
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Alan G. Goodman,
Washington State University, United States

REVIEWED BY

Paweł Krzyżek,
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Background: Helicobacter pylori infection poses a significant health burden

worldwide, and its virulence factor CagA plays a pivotal role in its pathogenesis.

Methods: In this study, the interaction between H. pylori-infected AGS cells and

silver nanoparticles (AgNPs) was investigated, with a focus on the modulation of

CagA-mediated responses, investigated by western blotting. Both, the dose-

dependent efficacy against H. pylori (growth curves, CFU assay) and the impact of

the nanoparticles on AGS cells (MTT assay) were elucidated.

Results: AGS cells infected with H. pylori displayed dramatic morphological

changes, characterized by elongation and a migratory phenotype, attributed to

CagA activity. Preincubation of H. pylori with AgNPs affected these

morphological changes in a concentration-dependent manner, suggesting a

correlation between AgNPs concentration and CagA function.

Conclusion:Our study highlights the nuanced interplay between host-pathogen

interactions and the therapeutic potential of AgNPs in combating H. pylori

infection and offers valuable insights into the multifaceted dynamics of CagA

mediated responses.
KEYWORDS

s i lver nanopart ic les , H. pylor i , AGS, infect ion, IL-8, CagA, minimum
inhibitory concentration
1 Introduction

In the field of antimicrobial research, silver nanoparticles (AgNPs) have attracted

considerable attention due to their strong antimicrobial properties against a broad

spectrum of bacterial pathogens, including multi-resistant variants. For instance, AgNPs

have shown promising results against ESKAPE pathogens, which are known for their
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multi-drug resistance and the ability to cause nosocomial infections.

These pathogens include Enterococcus faecium, Staphylococcus

aureus, Klebsiella pneumoniae, Acinetobacter baumannii,

Pseudomonas aeruginosa, and Enterobacter species and growth

inhibition has been observed with the application of extremely

low concentrations of silver nanoparticles against all these tested

bacteria (Wahab et al., 2021; Mateo and Jiménez, 2022; Khan et al.,

2023). AgNPs exhibit robust intrinsic antimicrobial properties,

while enhancing the efficacy of antibiotics that have lost their

effectiveness against resistant pathogens. This mutual interaction

not only restores the therapeutic efficacy of established antibiotics

but also broadens the spectrum of available treatment modalities

(Lopez-Carrizales et al., 2018; Hochvaldová et al., 2022). In contrast

to conventional antibiotics, AgNPs act at multiple levels (Slavin

et al., 2017; Wang et al., 2017) and could represent a true alternative

to them. In vitro studies have demonstrated AgNP-mediated

inhibition of bacterial growth through various mechanisms

including membrane disruption, damage of intracellular

components and interference with essential cellular processes

(Saravanakumar et al., 2019; Grande et al., 2020; Jang et al.,

2022). Therefore, AgNPs provide a promising avenue for the

development of innovative therapeutic approaches. However,

research on the effect of nanoparticles on the pathogenicity-

associated processes of infectious bacteria has been limited and is

leaving a critical gap in understanding the potential of this

alternative treatment approach.

Helicobacter pylori (H. pylori) infection is prevalent and of

paramount clinical significance, affecting more than 50% of the

world’s population. Persistent infection with H. pylori is intricately

linked to chronic gastritis, peptic ulcers, and has been associated with

an increased risk of developing gastric cancer, one of the leading

causes of cancer-related death (Pormohammad et al., 2019). Current

H. pylori eradication regimens predominantly rely on a combination

of antibiotics and proton pump inhibitors in triple and quadruple

therapy (Malfertheiner et al., 2023). While this approach has shown

success rates in the range of 70% to 90%, the rise of antibiotic-

resistant strains poses a considerable challenge to its effectiveness

(Ding et al., 2023). As a result, researchers are actively exploring

alternative strategies to combat H. pylori infection.

H. pylori pathogenicity factors directly affect the infected

gastric epithelial cells. One well-characterized factor is the Cytotoxin-

associated gene A (CagA), which plays a central role inH. pylori-driven

pathogenesis and CagA positive strains are associated with an

enhanced risk of developing gastric cancer (Takahashi-Kanemitsu

et al., 2020; Alipour, 2021). Through a specialized type IV secretion

system CagA is translocated into the cytoplasm of host cells, where it

affects cancer-associated signal transduction pathways (Krisch et al.,

2016). Phosphorylated CagA recruits important signalling molecules

into a large multi-enzyme complex, that controls several important cell

responses. Among the translocated effectors of the type-IV secretion

system is the recently discovered ADP-heptose (Pfannkuch et al.,

2019), which together with CagA controls NF-kB (nuclear factor

kappa B)-mediated proinflammatory cytokine responses (Brandt

et al., 2005; Faass et al., 2021), morphological changes (Takahashi-
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Kanemitsu et al., 2020), production of reactive oxygen species (Sah

et al., 2023), DNA damage, and changes in the transcriptional

signature (Bauer et al., 2020) leading to tissue injury and neoplastic

transformation (Rizzato et al., 2020).

In recent decades, the widespread use of antibiotics for

eradication of H. pylori with antibiotics has contributed to a

massive increase in antibiotic-resistant H. pylori, as well as other

human-pathogenic bacteria (Boyanova et al., 2023). Therefore, the

development of novel strategies to combat antibiotic resistant

bacteria is important. Here, we analyzed the impact of AgNPs on

H. pylori viability and pathogenesis and investigated whether the

AgNPs affect viability of gastric epithelial cells. Further we

investigated whether AgNPs interfere with CagA translocation

and phosphorylation. Finally, our data point to the utility of

AgNPs as a novel antimicrobial agent against H. pylori.
2 Materials and methods

2.1 Synthesis and characterization of
silver nanoparticles

Synthesis of AgNPs followed the previously published Tollens

process (Panáček et al., 2006), however, in this case after [Ag(NH3)2]
+

complex cation formation by mixing silver nitrate (p.a., Fagron), and

ammonia solutions (28–30% [w/w], p.a., Sigma–Aldrich), gelatine

(Sigma–Aldrich) was added before initiating the reduction process by

sodium borohydride (Sigma–Aldrich) to prevent AgNPs aggregation

caused by introduction to culture medium. All the constituents were

added at vigorous stirring at the laboratory temperature and the

concentrations were as outlined below: silver nitrate at 1·10−3

mol·dm−3 (equivalent to a mass concentration of 108 mg/ml of Ag),

ammonia at 5·10−3 mol·dm−3, gelatine 0,05% and 1·10−2 mol·dm−3 of

sodium borohydride.

The particle size was measured by dynamic light scattering

(DLS, Malvern Zetasizer Nano Series, UK) and was confirmed by

transmission electron microscopy (TEM) using the JEM 2010

instrument (Jeol, Japan). UV/VIS spectra and surface plasmon

resonance of silver nanoparticles was recorded by the Specord S

600 spectrophotometer (Analytik Jena, Germany).
2.2 Helicobacter pylori culture

H. pylori wild-type strain (P12) (Poppe et al., 2007), known for

its expression of Western CagA was cultured on GC agar plates

supplemented with 10% horse serum (Th. Geyer, Germany) under

microaerophilic conditions at 37°C for 48 hours. For determination

of antimicrobial activity in liquid culture brain heart infusion

(BHI, Sigma-Aldrich, Vienna) broth containing 10% fetal calf

serum (FCS, Biowest, France) was used. Bacterial growth

associated with optical density (OD) at 600 nm and absorption at

various wavelengths was measured on CLARIOstar plate reader

(BMG Labtech, Germany).
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2.3 Real time monitoring of
bacterial growth

The minimum inhibition concentration (MIC) was determined

through a modified microdilution method. Serial two-fold dilutions of

silver nanoparticles were prepared in water, and 100 µl of each

concentration were transferred into individual wells. Subsequently,

100 µl of bacterial suspension in BHI medium (Sigma-Aldrich,

Vienna) OD600 0.2 was added (liquid culture with a starting OD600

0.1 grown at 37°C, microaerophilic conditions, 40 rpm for 36 hours

prior the experiment).The 96-well plates were then incubated at 37°C,

in 10% CO2 and 5% O2 atmosphere, double orbital shaking 500 rpm

for 24 hours in a plate reader (CLARIOstar, BMG Labtech, Germany),

while OD at 600 nm was measured every 30 minutes.
2.4 CFU assay

It is noteworthy that the design of the colony-forming units

(CFU) assay was purposefully tailored with infection experiments in

mind. For CFU assays and infection experiments, phosphate-

buffered saline (PBS, Sigma-Aldrich, Vienna)) served as the

dilution medium for AgNPs. 500 µl of AgNPs dispersion at

different concentrations were mixed with 108 bacteria in 500 µl

PBS and incubated at 37°C for 2 hours under microaerophilic

conditions. 10 ml of the solution were used for the CFU assay, the

rest was centrifuged and used for the infection experiments. For the

CFU assay, each sample was diluted 1:10000 and aliquots of 100 µl

from each dilution were plated on GC agar plates. Subsequently, the

plates were incubated at 37°C for 3 days, then, the number of CFU

was determined.
2.5 Cell culture and infection

AGS cells (a human gastric adenocarcinoma cell line, ECACC,

UK) were grown in RPMI 1640 medium (Sigma-Aldrich,

Germany), supplemented with 2 mM L-glutamine (Biowest,

Germany), and 10% FCS (Biowest, France) within a humidified

5% CO2 atmosphere at 37°C. For infection experiments, AGS cells

were seeded in tissue culture dishes (Greiner, Germany) 48 hours

prior to infection and were allowed to grow until 70% confluence.

One hour prior to infection, the medium was replaced with serum-

free medium. Bacteria were collected in PBS and mixed with

nanoparticles as described within CFU assay paragraph.

Where indicated two H. pylori controls were implemented: First,

untreated bacteria were directly added to the cells (Hp0) and second,

H. pylori was incubated in PBS for two hours (Hp2) under

microaerophilic conditions prior to infection (Supplementary

Figure S1) to control the effect of this incubation step in absence of

AgNPs. As an additional control, AGS cells were incubated with the

highest concentration of AgNPs (13.5 µg/ml) to determine the direct

impact of AgNPs on AGS cells in the infection experiments.

Host cells were infected with a multiplicity of infection (MOI) 20

for 4 hours. In mock infected samples, an equivalent volume of PBS

was added. After four hours of infection images were captured using a
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phase-contrast microscope (CKX41, Olympus, Austria). Cells were

then carefully washed twice with ice-cold PBS and subsequently lysed

in a modified RIPA buffer containing 20 mM Tris (pH 7.5), 1 mM

EDTA, 100 mM NaCl, 0.5% DOC, 0.1% SDS, 1% Triton X-100, 20

mM b-glycerophosphate, 20 mM NaF, 1 mM Na2MoO4, 1 mM

Na3VO4, and 1× complete protease inhibitor cocktail (all from

Sigma-Aldrich, Vienna) and cleared from debris by centrifugation.

Cell elongation was quantified by counting of normal and

elongated cells in the field of view (fov) for each experimental

condition. Five images were randomly selected from different areas

within each condition. The average and standard deviation of

percent elongated cells were then calculated for each condition.

Images from three independent experiments were analyzed.
2.6 Western blotting

30 mg of whole cell lysates were loaded separated by SDS PAGE

using 8–10% polyacrylamide gels. The proteins were transferred onto

nitrocellulose membranes (Carl Roth, Karlsruhe, Germany) by

semidry transfer blotting (BioRad, Germany). Membranes were

blocked in 3% bovine serum albumin (Carl Roth, Germany),

supplemented with 0.05 mM Na3VO4 (Sigma-Aldrich, Vienna),

and incubated with primary antibodies overnight at 4°C, followed

by incubation with species specific HRP-coupled secondar antibodies

(Thermo Fisher Scientific, Germany) for two hours at room

temperature and developed using the ChemiDoc XRS+ System

(Bio-Rad, Germany). Following antibodies were used: Anti-

phosphotyrosine antibody 4G10 (Cell Signaling, Frankfurt am

Main, Germany); anti-GAPDH (Cell Signaling, Frankfurt am Main,

Germany) and polyclonal anti-CagA antibodies (Krisch et al., 2016).
2.7 ELISA

ELISA assay for IL-8 was conducted using the Human IL-8

(CXCL-8) Standard ELISA Development kit (Peprotech, London

UK) following the manufacturer’s instructions. Duplicate analyzes

were performed for samples from three distinct experiments. The

standard fitting curve was generated utilizing a five-parameter

logistic non-linear regression model (5-PL).
2.8 Cytotoxicity evaluation

Cell viability assays were conducted using 104 AGS cells per well

in 96-well tissue culture plates. Cells were incubated with AgNPs for

24 h in 100 µl RPMI, 2 mM L-Glu, 10% FCS. Metabolic activity was

assessed as a measure of cell viability by adding 10 ml of 5 mg/ml

MTT (3-(4,5-dimethylthiazol-2-yl)2 2,5-diphenyl tetrazolium

bromide; (Sigma-Aldrich, Germany) to the medium for 1 hour at

37°C. The cells were then lysed using 110 ml of MTT lysis solution

(0.1% NP-40, 0.04 N HCl in isopropanol), and the absorbance was

measured at 570 nm using a plate reader (M200 Pro, Tecan,

Austria). Cell survival for treated cells was normalized to the

levels of their respective non-treated controls. The results were
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based on the mean of three independent experiments. The IC50

values for bacteria and cells were determined using polynomial

regression analysis. R-squared value of 0.99 provided accurate

representations of the dose-response relationship. Subsequently,

IC50 values were extrapolated from these curves using quadratic

equations derived from the trend lines.
2.9 Statistical analysis

Statistical analyzes were conducted in GraphPad Prism using

One-way ANOVA with Dunnett’s multiple comparison procedure.
3 Results

3.1 Synthesis and characterization of
silver nanoparticles

For the purposes of this study, relatively small AgNPs

were synthesized utilizing a strong reducing agent (sodium

borohydride). To prevent nanoparticle aggregation in the

bacterial medium, gelatine was incorporated as a stabilizing agent.

The mean diameter of 3 nm and the narrow size distribution of

the spherical nanoparticles, as determined by DLS, were further

supported by transmission electron microscopy (TEM) (Figure 1A).

Complementing this, UV/VIS spectra, marked by distinct surface

plasmon resonance at 415 nm were recorded (Figure 1B).
3.2 Antibacterial effect of AgNPs on
H. pylori growth

To assess the antimicrobial potential of the AgNPs towards H.

pylori, real-time growth monitoring of H. pylori cultures under

microaerophilic conditions was performed. Monitoring H. pylori

growth under exposure to different concentrations of AgNPs
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(Figure 2) revealed crucial insights into the MIC and the

antimicrobial efficacy of the nanoparticles and offered a dynamic

representation of the inhibitory effect over 48 hours. A strong dose-

dependent inhibition of H. pylori growth was observed, with higher

concentrations of nanoparticles leading to more pronounced

growth inhibition. The point at which the growth curve

significantly deviates from the growth control signifies the MIC,

which is the lowest concentration (3.375 mg/ml) at which bacterial

growth is effectively inhibited, suggesting that AgNPs exhibit an

efficient antimicrobial activity against H. pylori.

The decrease in H. pylori growth could indicate both, inhibition

of growth or bacterial cell death. Therefore, to quantify viable

bacteria subsequent to exposure to different nanoparticle

concentrations, CFU (colony forming unit) assays were

performed to provide a precise quantitative assessment of

bacterial survival after two hours of incubation with

nanoparticles. With increasing AgNPs concentrations a strong

dose-dependent reduction in CFU´s was observed (Figure 3),

signifying a bactericidal effect of the nanoparticles. At a

concentration of 3.375 mg/ml, more than 60% of the bacterial

population was eliminated within a time span of two hours. An

IC50 value of 2.056 mg/ml was calculated by plotting a dose-

response curve. Notably, the entire bacterial population was

eradicated at a concentration of 13.5 mg/ml. These findings

underscore the effective antimicrobial properties of AgNPs, with

MICs comparable to previously published data for H. pylori and

other bacteria (Amin et al., 2014; Gurunathan et al., 2015;

Saravanakumar et al., 2019).
3.3 Cytotoxic effect of AgNPs on
eukaryotic host cells

To assess the toxicity potential of silver nanoparticles towards

eukaryotic cells, MTT assays were performed to gain insight into

the biocompatibility of AgNPs with the gastric epithelial cell line

AGS, a well-established model for H. pylori infection (Moese et al.,
FIGURE 1

(A) TEM image displaying the morphology of AgNPs, along with the size distribution inset in the panel. (B) Absorption spectrum of AgNPs, indicating
the characteristic surface plasmon resonance peak at 415 nm.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1419568
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Hochvaldova et al. 10.3389/fcimb.2024.1419568
2004). Assessment of cell viability after incubation with

different concentrations of AgNPs revealed a concentration-

dependent impact on AGS cell viability (Figure 4). The viability

for the non-treated cells was set as 100%. A significant reduction in

cell viability was observed in response to increasing concentrations

of AgNPs. Exposure to the highest concentration tested (27 mg/ml)

resulted in a decrease of cell viability to 49%, while at 13.5 mg/ml

and 6.75 mg/ml, viability decreased to 59% and 69%, respectively,

compared to control cells. Moreover, at 3.375 mg/ml, viability

dropped to 73%, and the lowest concentration of 1.68 mg/ml,

resulted in 83% cell viability. The IC50 for AGS cells was

calculated to be 24.08 mg/ml.
3.4 Effects of AgNPs on AGS cell
morphology, CagA translocation and
phosphorylation, and cytokine expression
in H. pylori infection

Next, the effect of AgNPs was investigated in an experimental

model of H. pylori infection. Here, H. pylori was incubated with

various concentrations of AgNPs for two hours prior to infection.

AGS cells were then infected with H. pylori for four hours and the

changes in cell morphology were analyzed by phase-contrast

microscopy (Figure 5). Uninfected AGS cells and cells treated

with nanoparticles alone (13.5 mg/ml) in absence of H. pylori

show the typical epithelial cell morphology with intact cell-cell

contacts. A high percentage of elongated cells was observed after

infection with H. pylori . Pretreatment with increasing

concentrations of AgNPs resulted in a strong reduction of the cell

elongation phenotype in response to infection (Figure 6).

These cell morphological determinations indicated that AgNPs

could impact on the H. pylori mediated CagA translocation and/or

phosphorylation. Therefore, the amount of total CagA and
Frontiers in Cellular and Infection Microbiology 05
tyrosine-phosphorylated CagA in H. pylori-infected AGS cells was

investigated by western blotting. Eukaryotic GAPDH was detected

as control to ensure equal loading of host cell proteins. The

phosphorylation status of CagA (pCagA) was determined using

an anti-phosphotyrosine-specific antibody (4G10) (Figure 7). While

the CagA antibody detects CagA protein in adherent bacteria and in

the AGS cell cytoplasm, pCagA is restricted strictly to injected CagA

within the host cell cytoplasm. The results of the immunoblotting

analysis revealed significant concentrations dependent reduction in

the translocation and phosphorylation of CagA after infection of

AGS cells with AgNP pretreated H. pylori.

Our results provide insight into the phosphorylation dynamics

of CagA, a key contributor to H. pylori pathogenesis (Reyes, 2023).

Notably, the incorporation of AgNPs resulted in a significant

reduction in both the total amount of CagA as well as diminished

levels of phosphorylated CagA. Besides CagA delivery, the type IV

secretion system delivers theH. pylorimetabolite ADP-heptose into

host cells, which is an activator of NF-kB mediated IL-8 response

(Faass et al., 2021; El Filaly et al., 2023). To address whether AgNPs

affect T4SS dependent delivery machinery apart from CagA protein

transport, H. pylori-induced interleukin-8 (IL-8) secretion, which is

dependent on T4SS mediated delivery of ADP-heptose, was
FIGURE 3

H. pylori viability after 2 h treatment with different concentrations of
AgNPs in a CFU assay. Quantitative data are presented as mean ±
standard deviation of cell viability percentages from three
independent experiments. The reference “Hp” signifies the condition
without nanoparticles, serving as the non-treatment control and
was defined as 100%. ns: not significant; * p≤0.05 , *** p≤0.001,
**** p≤0.0001.
FIGURE 2

Real-time monitoring of H. pylori growth in the presence of
decreasing AgNPs concentrations. Exemplary growth curves
demonstrating the consistent trends observed across
triplicate measurements.
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analyzed. The levels of IL-8 revealed distinct patterns across these

conditions (Figure 8). Untreated AGS cells and those treated with

AgNPs alone exhibited minimal IL-8 production, contrasting

sharply with the robust induction observed in the H. pylori

infection control group (0 mg/ml AgNPs). Pretreatment of

H. pylori with various concentrations of AgNPs, resulted in a

significant decrease in IL-8 secretion. Of particular note was the

pronounced reduction observed at an AgNPs concentration of 13.5

mg/ml, where IL-8 secretion plummeted to 17.4 pg/ml from the level

of 452.2 pg/ml, indicative of IL-8 concentration in AGS cells

infected with untreated H. pylori. Moreover, across all other

tested concentrations, a consistent and statistically significant

reduction in IL-8 secretion was observed, ranging between 287

pg/ml and 384 pg/ml, with a clear trend towards decreasing

concentrations of AgNPs.
4 Discussion

The synthesis strategy of AgNPs and thus their specific

characteristics play pivotal roles for their intrinsic properties and
Frontiers in Cellular and Infection Microbiology 06
potential applications. In this study, sodium borohydride served as

the reducing agent for the synthesis of small-sized AgNPs.

However, dispersions prepared in this manner are often prone to

aggregation, especially when in contact with electrolytes (Fernando

et al., 2020). To forestall nanoparticle aggregation within the

complex bacterial medium, gelatine is a suitable stabilizing agent

(Sivera et al., 2012). Characterization techniques including DLS,

TEM revealed the presence of small nanoparticles with narrow size

distribution, which was together with the stability of AgNPs

confirmed also by UV/VIS spectroscopy. This combination of

precise size control and effective stabilization emphasizes the

suitability of the chosen synthesis approach and provides a solid

basis for subsequent investigation of their diverse applications

and interactions.

The bactericidal activity of AgNPs has been attributed to their

ability to release silver ions, to produce reactive oxygen species and

to cause loss of bacterial membrane integrity and subsequent

membrane damage (Gurunathan et al., 2018; Jang et al., 2022).

Similar mechanisms of action have been also reported for other

nanomaterials used in the treatment of H. pylori (Au, Bi, Cu, Pd,

ZnO) (Asgari et al., 2022; Yin et al., 2023). The antimicrobial

potential of the AgNPs synthesised in this study against H. pylori

was evaluated using real-time growth monitoring and CFU assays.

Real-time growth curves revealed a dose-dependent inhibition of

H. pylori growth, with higher AgNPs concentrations leading to

strong growth inhibition. The dose-dependent inhibition of

bacterial growth further emphasized the importance of

nanoparticle concentration in achieving effective antimicrobial

outcomes. Additionally, the real-time monitoring approach

employed in this study provided valuable insights into the

kinetics of H. pylori growth inhibition by AgNPs, offering a

comprehensive understanding of their antimicrobial efficacy over

time. This enabled identification of effective concentrations for

bacterial growth inhibition (MIC 3.375 mg/ml) and revealed time

required to exert antimicrobial effect of the nanoparticles, helping to

optimise treatment duration and dosage regimens. The MBC was

determined to be 3.375 mg/ml (growth curves) and 13.5 mg/ml (CFU

assay). The different MBC obtained from the real-time growth and

CFU assays arose from the distinct emphases of these

methodologies. Growth curves provide a dynamic representation

of bacterial growth over time (48 hours), whereas CFU assays

provide a quantitative measure of bacterial killing, identifying the

concentration at which bacterial survival is significantly reduced

within only two hours of exposure time. The MIC values

determined in this study are consistent with those reported for

silver nanoparticles by several other research groups (Amin et al.,

2014; Saravanakumar et al., 2019; Mansouri et al., 2022). The action

of AgNPs in the stomach is influenced by their size distribution, the

formulation and to a significant extent, gastric pH. Depending on

these conditions, not only increased shedding of Ag ions has been

reported, but also particle growth or aggregation (Axson et al.,

2015). In vivo, particles have also been reported to cross

gastrointestinal epithelia and to accumulate in the liver (Zhang

et al., 2022; Noga et al., 2023). In numerous in vitro toxicity studies,

high doses of nanoparticles were found to increase reactive oxygen

species and nitric oxide levels. Furthermore, AgNPs induce DNA
FIGURE 4

Cell viability of AGS cells treated with different concentrations of
AgNPs for 24 h in RPMI supplemented with L-glutamine and FCS.
Quantitative data are presented as mean ± standard deviation of cell
viability percentages from three independent experiments. The
reference “0” signifies the condition without nanoparticles, serving as
the non-treatment control and was set to 100% viability. * p≤0.05,
*** p≤0.001, **** p≤0.0001.
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damage and apoptosis (Noga et al., 2023). The observed

concentration-dependent reduction in AGS cell viability

highlights the importance of carefully selecting nanoparticle

concentrations and formulations to ensure both experimental

integrity and cell viability. Furthermore, these results provide

valuable insights into the biocompatibility of AgNPs with gastric

epithelial cells, shedding light on their potential applications in the

context of H. pylori infection and suggesting avenues for further

research. Yet, the complex gastric environment, including gastric

juice and chyme, must be taken into account for future studies.

The different IC50 values for H. pylori and AGS cells to AgNPs in

our study, suggest a therapeutic window where AgNPs can
Frontiers in Cellular and Infection Microbiology 07
effectively inhibit bacterial growth without inducing significant

cytotoxic effects on the host. To further widen this window,

functionalisation of the silver nanoparticles could enhance the

specificity towards bacterial targets while mitigating adverse

effects on the host.

Upon infection with H. pylori, AGS cells undergo a dramatic

change in morphology, characterized by elongation and a migratory

phenotype resulting in loss of cell-cell contacts. This elongation

process is a well-known consequence of CagA translocation and

tyrosine phosphorylation (Moese et al., 2004). Remarkably, pre-

incubation of H. pylori with AgNPs exerted a strong influence on

these morphological changes. The examination of AGS cells after
FIGURE 5

Microscopic images of the AGS cells non-infected (A, H) and infected with bacteria (B) pre-treated with various concentration of AgNPs for 2 hours
(C-G). 40x magnification.
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infection with AgNP-pretreated H. pylori revealed concentration-

dependent effects of AgNPs on cell morphology. Of note, these

effects on the delivery of the pathogenicity factor CagA surpass the

killing activity observed in cfu assays, indicating, that even sublethal

doses of AgNPs are able to block pathogenic processes in H. pylori.

It has been previously reported, that AgNPs can inhibit enzyme

secretion in bacteria (Jahan et al., 2024), and silver nanoparticles

have been shown to deregulate genes associated with the type VI

secretion system in Klebsiella pneumoniae (Hamida et al., 2020).

The observed reduction in total CagA signifies a reduction in

bacterial viability and thus lower bacterial numbers and/or lower

adhesion to host cells, whereas diminished phospho-CagA signal is

indicative of impaired injection and/or phosphorylation in the host

cells. This suggests that, in addition to the bactericidal activity,

AgNPs have a strong potential to modulate CagA translocation

and/or phosphorylation, and to specifically block H. pylori

pathogenicity mechanisms. Future investigations are needed to

elucidate the mechanisms by which AgNPs interfere with H.
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pylori’s type IV secretion system (T4SS), disrupt its adhesion to

host cells, and modulate host cell kinase signalling pathways.

H. pylori infection of AGS cells induces a strong inflammatory

response, as evidenced by a strong induction of interleukin-8

secretion (Sansonetti et al., 1999). Similar to the results seen for

phospho-CagA, increasing concentration of AgNPs diminished the

amounts of secreted IL-8, suggesting a reduction in the pro-

inflammatory response to infection. Notably, both phosphorylated

CagA and IL-8 were reduced at a concentration of 13.5 mg/ml AgNPs.

The observation that the impact of AgNPs on H. pylori pathogenicity

outperforms the bactericidal activity prompts the speculation that

this effect may be caused by predominantly targeting the T4SS

machinery. Given the distinct signalling cascades involved in NF-

kB signalling and CagA phosphorylation, respectively, we analyzed

the CagA independent, but ADP-heptose dependent stimulation of

IL-8 secretion (Brandt et al., 2005; Pfannkuch et al., 2019). The

highest concentration of AgNPs (13.5 mg/ml) results in a loss of total

CagA and IL-8 secretion and suggests bacterial eradication. However,

it is notable that IL-8 secretion remains largely unaffected by sublethal

doses of AgNPs, where significant loss of CagA injection – as

indicated by its phosphorylation – is observed. Direct stimulation

of interleukin-8 secretion by AgNPs has been reported in CaCo-2

cells (Polet et al., 2020), however this was not observed in the AGS cell

line in our study. This suggests a nuanced interplay between AgNPs

and host responses, where the modulation of inflammatory markers

like IL-8 may not be as pronounced as expected. These findings
FIGURE 6

Evaluation of AGS cell elongation in response to increasing AgNPs
concentration. Cell elongation was quantified by assessing the
proportion of elongated cells relative to the total cell population in
the field of view (fov) for each experimental condition. Images from
three independent experiments were analyzed, with cell
morphology assessed in 5 randomly selected samples per condition.
**** p≤0.0001.
FIGURE 7

Western blot of infected AGS cells. AGS cells (samples 2–8) were
infected with H. pylori, sample 1 served as control (AGS cells only)
and sample 9 served as an AgNPs toxicity control (mock infection
with the highest used AgNPs concentration, without bacteria).
Sample 2 (Hp0 – immediate infection), 3 (Hp2 – infection after 2 h
incubation in PBS), 4–9 (cells infected with H. pylori, pretreated with
different concentration 4 (13.5 mg/ml), 5 (3.375 mg/ml), 6 (0.422 mg/
ml), 7 (0.053 mg/ml), 8 (0.007 mg/ml) were studied to study the
influence of AgNPs on H. pylori, phospho-CagA (top panel) and
CagA (middle panel) levels. GAPDH (lower panel) served as a
loading control.
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highlight the complexity of host-pathogen-nanoparticle dynamics

and underscore the need for further investigation to fully elucidate

the mechanisms underlying these interactions.
5 Conclusion

The present study demonstrates the significant antimicrobial

potential of AgNPs against H. pylori infection. The AgNPs

used were able to target H. pylori at a concentration that induced

only minor cytotoxic effects in our host cell model. Animal models

of H. pylori infection show promising first results for the use of

AgNPs in vivo (Kuo et al., 2014), but failed to achieve complete

eradication of the infection. Yet, finetuning the AgNP formulation
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or functionalization of the AgNP could lead to an even wider

therapeutic window and increase the efficacy of AgNP treatments.

Given the issues of particle instability in the acidic gastric

compartment, combination therapy with proton pump inhibitors

may be a promising avenue for future studies. Due to the

widespread use of AgNPs in industry the daily consumption

of AgNPs by ingestion is estimated around 20–80 µg by the

WHO (De Matteis, 2017), therefore short-term treatments with

higher doses may impose only minor additional toxicity burden.

Nevertheless, the toxicity profile of AgNPs is a major concern and

must be critically assessed when considering their use in humans.
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