementation in

improving BMD and reducing fracture risk in humans are ongoing.

Prebiotics
Prebiotics are non-digestible dietary fibers that selectively

promote the growth and activity of beneficial gut bacteria

(Davani-Davari et al., 2019). By fermenting prebiotic fibers, GM

produce SCFAs and other metabolites with potential bone-

protective effects. Dietary supplementation with prebiotics, such

as inulin, oligofructose, and resistant starch, may enhance GM

diversity and function, thereby improving bone health.

Synbiotics
Synbiotics are combinations of probiotics and prebiotics

designed to synergistically promote GM balance and function

(Roy and Dhaneshwar, 2023). By providing both beneficial

microbes and substrates for their growth, synbiotics aim to

optimize GM composition and activity. Clinical trials

investigating the effects of synbiotic supplementation on bone

health outcomes are underway.
TABLE 2 Continued

Participants
or Patients

Summaries Refs

Lactobacillaceae were identified as significant
microbial markers for disease classification
between PMOP and control groups.

PMOP patients

The study demonstrates that reduced GM
diversity and elevated levels of fecal
glycolithocholic acid (GLCA) correlate with
PMOP severity. GLCA supplementation
alleviates OP by increasing circulating Tregs,
which in turn promote osteogenic
differentiation of BMSCs.

(Cai
et al.,
2024)

Postmenopausal
women

The study identified Bacteroides vulgatus as a
species negatively associated with BMD in
peri-/post-menopausal Chinese women, with
validation in US white populations.

(Lin
et al.,
2023)

Postmenopausal
women

PMOP exhibited significant alterations in GM
composition, fecal metabolites, and associated
signaling pathways compared to non-OP
postmenopausal women.

(Wang
et al.,
2023a)

Postmenopausal
women

Postmenopausal women with OP exhibit
distinct variations in GM and vaginal
microbiota (VM) compared to those with
osteopenia (ON) or normal BMD.

(Yang
et al.,
2022)

postmenopausal
women and men
aged over 50

The study elucidates the GM composition and
gene functional profile in older individuals
with normal and low BMD, particularly
highlighting differences in composition and
gene abundance between genders. Additionally,
the study underscores the importance of
addressing vitamin D deficiency or
insufficiency in the Chinese population.

(Wang
et al.,
2022f)

Postmenopausal
women

The study demonstrates a significant
association between elevated GM metabolite
TMAO and increased risk of hip fracture in
postmenopausal women.

(Liu
et al.,
2020c)

Two large cohorts

The study investigates the association between
GM and skeletal health using human cohorts,
revealing significant associations between GM
abundances and bone measures.

(Okoro
et al.,
2023)

T2DM patients
The study reveals association between elevated
TMAO and reduced BMD, as well as increased
risk of OP and OPF in patients with T2DM.

(Yuan
et al.,
2024)
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Fecal microbiota transplantation
FMT is a medical procedure in which fecal matter from a healthy

donor is transplanted into the gastrointestinal tract of a recipient.

This procedure aims to restore a balanced GM in individuals suffering

from conditions linked to dysbiosis, such as Clostridioides difficile

infection and certain inflammatory bowel diseases (IBDs). While

primarily used to treat gastrointestinal disorders, FMT may also

impact systemic health outcomes, including bone metabolism (Biazzo

and Deidda, 2022; Zhang et al., 2022c; Zheng et al., 2022).

Overall, targeting GM composition and activity through these

interventions holds promise for optimizing bone metabolism,

preserving BMD, and reducing fracture risk in individuals at risk

of OP. However, further research is needed to elucidate the optimal

dosing, duration, and efficacy of GM-targeted interventions for OP

prevention and management.
Dietary approaches and nutritional
interventions for OP management

Calcium and vitamin D supplementation
Adequate intake of calcium and vitamin D is essential for bone

mineralization and remodeling. Calcium-rich foods, such as dairy

products, leafy greens, and fortified foods, should be consumed as

part of a balanced diet. Vitamin D sources include fatty fish, fortified

foods, and sunlight exposure. Supplementation may be necessary for

individuals with inadequate dietary intake or limited sun exposure.

Protein intake
Protein is essential for bone formation and maintenance, as it

provides amino acids necessary for collagen synthesis and bonematrix

deposition (Devignes et al., 2022; Selvaraj et al., 2024). Consuming

adequate protein from sources such as lean meats, poultry, fish, eggs,

legumes, and dairy products supports bone health. However, excessive

protein intake, particularly from animal sources, may have adverse

effects on bone health and should be moderated.

Nutrient-rich diet
Consuming a nutrient-rich diet rich in fruits, vegetables, whole

grains, and lean proteins provides essential vitamins, minerals, and

antioxidants necessary for bone health. Phytochemicals found in

plant-based foods may have beneficial effects on bone metabolism

and reduce inflammation associated with OP.

Limiting sodium and caffeine
High sodium intake and excessive caffeine consumption have

been associated with calcium excretion and bone loss (Heaney,

2002; Park et al., 2014; Reuter et al., 2021). Limiting sodium intake

and moderating caffeine consumption from sources such as coffee,

tea, and soda may help preserve BMD and reduce OP risk.

Alcohol moderation
Excessive alcohol consumption has been linked to decreased

BMD and increased fracture risk. Moderating alcohol intake and

avoiding binge drinking are recommended to support bone health.
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Weight-bearing exercise
Engaging in weight-bearing and resistance exercises, such as

walking, jogging, strength training, and yoga, helps stimulate bone

formation and improve BMD. Regular physical activity is essential

for maintaining bone strength and reducing OP risk.

By adopting a balanced diet rich in essential nutrients, limiting

harmful dietary factors, and engaging in weight-bearing exercise,

individuals can support bone health and mitigate the risk of OP.

Dietary approaches and nutritional interventions complement GM-

targeted interventions in promoting overall skeletal health and

reducing fracture risk in susceptible populations.
Future directions and challenges

As research on the GM-bone axis continues to evolve, several

areas for future investigation and challenges in translating research

findings into clinical practice warrant attention. Here, we discuss

potential avenues for future research and the obstacles faced in

applying research findings to clinical management.
Areas for future research

In future research, elucidating mechanistic insights into the

interaction between the GM and bone health is crucial.

Investigating specific microbial species, metabolites, and signaling

pathways can enhance understanding of the GM-bone axis, paving

the way for novel therapeutic targets for OP. Additionally,

longitudinal studies tracking changes in GM over time and their

associations with bone outcomes are essential for establishing causal

relationships and understanding temporal dynamics. Well-designed

clinical trials are needed to evaluate the efficacy, safety, and long-

term effects of GM-targeted interventions, such as probiotics and

prebiotics, in improving bone health outcomes. Personalized

medicine approaches, incorporating individual variability in GM

composition and lifestyle factors, hold promise for tailoring OP

prevention and treatment strategies to specific patient populations.

Exploring the gut-brain-bone axis represents a promising area of

research for uncovering novel pathways regulating bone

metabolism and remodeling.
Challenges in translating research findings
into clinical practice

Translating research findings into clinical practice faces several

challenges. Standardization of GM analysis methods and data

reporting guidelines is necessary to ensure reproducibility and

reliability of research in clinical settings. The heterogeneity of OP

phenotypes, influenced by genetics, lifestyle factors, and

comorbidities, complicates the identification of consistent

biomarkers and therapeutic targets. Regulatory approval of GM-

targeted therapies requires robust clinical evidence and careful

consideration of safety concerns. One of the significant challenges
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in implementing probiotic and prebiotic therapies is ensuring

patient adherence. Factors such as taste preferences, dietary

habits, and the need for consistent long-term use can affect

compliance. Improving adherence requires patient education on

the benefits of these interventions, developing more palatable and

convenient formulations, and integrating these therapies into daily

routines in a manner that is easy to follow. Additionally, while

short-term studies have demonstrated the benefits of probiotics,

prebiotics, and FMT, long-term safety remains a concern. Potential

risks include alterations in GM composition that could lead to

negative health outcomes, interactions with existing medications,

and the possibility of infections, especially with FMT. Therefore,

more extensive long-term studies are needed to fully understand the

safety profiles of these interventions. Furthermore, the regulatory

environment for GM-based therapies is still developing. Probiotics

and prebiotics are often classified as dietary supplements, which are

subject to less stringent regulatory scrutiny compared to

pharmaceuticals. FMT, due to its complexity and potential risks,

involves more rigorous regulations. Navigating these regulatory

requirements and obtaining necessary approvals can be significant

hurdles. Collaboration between researchers, healthcare providers,

and regulatory bodies is essential to establish clear guidelines and

protocols for the safe and effective use of these therapies.

Addressing these challenges and advancing research in the field of

GM and OP will pave the way for personalized, evidence-based

approaches to bone health management and fracture prevention in

diverse patient populations. Collaborative efforts among

researchers, clinicians, industry partners, and regulatory agencies

are essential for realizing the potential of GM-targeted interventions

in improving skeletal health and reducing the burden of OP on a

global scale.
Conclusion

The burgeoning field of research on the GM-bone axis has shed

light on the intricate interplay between gut microbial communities

and skeletal health. Through a comprehensive review of

experimental evidence and clinical observations, this review has

elucidated the multifaceted impact of GM on OP pathogenesis and

management. In conclusion, unraveling the impact of GM on OP

pathogenesis offers promising opportunities for personalized,

evidence-based strategies to optimize bone health and reduce

fracture risk. Collaborative endeavors across disciplines are
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essential for advancing our understanding of the GM-bone axis

and translating scientific discoveries into tangible clinical benefits

for individuals at risk of OP.

Moving forward, future research efforts should focus on

elucidating mechanistic insights into the GM-bone axis,

conducting longitudinal studies to establish causal relationships,

and evaluating the efficacy of GM-targeted interventions in clinical

trials. Challenges such as standardizing GM analysis, addressing

heterogeneity in OP phenotypes, and translating research findings

into clinical practice must be overcome to realize the potential of

GM-based approaches in OP management.
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