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microbiota of individuals from
South China
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and Qiulong Yan1*

1Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University,
Dalian, China, 2Puensum Genetech Institute, Wuhan, China, 3Department of Biochemistry and
Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
Background: The symbiotic gut microbiota is pivotal for human health, with its

composition linked to various diseases and metabolic disorders. Despite its

significance, there remains a gap in systematically evaluating how host

phenotypes, such as gender, age, and body mass index (BMI), influence

gut microbiota.

Methodology/principal findings: We conducted an analysis of the gut

microbiota of 185 Chinese adults based on whole-metagenome shotgun

sequencing of fecal samples. Our investigation focused on assessing the

effects of gender, age, and BMI on gut microbiota across three levels:

diversity, gene/phylogenetic composition, and functional composition. Our

findings suggest that these phenotypes have a minor impact on shaping the gut

microbiome compared to enterotypes, they do not correlate significantly

within- or between-sample diversity. We identified a substantial number of

phenotype-associated genes and metagenomic linkage groups (MLGs),

indicating variations in gut microflora composition. Specifically, we observed

a decline in beneficial Firmicutes microbes, such as Eubacterium, Roseburia,

Faecalibacterium and Ruminococcus spp., in both older individuals and those

with higher BMI, while potentially harmful microbes like Erysipelotrichaceae,

Subdoligranulum and Streptococcus spp. increased with age. Additionally,

Blautia and Dorea spp. were found to increase with BMI, aligning with prior

research. Surprisingly, individuals who were older or overweight exhibited a

lack of Bacteroidetes, a dominant phylum in the human gut microbiota that

includes opportunistic pathogens, while certain species of the well-known

probiotics Bifidobacterium were enriched in these groups, suggesting a

complex interplay of these bacteria warranting further investigation.

Regarding gender, several gender-associated MLGs from Bacteroides,

Parabacteroides, Clostridium and Akkermansia were enriched in females.

Functional analysis revealed a multitude of phenotype-associated KEGG

orthologs (KOs).
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Conclusions/significance: Our study underscores the influence of gender, age,

and BMI on gut metagenomes, affecting both phylogenetic and functional

composition. However, further investigation is needed to elucidate the precise

roles of these bacteria, including both pathogens and probiotics.
KEYWORDS
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1 Introduction

The human gut microbiota, acting as a reservoir of bacteria and

genes, plays a pivotal role in host function complementarities (Qin

et al., 2010; Lee et al., 2022). Additionally, it is intricately linked to

various diseases and metabolic disorders such as colorectal carcinoma

(Kostic et al., 2012), inflammatory bowel disease (Frank et al., 2007;

Jostins et al., 2012), and type 2 diabetes (Qin et al., 2012; Yang et al.,

2021). However, traditional microbiologymethods have provided only

a partial understanding of the human gut microbiota, often hindered

by their inability to offer an unbiased representation of its complexity.

In recent years, the emergence of metagenomics has significantly

advanced our understanding of the composition and function of the

human gut microbiota (Gill et al., 2006; Shkoporov et al., 2019).

High-throughput techniques like 16S rRNA variable region pyro-

sequencing have been employed to identify microbial phylotypes,

while whole-genome shotgun (WGS) sequencing of the microbial

metagenome has provided insights into community composition

with minimal amplification bias (Wooley et al., 2010). Recent

studies have highlighted the intricate interplay among

environmental factors, host phenotypes, and gut microbiota

composition (Benson et al., 2010; Li et al., 2020). Notably, research

by Johansen et al. revealed a more diverse virome in centenarians

compared to younger and older adults, including previously

undescribed viral genera (Johansen et al., 2023). Similarly, Claesson

et al. observed temporal stability in fecal microbiota of the elderly,

albeit with unique phylum proportions and significant variability

(Claesson et al., 2011). Furthermore, Turroni et al. identified a

predominance of bifidobacteria in the infant gut, along with

specific co-occurrence patterns of bifidobacterial species (Turroni

et al., 2012). Additionally, Yatsunenko et al. demonstrated age-

associated changes in genes involved in vitamin biosynthesis and

metabolism (Yatsunenko et al., 2012).

The gut microbiota of large Chinese cohorts has also been

extensively studied. For examples, Zhang et al. have performed a

large structural survey of fecal microbiota in 314 young adults,

defining a phylo-functional core of gut microbiota, that is, the

assemblage of a few bacterial genera with potentially conserved but

indispensable functions for human health (Zhang et al., 2015). He

et al. characterized the gut microbiota of 7009 individuals within 1

province and revealed the generalizability microbiota-based
02
diagnostic models of metabolic disease (He et al., 2018). Winglee

et al. have demonstrated that recent urbanization in China is

corelated with a Westernized microbiome encoding increased

virulence and antibiotic resistance genes (Winglee et al., 2017).

Another research has investigated the association of Chinese gut

microbiota with staple food type, ethnicity, and urbanization,

providing a nationwide gut microbiota baseline of the Chinese

population and knowledge on important covariates (Lu et al., 2021).

Recently, several reports have emerged revealing the association

between body mass index (BMI) and gut microbiota (Haro et al.,

2016; Gao et al., 2018; Lv et al., 2019; Liang et al., 2023; Ren et al.,

2023). Despite these insights, there remains a dearth of systematic

investigation into the influence of host phenotypes, such as gender,

age, and BMI, on the human gut microbiota, particularly within the

Chinese adult population from South China. In this study, we re-

analyzed the gut microbiota of 185 normal Chinese adults who had

not taken antibiotics in the past two months from two modern

cities, Shenzhen and Guangzhou, in South China. These samples

were utilized to construct an updated gene catalogue, perform gene

profiling, and serve as control samples in a metagenome-wide

association study (MGWAS) of type 2 diabetes (Qin et al., 2012).

2 Results and discussion

2.1 Individuals, sequencing and profiling

The gut metagenomic dataset of 185 normal adults was

downloaded from the NCBI Sequence Read Archive (SRA)

database under project accession no. PRJNA422434, yielding a total

of 345.6 gigabases (Gb) of high-quality data for analysis. On average,

74.9 ± 6.2% (mean ± SD) of reads from these samples could be

accurately mapped to the gene catalogue and utilized for profiling.

The phylogenetic and functional composition of these samples

was investigated by assigning genes to phylogenetic and KEGG

orthologous groups (KO) via BLAST analysis, resulting in 21.3% of

genes assigned to a genus and 47.1% to a KO. These assigned genes

covered 58.9 ± 13.8% (mean ± SD) and 48.6 ± 4.0% of reads for

genera and KOs, respectively, representing a substantial portion of

the metagenomic data. Genus and KO abundance profiles in these

samples were obtained by summing the relative abundances of

assigned genes for each category.
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2.2 Characteristics of the gut microbiota

Zhang et al. analyzed gut microbiome from fecal samples of

healthy adults in three cities across China, providing a basis for

understanding gut microbiome composition in certain Chinese

populations (Zhang et al., 2019). Their study included samples

from 131 individuals across three geographical regions (Beijing in

the north, Jinan in the east, and Zigong in the southwest). However,

only 11 samples underwent whole-metagenome shotgun sequencing

(WMS), with the majority subjected to 16S rDNA sequencing. In

contrast, our study was based on comprehensive WMS for all 185

samples, focusing on a single population from South China, and

includes a larger sample size. The phylogenetic composition of these

samples is depicted through genus profiles (Figure 1A). Major taxa

included Bacteroidetes (predominantly Bacteroides, Prevotella, and

Alistipes), Firmicutes (Faecalibacterium, Eubacterium, and

Ruminococcus), Proteobacteria (Escherichia and Klebsiella), and

Actinobacteria (Bifidobacterium), reflecting microbiota

compositions observed in European and American populations

(Zoetendal et al., 2008; Human Microbiome Project, 2012;

Zhernakova et al., 2016). Many studies have indicated that human

gut microbiome composition is primarily influenced by enterotypes,

a subclassification unrelated to nationality, gender, age, or health

conditions (Arumugam et al., 2011; Lai et al., 2023). In our dataset,

enterotypes were classified based on genus composition and

corroborated by KO profiles (Figure 1B; Supplementary Figure S1).

Comparative analysis with European enterotypes showed that,

among Chinese individuals from South China, Roseburia had a

higher contribution than Ruminococcus in enterotype 3.

We found no association between enterotypes and the

phenotypes of gender, age, and BMI, which is consistent with
Frontiers in Cellular and Infection Microbiology 03
prior research (Supplementary Table S1) (Arumugam et al., 2011;

Wu et al., 2011; Lai et al., 2023). The subsequent permutational

multivariate analysis of variance (PERMANOVA) revealed that

enterotypes explained the most variation in both gene and KO

profiles. However, gender, age, and BMI also accounted for minor

variations in these profiles (Table 1). Notably, significant P-values

for age (P = 0.015, 1,000 permutations) and BMI (P = 0.074) were

observed in gene profiles. Additionally, age (P = 0.016) exhibited a

significant association in the KO profile, underscoring the notable

impact of these phenotypes on gut microbiota.
2.3 Gut microbiome biodiversity is steady
across different phenotypes in adults

Biodiversity serves as a metric for assessing gut microbiome

richness and evenness, often correlating with host phenotypes.

Previous studies have associated biodiversity with obesity and age,

as well as geographical location (Yatsunenko et al., 2012), while our

dataset yielded consistent results. Two estimators, gene count

(unweighted) and Shannon index (weighted), revealed a high level

of within-sample diversity across samples. A high gene count (range

from 105.0K to 795.4K) and Shannon index (range from 9.65 to

12.41) were observed in these samples, moreover, these two

estimators showed a positive correlation because of calculation

method (Supplementary Figure S2). Notably, this diversity

exhibited no significant correlation with gender, age, or BMI

(Table 2), except for differences among enterotypes. Particularly,

enterotype 3 demonstrated higher diversity in comparison to the

other two enterotypes, indicating a more even distribution of

species within this enterotype.
FIGURE 1

Characteristics of the gut microbiota of South Chinese adult individuals. (A) Phylogenetic composition of the 185 samples illustrated by the top 40
abundance genera. Boxes denote the interquartile range (IQR) between the first and third quartiles (25th and 75th percentiles, respectively) and the
line inside denotes the median. Whiskers denote the lowest and highest values within 1.5 times IQR from the first and third quartiles, respectively.
Circles denote outliers beyond the whiskers. (B) Enterotypes of Chinese samples. Based on principal component analysis, these samples were
plotted on the first two principal components of the genus profile. Lines connect individuals determined to have the same enterotype, and colored
circles cover the individuals near the center of gravity for each cluster (<1.5s). The top four genera as the main contributors to these clusters were
determined and plotted by their loadings in these two components.
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Furthermore, the Shannon index was utilized to gauge

functional-level diversity based on KO profiles, revealing

increased diversity among older individuals (P = 0.0095, Student’s

t-test) and/or those with intermediate BMI (P = 0.013, Kruskal-

Wallis test). Assessment of between-sample diversity via beta

diversity (unweighted) and Hellinger distance (weighted) unveiled

no significant correlation with gender, age, or BMI (Supplementary

Figure S3). Noteworthy is the considerable divergence among

enterotypes. Overall, these findings highlight the relatively stable

biodiversity of gut microbiota across gender, age, and BMI in adult

individuals from South China.
2.4 Genes and phylogenetic variation of
gut microbiome

As depicted in Supplementary Figure S4, the distribution of p-

values for genes across each phenotype revealed a substantial

proportion of genes conforming to the null hypothesis, indicative

of detectable gene variations within our dataset. We identified
Frontiers in Cellular and Infection Microbiology 04
178,024 genes associated with age (P ≤ 0.05, corresponding to

44.6% FDR), 163,788 associated with BMI (P ≤ 0.05, 45.8% FDR),

and 35,850 associated with gender (P ≤ 0.01, 48.5% FDR)

(Supplementary Tables S2, S3). To manage the extensive data and

facilitate taxonomic categorization, genes were further clustered

into metagenomic linkage groups (MLGs).
2.4.1 Age-associated MLGs
Regarding age, we identified 237 MLGs (comprising ≥50 genes),

among which 137 exhibited a decrease with aging, while 100

showed an increase. Of these MLGs, 131 were classified at

phylogenetic levels ranging from order to species (Table 3).

Notably, MLGs affiliated with the genera Alistipes, Bacteroides,

and Parabacteroides, all within the phylum Bacteroidetes,

demonstrated a tendency to decrease with age, with 25 out of 33

MLGs (containing 10,181 of 12,133 genes) exhibiting this pattern.

While Bacteroidetes, predominant in the human gut microbiota, are

commonly regarded as opportunistic pathogens, their role in aging

remains enigmatic and warrants further elucidation (Vaiserman

et al., 2020; Pan et al., 2023). Additionally, a prominent member of

this phylum, Bacteroides thetaiotaomicron, was observed to increase

with age, potentially serving to inhibit the activation of pro-

inflammatory transcription factors in elderly individuals (Xu

et al., 2003; Kelly et al., 2004).

Significant variability with aging was also observed among

MLGs affiliated with the phylum Firmicutes. At the genus level,

MLGs from Clostridium, Erysipelotrichaceae, Lactobacillus,

Subdoligranulum, Streptococcus, and Veillonella spp. notably

increased with age, whereas MLGs from Eubacterium, Roseburia,

Faecalibacterium, and Ruminococcus spp. decreased (Table 3).

Notably, the age-decreased bacteria predominantly belong to
TABLE 2 Within-sample diversity of the gut metagenomes.

Groups (No.
of samples)

Gene
count (unweighted)

Shannon
index (weighted)

Shannon index
(KO profiles)

Gender

female (90) 452,583 ± 146,686 11.46 ± 0.54 4.02 ± 0.32

male (95) 444,818 ± 128,558 11.34 ± 0.56 4.06 ± 0.37

P (Student’s t-test) 0.7029 0.1177 0.3652

Age

<45 (younger, 98) 464,085 ± 135,460 11.46 ± 0.56 3.96 ± 0.38

>=45 (older, 87) 431,247 ± 138,152 11.33 ± 0.53 4.13 ± 0.30

P (Student’s t-test) 0.1041 0.1207 0.0095

BMI

<20 (lean, 48) 474,818 ± 141,246 11.47 ± 0.58 3.92 ± 0.37

20~25 (middle-weight, 73) 440,079 ± 141,295 11.35 ± 0.57 4.12 ± 0.31

>=25 (over-weight, 64) 438,643 ± 129,185 11.39 ± 0.51 4.02 ± 0.34

P (Kruskal-Wallis test) 0.3869 0.3462 0.0126

Enterotypes

1 (Bacteroides, 83) 416,035 ± 125,269 11.45 ± 0.40 3.90 ± 0.29

2 (Prevotella, 43) 450,381 ± 129,584 10.92 ± 0.65 4.24 ± 0.34

3 (Roseburia/
Ruminococcus, 59)

493,100 ± 148,223 11.68 ± 0.43 4.04 ± 0.33

P (Kruskal-Wallis test) 0.0081 5.05x10-9 1.06x10-8
TABLE 1 PERMANOVA analysis for the gene and KO profiles.

Phenotypes
No.
of

subjects

R2 (P) for
gene profiles

R2 (P) for
KO profiles

Gender 2 0.57% (0.153) 0.41% (0.341)

Age 51 0.80% (0.015) 1.09% (0.016)

BMI 156 0.64% (0.074) 0.43% (0.313)

Enterotypes 3 12.9% (<1x10-4) 29.1% (<1x10-4)
R2 and P-values were adjusted for multiple comparisons.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1419884
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2024.1419884
beneficial species such as Eubacterium hallii, Roseburia

inulinivorans (both recognized as butyrate producers (Duncan

et al., 2004; Duncan et al., 2006; Engels et al., 2016)), and

Ruminococcus obeum (Hayashi et al., 2003). Particularly striking

was the decline observed in the genus Faecalibacterium

(predominantly represented by F. prausnitzii), which exhibited a

significant decrease across different age stages (r=-0.30 with age, P =

2.53 x 10-4, Spearman’s rho correlation coefficient test;
Frontiers in Cellular and Infection Microbiology 05
Supplementary Figure S5), consistent with findings from other

investigations (Biagi et al., 2010; Kim and Jazwinski, 2018; Donati

Zeppa et al., 2022). Faecalibacterium exerts beneficial effects such as

butyrate production and modulation of gut inflammation processes

(Guo et al., 2023; Martin et al., 2023).

Moreover, several MLGs from pathogen-like genera such as

Escherichia and Klebsiella (both within the phylum Proteobacteria)

demonstrated an increase with aging. However, MLGs from
TABLE 3 Statistics of phylogenetic levels of age-associated MLGs.

Phyla Families/genera

Decrease
with aging

Increase
with aging

Species of MLGs
#

MLGs
#

genes
#

MLGs
#

genes

Bacteroidetes

Rikenellaceae/Alistipes 4 343 ↓
A. putredinis, A. shahii, Alistipes

sp. HGB5*

Bacteroidaceae/Bacteroides 19 8,691 7 1,888 ↓

B. finegoldii, B. intestinalis, B. ovatus,
B. stercoris, B. vulgatus, Bacteroides sp.
1_1_6, Bacteroides sp. D20 decrease

with aging, B. coprophilus, B. plebeius,
B. thetaiotaomicron increase

with aging

Porphyromonadaceae/Parabacteroides 2 1,147 1 64 ↓ P. merdae

Firmicutes

Acidaminococcaceae/Acidaminococcus 2 337 ↑ A. fermentans

Clostridiaceae/Clostridium 15 7,242 ↑
C. bolteae, C. hathewayi, C. leptum, C.
perfringens, C. scindens, C. symbiosum,

Clostridium sp. HGF2

Erysipelotrichaceae 1 75 4 2329 ↑
Coprobacillus sp. 29_1, Coprobacillus

sp. D7, Clostridium ramosum

Lactobacillaceae/Lactobacillus 2 918 ↑ L. mucosae*

Ruminococcaceae/Subdoligranulum 2 1,987 ↑ Subdoligranulum sp. 4_3_54A2FAA*

Streptococcaceae/Streptococcus 1 116 5 2,447 ↑

S.parasanguinis, S. salivarius,
Streptococcus sp. 73H25AP, S.

vestibularis increase with aging, S.
bovis derease with aging

Veillonellaceae/Veillonella 1 984 ↑ V. parvula

Eubacteriaceae/Eubacterium 3 1,237 ↓ E. eligens, E. hallii, E. siraeum

Lachnospiraceae/Roseburia 1 446 ↓ R. inulinivorans

Ruminococcaceae/Faecalibacterium 10 5,616 ↓ F. prausnitzii

Ruminococcaceae/Ruminococcus 7 6,976 3 291 ↓

R. obeum, Ruminococcus sp.
5_1_39BFAA, Ruminococcus sp. SR1/5

decrease with aging, R. bromii, R.
gnavus increase with aging

Fusobacteria

Fusobacterium mortiferum 1 184 ↑

Fusobacterium ulcerans 3 484 ↑

Fusobacterium varium 1 1,012 ↓

Proteobacteria

Burkholderiales 4 1,504 ↓ Burkholderiales bacterium 1_1_47

Enterobacteriaceae/Escherichia 2 143 ↑ E. coli

Enterobacteriaceae/Klebsiella 3 441 ↑ K. pneumoniae

Actinobacteria Bifidobacteriaceae/Bifidobacterium 3 1,828 ↑
B. dentium, B. longum,
B. pseudocatenulatum
MLGs were assigned into phylogenetic levels at the nucleotide level or, when marked with * at the protein level.
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Bifidobacterium (specifically B. dentium and B. longum) - well-

known probiotic genera - also exhibited an upward trend with age

(refer to Table 3). While B. dentium has been documented as an

opportunistic oral pathogen (Ventura et al., 2009), B. longum

displayed a significant increase between youth and older

individuals in our study (P = 0.031), despite a recorded decline in

adults compared to children/infants (Turroni et al., 2012).

Additionally, Fusobacterium, commonly associated with various

human diseases (Stavreas et al., 2005; Huggan and Murdoch,

2008; Stokowa-Soltys et al., 2021), displayed a positive correlation

with age, with F. mortiferum and F. ulcerans showing an increase,

while F. varium exhibited a decrease (Table 3).

2.4.2 BMI-associated MLGs
We identified 215 MLGs (comprising ≥50 genes), with 172

showing decreased abundance and 43 exhibiting increased

abundance in association with BMI. Among these, 79 MLGs were

categorized into phylogenetic levels. Notably, within the phylum

Bacteroidetes, MLGs originating from Alistipes, Bacteroides, and

Odoribacter spp. demonstrated significant decreases in abundance

with increasing BMI, whereas MLGs from Prevotella exhibited an

increase (Table 4). Specifically, 16 out of 18 MLGs derived from

Bacteroides spp., encompassing 8,979 out of 8,936 genes, showed

decreased abundance with increasing BMI. Conversely, the

remaining 2 MLGs, including B. vulgatus, an opportunistic

pathogen associated with peritoneal diseases, showed increased

abundance, potentially exerting detrimental effects on individuals
Frontiers in Cellular and Infection Microbiology 06
with higher body weight (Bamba et al., 1995; Shiba et al., 2003; Mills

et al., 2022; Pan et al., 2023).

Within the phylum Firmicutes, MLGs from Blautia, Dorea, and

Ruminococcus gnavus demonstrated increased abundance with

increasing BMI, whereas MLGs from Eubacterium, Roseburia,

Faecalibacterium, and Ruminococcus spp. (excluding R. gnavus)

showed decreased abundance (Table 4). Noteworthy is the

observation that MLGs from Ruminococcus gnavus, a mucolytic

bacterium associated with the colon, exhibited increased abundance

with both aging and increasing BMI, suggesting a potential role in

these contexts. Similarly, akin to aging, bacteria exhibiting

decreased abundance with increasing BMI included several

known beneficial species, such as Roseburia intestinalis, Roseburia

inulinivorans , Faecalibacterium prausnitzii , and various

Ruminococcus species.

Furthermore, two MLGs from the genus Bifidobacterium,

namely B. bifidum and B. pseudocatenulatum, displayed increased

abundance with increasing BMI (Table 4). Numerous studies have

highlighted the beneficial effects of these Bifidobacterium species

(Saavedra et al., 1994; Turroni et al., 2019; Lee et al., 2021). We

acknowledge that some of the studies have come to different

conclusions about the relationship between the abundance of

Bifidobacterium and age or BMI, which may due to sample size,

regional differences, or individual dietary habits (Zimmermann and

Curtis, 2020; Hassan et al., 2022; Yoshida et al., 2022; Escouto et al.,

2023). Nevertheless, further investigation is warranted to elucidate

their specific roles.
TABLE 4 Statistics of phylogenetic levels of BMI-associated MLGs.

Phyla Families/genera

Decrease
with BMI

Increase with BMI

Species of MLGs
#

MLGs
#

genes
#

MLGs
#

genes

Bacteroidetes

Rikenellaceae/Alistipes 4 2,358 ↓ A. putredinis, A. shahii

Bacteroidaceae/Bacteroides 16 8,979 2 857 ↓

B. cellulosilyticus, B. coprocola, B.
eggerthii, B. intestinalis, B. ovatus, B.
uniformis, B. xylanisolvens derease
with BMI, B. vulgatus increase

wich BMI

Porphyromonadaceae/Odoribacter 1 1,749 ↓ O. splanchnicus

Prevotellaceae/Prevotella 2 290 ↑ P. copri

Firmicutes

Lachnospiraceae/Blautia 1 429 ↑ B. hansenii

Lachnospiraceae/Dorea 3 684 ↑ D. formicigenerans, D. longicatena

Eubacteriaceae/Eubacterium 1 402 ↓ E. eligens

Lachnospiraceae/Roseburia 3 396 ↓ R. intestinalis, R. inulinivorans

Ruminococcaceae/Faecalibacterium 8 4,260 ↓ F. prausnitzii

Ruminococcaceae/
Ruminococcus gnavus

2 2,885 ↑

Ruminococcaceae/other Ruminococcus 5 3,478 ↓
R. bromii, R. lactaris, R. obeum,

Ruminococcus sp. SR1/5

Actinobacteria Bifidobacteriaceae/Bifidobacterium 2 2,642 ↑ B. bifidum, B. pseudocatenulatum
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2.4.3 Gender-associated MLGs
We subsequently identified 43 MLGs (comprising ≥50 genes),

with 29 enriched in females and 14 enriched in males, from gender-

associated genes. Among these, 29 MLGs were assigned into

phylogenetic levels. Interestingly, MLGs from Bacteroides,

Parabacteroides, Clostridium, and Akkermansia spp. were all

enriched in females (Table 5). This finding contrasts with

previous studies (Mueller et al., 2006; Li et al., 2008) that reported

higher levels of Bacteroides and Clostridia in males compared to

females. It is plausible that gender influences susceptibility to the

effects of microbiota (Davey et al., 2012).
2.5 Functional variation of gut microbiome

We investigated the functional variation of gut microbiota under

the influence of various phenotypes through association analysis

based on KO (KEGG ortholog) relative abundance profiles. Using

analogous methods as those employed for gene profiles, we identified

631 age-associated KOs (P ≤ 0.05, corresponding to 28.9% FDR), 251

BMI-associated KOs (P ≤ 0.05, 100% FDR), and 439 gender-

associated KOs (P ≤ 0.05, 52.4% FDR) (Supplementary Table S4).

In terms of aging, KOs that increased with age were enriched in

categories related to “membrane transport”, “amino acid

metabolism”, and “carbohydrate metabolism”, while those that

decreased were enriched in “signal transduction”, “DNA

replication and repair”, “enzyme families”, and “glycan

biosynthesis and metabolism” (Figure 2A). These conclusions are

consistent with the reported findings. For instance, metabolism of

aromatic amino acids are shown to positively associated with aging

(Rampelli et al., 2013; Wu et al., 2019); Older adults are proven to

have a reduced number of gene families involved in genetic

transcription, repair and defense mechanisms compared to

younger people (Odamaki et al., 2018); glycosylation has been

demonstrated to be associated with aging (Kobata, 2003;

Dall'Olio, 2018; Cindric et al., 2021). However, Older adults were

reported to have reduced pathway related to carbohydrate

metabolism (Rampelli et al., 2013; Odamaki et al., 2018), which

contradict with our data. Similarly, for BMI, KOs that increased

with BMI were enriched in “membrane transport” and

“carbohydrate metabolism”, whereas those that decreased were

enriched in “translation”, “energy metabolism”, and “glycan

biosynthesis and metabolism” (Figure 2B). The observation of

elevated levels of membrane transport in the gut microbiota

across several diseases, including obesity, inflammatory bowel

disease (Greenblum et al., 2012), and type 2 diabetes (Zhai et al.,

2021), aligns with our findings, suggesting potential adverse

effects associated with aging and higher BMI. Additionally,

categories such as carbohydrate and amino acid metabolism were

upregulated in older and overweight individuals, indicative of an

enhanced capacity for energy harvest in these populations

(Turnbaugh et al., 2006; Turnbaugh et al., 2009). Conversely, the

category of glycan biosynthesis and metabolism, particularly

glycosyltransferases and lipopolysaccharide biosynthesis proteins,
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exhibited significant depletion in older and overweight individuals,

suggesting favorable effects associated with these functions.

Regarding gender , females showed enrichment in

“carbohydrate metabolism”, “energy metabolism”, “enzyme

families”, and “glycan biosynthesis and metabolism”, whereas

males exhibited enrichment in “nucleotide metabolism” and

“metabolism of cofactors and vitamins” (Figure 2C).

Research on the gut microbiota of Chinses people have

continuously emerged (Zhang et al., 2015; Haro et al., 2016;

Winglee et al., 2017; Gao et al., 2018; He et al., 2018; Lv et al.,

2019; Zhang et al., 2019; Lu et al., 2021; Liang et al., 2023; Ren et al.,

2023). In comparison to the published studies, our findings are

consistent with the general consensus that age, BMI, and gender do

influence the gut microbiome, although the effect size may be

smaller compared to other factors such as diet and enterotypes.

For instance, previous studies have shown significant shifts in gut

microbiota composition with age and BMI, aligning with our

observation of changes in specific microbial taxa and functional

genes. Importantly, our study adds to the literature by focusing on a

unique population from South China, thereby highlighting regional

differences that may contribute to these variations. Although our

study provides valuable insights into the influence of gender, age,

and BMI on the gut microbiomes of individuals from South China,

we acknowledge that the sample size of 185 adults may not be large

enough to fully represent the entire population. Future studies with

larger and more diverse cohorts are needed to validate and extend

our findings.
3 Materials and methods

3.1 Data sources, sequencing and profiling

To characterize the gut microbiota of typical adult individuals

from South China, we re-analyzed the gut metagenomic dataset of

fecal samples from 185 subjects (90 females and 95 males), aged 14

to 74 years, with BMI ranging from 15.6 to 32.6 kg/m2. The raw

metagenomic sequencing read data of all samples was downloaded

from the NCBI SRA database with accession no. PRJNA422434.

These individuals had not taken antibiotics in the past two months,

and their fecal samples were frozen immediately and underwent

DNA extraction with standard methods (Godon et al., 1997).

Adapter contamination and low-quality reads were discarded

from the raw reads, and the remaining reads were filtered to

eliminate human host DNA based on the human genome

reference (hg18).

A gene catalogue, amalgamated from European and Chinese

cohorts, comprising nearly 4.3 million genes, was utilized for

analysis (Qin et al., 2010; Qin et al., 2012). The gene abundance

in the 185 samples was quantified using SOAP2, a rapid short read

alignment tool (Li et al., 2009), with a similarity threshold set at

90%. The quantitative relative abundance of each gene was

calculated by normalizing the number of reads mapped to each

gene by their respective lengths. To mitigate the influence of varying
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sequence amounts among samples, gene relative abundances were

normalized within each sample.

To explore the impact of gender, age, and BMI on gut

microbiomes, we performed PERMANOVA analysis based on

gene and KEGG ortholog (KO) profiles. We assessed the

association between enterotypes and these phenotypes and

evaluated the extent to which enterotypes, gender, age, and BMI

explained variation in these profiles.
3.2 Biodiversity and phylogenetic
variation assessment

Biodiversity serves as a metric for assessing gut microbiome

richness and evenness, often correlating with host phenotypes. To

evaluate biodiversity, we used two estimators: gene count

(unweighted) and Shannon index (weighted). The gene count

provides an unweighted measure of the total number of genes

present, while the Shannon index accounts for both richness and

evenness of species distribution. For functional-level diversity, we

used the Shannon index based on KEGG ortholog (KO) profiles.

Beta diversity was assessed using unweighted and Hellinger

distances to measure between-sample diversity.

To comprehensively explore the gene and phylogenetic

variations within the gut microbiome under the influence of

gender, age, and BMI, we conducted association analyses to

identify differential genes associated with each phenotype based

on gene abundance profiles. Initially, to mitigate potential biases

stemming from other phenotypes, we employed stratified random

sampling among the 185 samples (or population stratification akin

to GWAS), yielding a subset of samples for each phenotype

(Supplementary Table S2).

Genes occurring in fewer than six samples were excluded. The

remaining genes underwent analysis of abundance profiles using

Student’s t-test for gender and Spearman’s rho correlation

coefficient test for age and BMI. Integrating p-values with the

false discovery rate (FDR), we identified genes associated with
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each phenotype. Genes were further clustered into metagenomic

linkage groups (MLGs) using previously described methods (Qin

et al., 2012; Wang et al., 2022) to manage the extensive data and

facilitate taxonomic categorization.
3.3 MLG identification and
taxonomy assignment

3.3.1 Clustering methods for identifying MLG
In this study, a concept of metagenomic linkage group (MLG),

which could facilitate the taxonomic description of metagenomic

data from whole-genome shotgun sequencing were devised. To

identify MLG from the set of T2D-associated gene markers, we

developed an in-house software that comprises three steps as

indicated below:

Step 1: The original set of T2D-associated gene markers was

taken as initial sub-clusters of genes. It should be noted that in the

establishment of the gene profile we had constructed gene linkage

groups to reduce the dimensionality of the statistical analysis.

Accordingly, all genes from a gene linkage group were considered

as one sub-cluster.

Step 2: We applied the Chameleon algorithm (Yao et al., 2023)

to combine the sub-clusters exhibiting a minimal similarity of 0.4

using dynamic modeling technology and basing selection on both

interconnectivity and closeness. The similarity here is defined by the

product of interconnectivity and closeness (we used this definition

in the whole analysis of MLG identification). We term these clusters

semi-clusters.

Step 3: To further merge the semi-clusters established in step 2.

In this step, we first updated the similarity between any two semi-

clusters, and then performed a taxonomic assignment for each

semi-cluster (see the method below). Finally, two or more semi-

clusters would be merged into a MLG if they satisfied both of the

following two requirements: a) the similarity values between the

semi-clusters were > 0.2; b) all these semi-clusters were assigned

from the same taxonomy lineage.
TABLE 5 Statistics of phylogenetic levels of gender-associated MLGs.

Phyla Families/genera

Enriched
in female

Enriched
in male

Species of MLGs
#

MLGs
#

genes
#

MLGs
#

genes

Bacteroidetes

Bacteroidaceae/
Bacteroides

10 6,495
B. cellulosilyticus, B. ovatus, B. stercoris, B. thetaiotaomicron, B.
uniformis, Bacteroides sp. 3_1_23, Bacteroides sp. 3_1_33FAA

Porphyromonadaceae/
Parabacteroides

1 1,161 P. merdae

Firmicutes
Clostridiaceae/
Clostridium

3 788 C. bolteae, C. symbiosum, Clostridium sp. HGF2

Verrucomicrobia
Verrucomicrobiaceae/

Akkermansia
2 2,147 A. muciniphila*
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3.3.2 Taxonomic assignment for MLGs
All genes from one MLG were aligned to the reference microbial

genomes (IMG database) at the nucleotide level (by BLASTN) and

the NCBI-NR database at the protein level (by BLASTP). The

alignment hits were filtered by both e-value (< 1×10-10 at the

nucleotide level and < 1×10-5 at the protein level) and alignment

coverage (>70% of a query sequence). From the alignments with the

reference microbial genomes, we obtained a list of well-mapped

bacterial genomes for each MLG and ordered these bacterial

genomes according to the proportion of genes that could be

mapped onto the bacterial genome, as well as the average identity

of the alignments. The taxonomic assignment of a MLG was

determined by following principles: 1) if more than 90% of genes

in this MLG can be mapped onto a reference genome with a

threshold of 95% identity at the nucleotide level, this particular

MLG was considered to originate from this known bacterial species;

2) if more than 80% of genes in this MLG can be mapped onto a

reference genome with a threshold of 85% identity at the both
Frontiers in Cellular and Infection Microbiology 09
nucleotide and protein levels, this MLG were considered to

originate from the same genus of the matched bacterial species; 3)

if the 16S rDNA sequences can be identified from the assembly

result of a MLG, the phylogenetic analysis by RDP-classifier (Wang

et al., 2007) (bootstrap value > 0.80) were preformed, and then the

taxonomic assignment for the MLG was defined if the phylotype

from 16S sequences was consistent with that from genes.

3.3.3 Statistical analyses
Statistical analyses were implemented using the R software

environment. Permutational multivariate analysis of variance

(PERMANOVA) was conducted using the adonis function from

the vegan package to determine the effect of host properties on the

gut microbiome. The Student’s t-test and Kruskal-Wallis test were

employed to analyze differences in Shannon index among different

groups. Statistical significance was determined at a p-value

threshold of < 0.05, and the q-value was computed to adjust for

the false discovery rate (FDR) for multiple comparisons.
FIGURE 2

Distribution of functional categories (level B) for phenotype-associated KEGG orthologs. Bar plot showing the comparisons of age-associated (A),
BMI-associated (B), and gender-associated (C) KOs.
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