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Numerous tripartite motif (TRIM) proteins, identified as E3 ubiquitin ligases,

participate in various viral infections through ubiquitylation, ISGylation, and

SUMOylation processes. Respiratory viruses, particularly influenza A virus (IAV)

and respiratory coronaviruses (CoVs), have severely threatened public health with

high morbidity and mortality, causing incalculable losses. Research on the

regulation of TRIM proteins in respiratory virus infections is crucial for disease

prevention and control. This review introduces TRIM proteins, summarizes recent

discoveries regarding their roles and molecular mechanisms in IAV and CoVs

infections, discusses current research gaps, and explores potential future trends in

this rapidly developing field. It aims to enhance understanding of virus–host

interactions and inform the development of new molecularly targeted therapies.
KEYWORDS
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1 Introduction

Tripartite motif (TRIM) proteins are characterized by a conserved N-terminal RBCC

motif, which comprises a RING zinc finger domain, one or two B-box domains, and a

coiled-coil domain. Most TRIM proteins also possess a variable C-terminus and are found

widely across insects, teleosts, and higher vertebrates (van der Aa et al., 2009; van Gent

et al., 2018). The number of TRIM genes varies significantly across different species; for

example, humans possess over 80 TRIM genes, chickens have approximately 54, zebrafish

possess 208, and worms have 20 (Carthagena et al., 2009; Boudinot et al., 2011; Campbell

et al., 2023). Our group has previously characterized the entire porcine TRIM family,

identifying 57 porcine TRIM proteins (Wei et al., 2019). Notably, the key restriction factor
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TRIM22 was absent, suggesting that TRIM proteins are a rapidly

evolving and species-specifically expanding polygenic family.

Despite their common domain features, TRIM proteins play

multiple roles in diverse cellular processes, including development,

differentiation, oncogenesis, apoptosis, and antiviral immunity

(Ozato et al., 2008; Hatakeyama, 2017; Venuto and Merla, 2019).

Growing interest in TRIM proteins research has highlighted these

proteins as potent viral restriction factors. TRIM5, one of the best-

studied anti-retroviral proteins, has been shown to inhibit post-

entry stages of human immunodeficiency virus (HIV) and murine

leukemia virus (MLV) (Stremlau et al., 2004; Pertel et al., 2011).

Other TRIM proteins, such as TRIM11, TRIM25, and TRIM56, can

also interfere with various stages of HIV-1 or MLV replication

(Kane et al., 2016). TRIM22 has been reported to restrict numerous

viruses by distinct mechanisms, including blocking the release of

HIV Gag-only particles and the RNA synthesis of hepatitis B virus,

inhibiting respiratory syncytial virus (RSV) replication by targeting

JAK-STAT1/2 signaling, and interrupting herpes simplex virus 1 by

epigenetic silencing of viral immediate-early genes (Barr et al., 2008;

Gao et al., 2009; Reddi et al., 2021; Wang et al., 2021a). TRIM22 also

suppresses the replication of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) by ubiquitin-proteasome degrading

NSP8 (Fan et al., 2024). It can interact with influenza A virus (IAV)

and porcine reproductive and respiratory syndrome virus

nucleoprotein for degradation (Di Pietro et al., 2013; Jing et al.,

2019). Currently, more studies of TRIM proteins are focusing on

the RING domain with E3 ubiquitin ligase activity.

Viral restriction by many TRIM proteins appears to be virus

species- or family-specific, whereby multiple TRIM proteins

contribute to the effective restriction of a particular virus. For

example, porcine endogenous retroviruses are insensitive to

divergent mammalian TRIM5a proteins, although they can

strongly restrict various lentiviruses (Wood et al., 2009). More

importantly, only a few TRIM proteins are known to restrict

distinct viruses in a common manner. In addition, several TRIM

proteins can also be utilized to benefit viral proliferation (Yang

et al., 2022; Cui et al., 2023; Li X. et al., 2024). The global community

is experiencing a severe public health crisis due to the co-circulation

of respiratory viruses, notably IAV and SARS-CoV-2. Vaccines play

a crucial role in combating infectious diseases, yet respiratory

viruses pose unique challenges (Dadashi et al., 2021; Wang et al.,

2022; Morens et al., 2023). Hence, it is of great significance to study

the interaction between viruses and hosts and to identify novel

antiviral factors, which will provide a basis for developing novel

antiviral drug targets. Here, we will review the latest progress in the

interplay between respiratory viruses and TRIM proteins, enriching

the rationale of virus–host interaction and also providing unique

insight into the role of the TRIM proteins in viral replication.

Summary of the roles of TRIM proteins in influenza A virus and

respiratory coronaviruses infections is shown in Table 1.
2 Influenza A virus

The influenza virus, an RNA virus from the Orthomyxoviridae

family, poses significant health risks to humans and animals by
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causing mild to severe respiratory symptoms. Influenza viruses can

be classified into four types, among which influenza A and B viruses

are the most common pathogens in humans. The IAV is highly

variable and pathogenic and can be further identified by different

subtypes based on their surface proteins hemagglutinin (HA) and

neuraminidase (NA), such as H1N1 and H3N2. Known for its wide

range of animal host species, IAV infection has the potential to

trigger global pandemics (Javanian et al., 2021; Berche, 2022). This

highlights the critical importance of understanding its pathogenic

characteristics and addressing the challenges in its control and

prevention. The high frequency of mutation and gene reassortment

in the IAV complicates efforts to combat it, as these genetic changes

can lead to the emergence of new, more adaptable virus subtypes.

Such variability underscores the necessity of identifying robust

antivirals through the study of virus–host interactions. One

promising area of research in this context is the role of TRIM

proteins. These proteins are part of the host’s immune response and

could potentially serve as new targets for antiviral strategies,

offering new avenues for therapeutic intervention against the

influenza virus.
2.1 TRIM-mediated IAV inhibition

2.1.1 TRIM proteins directly antagonize
viral components

Increasing data suggest that TRIM proteins can directly

antagonize viral components to restrict IAV infection. One of the

major targets of TRIM proteins is the nucleoprotein (NP), a major

structural component of the viral ribonucleoprotein (vRNP). NP

binding to viral RNA is crucial for vRNP activity during the viral

transcription and replication processes (Turrell et al., 2013; Te

Velthuis and Fodor, 2016). TRIM proteins, including TRIM14,

TRIM22, and TRIM41, mediate the polyubiquitination and

subsequent proteasomal degradation of NP (Di Pietro et al., 2013;

Patil et al., 2018; Wu et al., 2019). TRIM14 could interact with the

viral NP based on the PRY-SPRY domain and then facilitate the

K48-linked ubiquitination of NP for proteasome-dependent

degradation, leading to the inhibition of IAV RNP formation.

TRIM14 could also effectively prevent the translocation of NP

from the cytoplasm to the nucleus and further restrict IAV

replication in vitro (Wu et al., 2019). TRIM22, as an IAV-induced

gene and IFN-stimulated gene (ISG), strongly interrupted IAV

replication in human alveolar epithelial A549 cells and MDCK

cel ls . The TRIM22–NP interact ion could induce the

polyubiquitination-proteasome degradation of NP (Di Pietro

et al., 2013). Interestingly, another study showed that TRIM22

could be constitutively expressed without viral infection or innate

immune stimulation in primary cell lines and the airways of rhesus

macaques. Constitutive TRIM22 expression was sufficient to inhibit

viral transcription independently of IFN-mediated anti-IAV innate

immune defense, which conferred a pre-existing defense against

IAV infection. These research studies highlighted the intracellular

restriction of IAV by TRIM22 in what seemed to be tissue- or cell-

specific patterns (Charman et al., 2021). The proteomic study

revealed that TRIM41 interacted with NP through its SPRY
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domain and targeted NP for proteasomal destruction dependent on

its E3 ligase activity. Ectopic TRIM41 expression decreased host

susceptibility to IAV infection. Conversely, RNA interference

(RNAi) and knockout of TRIM41 facilitated IAV infection (Patil

et al., 2018).

Apart from its intrinsic defense role, TRIM21 could inhibit the

replication of H3/H5/H9 IAV subtypes by targeting matrix protein

1 (M1), while being ineffective against H1 and H7 M1. TRIM21

bound to the residue R95 of M1 and promoted the K48-linked

ubiquitination and proteasomal degradation of M1 at K242. The

M1 R95K or K242R mutations conferred resistance to TRIM21,

leading to more effective replication and severe pathogenicity.

Interestingly, a TRIM21-driven host adaptive R95K mutation was

found when avian influenza virus spilled over to mammals (Lin

et al., 2023). Affinity purification coupled with mass spectrometry

was used to identify host factors interacting with polymerase basic

protein 1 (PB1), the catalytic core of the IAV RNA polymerase

complex. Data showed that TRIM32 could interact with multiple

IAV strains’ PB1 and promote the translocation of PB1 to the
Frontiers in Cellular and Infection Microbiology 03
nucleus. Subsequently, TRIM32 inhibited the polymerase activity by

ubiquitinating the PB1. Reconstitution of trim32−/− mouse

embryonic fibroblasts with TRIM32, but not a catalytically

inactive mutant, restored viral restriction (Fu et al., 2015).

TRIM25 has been demonstrated to be an RNA-binding protein,

which plays a key role in the antiviral interferon response by

activating the RIG-I pathway (Choudhury et al., 2020; Xiao et al.,

2021; Diaz-Beneitez et al., 2022). However, new evidence has shown

alternative mechanisms for TRIM25 anti-IAV action. For example,

activating the RIG-I pathway did not require TRIM25 activity in

human-derived cultured cells upon IAV infection. TRIM25 bound

and destabilized IAV mRNAs to downregulate the targeted RNA

rather than directly inhibiting IAV transcription. Surprisingly, the

previously identified RNA-binding domain and the E3 ubiquitin

ligase domain were redundant for inhibiting IAV replication

(Choudhury et al., 2022). Another study indicated a nuclear role

for TRIM25 in suppressing IAV replication independent of

ubiquitin ligase activity and IFN response. Nuclear TRIM25

specifically targeted vRNP to inhibit RNA synthesis. Notably,
TABLE 1 Summary of the roles of TRIM proteins in influenza A virus and respiratory coronaviruses infections.

TRIM
proteins

Structure Virus
Antiviral
function

Molecular mechanism Ref.

TRIM6 R-B2-CC-PRY-SPRY SARS-CoV-2 Promotion Catalyze NP ubiquitination (Zhou et al., 2024)

TRIM14 B2-CC-PRY-SPRY IAV Inhibition Target NP for degradation (Wu et al., 2019)

TRIM21 R-B2-CC-PRY-SPRY

IAV Inhibition Target M1 for degradation (Lin et al., 2023)

IAV Inhibition Target TBK1-IRF3 signaling (Yuan et al., 2024)

IAV Promotion Regulate innate immunity (Li ZA. et al., 2024)

SARS-CoV-2 Inhibition Target NP for degradation (Mao et al., 2023)

TRIM22 R-B2-CC-SPRY

IAV Inhibition Target NP for degradation (Di Pietro et al., 2013)

IAV Inhibition A pre-existing defense (Charman et al., 2021)

SARS-CoV-2 Inhibition Target NSP8 for degradation (Fan et al., 2024)

TRIM25
R-B1-B2-CC-
PRY-SPRY

IAV Inhibition Destabilize viral mRNA (Choudhury et al., 2022)

IAV Inhibition Target viral ribonucleoproteins (Meyerson et al., 2017)

TRIM28
R-B1-B2-CC-
PHD-BROMO

IAV Inhibition Activate PKR-mediated IFN-
b expression

(Krischuns et al., 2018)

SARS-CoV-2 Inhibition Target ACE2 (Wang et al., 2021b)

SARS-CoV-2 Promotion Catalyze NP SUMOylation (Ren et al., 2024)

TRIM29 B2-CC IAV Promotion Target NEMO for degradation (Xing et al., 2016)

TRIM32 R-B2-CC-NHL IAV Inhibition Target PB1 for degradation (Fu et al., 2015)

TRIM35 R-B2-CC-PRY-SPRY IAV Inhibition Activate TRAF3 and degrade PB2 (Sun et al., 2020)

TRIM41 R-B2-CC-PRY-SPRY IAV Inhibition Target NP for degradation (Patil et al., 2018)

TRIM46
R-B2-CC-Cos-
FN3-SPRY

IAV Promotion Target TBK1 for degradation (Su et al., 2022)

TRIM56 R-B1-B2-CC

IAV/YFV/DENV2 Inhibition Restrict viral RNA synthesis (Liu et al., 2014;
Liu et al., 2016)

HCoV-OC43 Inhibition Disturb a later life cycle (Liu et al., 2014)
* R, ring finger domain; B1, B-box1 domain; B2, B-box2 domain; CC, coiled-coil domain; PRY, ryanodine receptor; SPRY, SplA and ryanodine receptor; PHD, plant homeodomain; BROMO,
bromodomain; NHL, NHL repeats; FN3, fibronectin type III motif.
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instead of interrupting the initiation of the capped-RNA-primed

viral mRNA synthesis, TRIM25 blocked the onset of RNA chain

elongation because it could limit RNA transferring into the

polymerase complex (Meyerson et al., 2017). Influenza A and B

viruses were inhibited by TRIM56 in cell culture, while human

metapneumovirus was not inhibited. Unlike its antiviral action

against positive-strand RNA viruses, TRIM56 inhibition of

influenza virus was independent of N-terminal domains (Liu

et al., 2014). Rather, the expression of a 63-residue-long C-

terminal tail portion of TRIM56 inhibited the replication of

influenza viruses as effectively as that of full-length TRIM56 by

impeding viral RNA synthesis. These data revealed that TRIM56

has developed multiple domains to inhibit distinct viral infections

(Liu et al., 2016). Taken together, it is summarized that diverse

TRIM proteins play a crucial role as intrinsic antiviral factors, either

by directly impeding activities of influenza viral proteins, such as

NP, M1, and PB1, or by impeding viral RNA synthesis.

2.1.2 TRIM proteins positively regulate antiviral
innate immunity

The innate immune system is the first line of defense against

various pathogens. The conserved pathogen-associated molecular

patterns (PAMPs) are recognized by a series of germline-encoded

pattern recognition receptors (PRRs), including Toll-like receptors

(TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs),

and cytosolic DNA-sensing receptors. Among them, the RLRs

(particularly the RIG-I and MDA5) function as essential sensors

of viral double-stranded RNA (dsRNA) or single-stranded RNA

(ssRNA) in the cytoplasm (van Gent et al., 2018). Upon recognition,

they recruit downstream signaling molecules for phosphorylation,

which ultimately leads to the activation of cytoplasmic transcription

factors such as nuclear NF-kB and interferon regulatory factors

(IRFs) into the nucleus. This event promotes the transcription of

diverse downstream immune-regulatory genes, including pro-

inflammatory cytokines and chemokines. Importantly, IFN-I

further activates the downstream JAK-STAT signaling pathway to

induce the transcription of hundreds of ISGs (Bowie and

Unterholzner, 2008; Wei et al., 2018; Shen et al., 2021). Not only

can TRIM proteins be induced by IFN-I, but they can also modulate

IFN-I, playing a significant regulatory role in antiviral infection and

innate immune signaling pathways.

Well-characterized TRIM proteins in positively regulating anti-

IAV innate immunity include TRIM21, which was upregulated in

clinical patient serum and A549 cells upon IAV infection.

Overexpression of TRIM21 reduced IAV replication correlated

with increased IFN-a and IFN-b expression. Additionally,

overexpression of TRIM21 decreased H1N1-induced inflammation

and apoptosis by activating the TBK1-IRF3 signaling pathway in

A549 cells (Yuan et al., 2024). In addition, a novel mechanism of

PKR-mediated IFN-b expression was revealed in TRIM28 anti-

HPAIV action. TRIM28 corepressor activity was specifically

regulated by phosphorylation of S473, which resulted in increased

expression of IFN-b, IL-6, and IL-8 during infection with HPAIV.

Strain-specific phosphorylation of TRIM28 S473 was induced by a

PKR signaling cascade in response to the viral RNA sensor RIG-I.
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Thus, TRIM28, as a critical positive immune regulator, protected

against IAV infection by activating PKR-mediated IFN-b expression

(Krischuns et al., 2018). In vitro and in vivo findings suggested novel

roles of TRIM35 defense against IAV infection through activating

TRAF3 and degrading viral PB2. TRIM35 mediated TRAF3

activation by catalyzing Lys63-linked ubiquitination, leading to the

promotion of a signaling complex with VISA and TBK1 formation.

IAV PB2 polymerase countered the RIG-I-mediated antiviral

immunity by impeding TRAF3 activation. However, TRIM35 could

degrade IAV PB2 via catalyzing Lys48-linked ubiquitination, thereby

antagonizing its suppression of TRAF3 activation (Sun et al., 2020).
2.2 TRIM-mediated IAV promotion

As noted above, the TRIM proteins can also act as negative

regulators of the PRR-mediated innate immune signaling pathway.

For example, TRIM46 was significantly increased in response to

H7N9 infection in A549 cells and accelerated IAV infection.

TRIM46 mediated H7N9 inhibition with increased levels of

phosphorylated IRF3 and IFN-I production in TRIM46-silenced

cells. Conversely, TRIM46 mediated H7N9 promotion with

decreased IFN-I production in TRIM46-overexpressed cells.

TRIM46 was identified as a key negative regulator in the RIG-I-

mediated antiviral immunity by catalyzing K48-linked

ubiquitination of TBK1 (Su et al., 2022). Systems genetics of IAV-

infected mice identified TRIM21 as a critical regulator of

pulmonary innate immune response. The lung transcriptome data

revealed a TRIM21-associated gene regulatory network response to

IAV infection. TRIM21 transcripts were significantly upregulated in

infected mice, whose expression may be regulated by Nr1d2 and

Il3ra. Pathway analysis found TRIM21 involved in inflammation-

and immunity-related signaling pathways. Subsequently,

knockdown of TRIM21 in A549 cells led to significantly

augmented levels of IAV-induced expression of IFNB1, IFNL1,

CCL5, CXCL10, and ISGs (Li ZA. et al., 2024). Another identified

negative regulator in the control of innate immune response in

alveolar macrophages was TRIM29. The challenge of Trim29−/−

mice with influenza virus showed an improved survival rate due to

increased production of IFN-I by macrophages. Mechanistically,

TRIM29 directly targeted adaptor NEMO for ubiquitination and

degradation, subsequently resulting in inhibiting interferon

signaling via the transcription factor NF-kB (Xing et al., 2016).
3 Coronavirus

Since the 1990s, the cross-species transmission of multiple

coronaviruses has severely threatened public health and caused

acute respiratory syndrome, and even death in humans (Santos-

López et al., 2021; Kesheh et al., 2022; Tang et al., 2022). In

particular, the pandemic of coronavirus disease 2019 (COVID-

19), caused by SARS-CoV-2, has further complicated the landscape,

with at least 770 million cases and approximately 7 million deaths

reported globally to date (W.H.O, 2024). Coronavirus (CoV) is an
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enveloped, single positive-stranded RNA virus belonging to the

order Nidovirales, family Coronaviridae. Based on genetic

characteristics and serological differences, coronaviruses may be

divided into four categories: a-CoVs, b-CoVs, g-CoVs, and d-CoVs
(Flores-Vega et al., 2022). Options to treat coronavirus are limited,

and drug-resistant coronavirus strains can emerge through minor

genetic changes. Meanwhile, the virus–host interaction is a dynamic

and evolving process that influences the pathogenicity and host

specificity of the virus. Thus, there is an urgent need to find novel

anti-coronavirus effector proteins and develop therapeutic drugs

based on these mechanisms.
3.1 TRIM-mediated coronavirus inhibition

3.1.1 TRIM proteins directly antagonize
viral components

Immunoprecipitation coupled with mass spectrometry was

used to identify host factors interacting with SARS-CoV-2

nucleocapsid (N) protein. Data showed that the E3 ubiquitin

ligase TRIM21 could interact with SARS-CoV-2 NP and

polyubiquitinate it at Lys375. Subsequent degradation of NP led

to the failure of SARS-CoV-2 viral particle assembly. This

phenomenon has also been observed in SARS-CoV-2 variants,

including a, b, g, d, and Omicron, together with severe acute

respiratory syndrome coronavirus (SARS-CoV) and Middle East

respiratory syndrome coronavirus (MERS-CoV) variants (Mao

et al., 2023). Non-structural proteins play a critical role in SARS-

CoV-2 replication, of which NSP7 and NSP8 served as subunits

promoting the activity of RNA-dependent RNA polymerase (RdRp)

of NSP12. All subunits comprising the RdRp complex were

conducted to investigate the stability. The results showed that

NSP8 was a relatively unstable protein, which could be readily

recognized by the E3 ubiquitin ligase TRIM22. TRIM22 was

induced upon SARS-CoV-2 infection and mediated Lys48-linked

ubiquitination and proteasomal degradation of NSP8 at Lys97 (Fan

et al., 2024). TRIM56 has been demonstrated to inhibit various virus

replications, such as influenza virus, human coronavirus (HCoV)

OC43, yellow fever virus (YFV), and dengue virus serotype 2

(DENV2) (Liu et al., 2014; Liu et al., 2016). TRIM56’s anti-IAV

effect only depended on the expression of a short C-terminal tail

portion. Rather, TRIM56 inhibition of positive-strand RNA viruses

was always dependent on the N-terminal RING domain. Notably,

TRIM56-mediated inhibition of HCoV-OC43 relied solely on its E3

ligase activity, whereas its restriction of YFV/DENV2 required both

the E3 ligase activity and the integrity of the C-terminal portion.

Furthermore, TRIM56 impeded intracellular IAV/YFV/DENV2

RNA synthesis, while it interfered at a later step in the HCoV-

OC43 life cycle, suggesting the antiviral broad spectrum and

diversity of TRIM56.

3.1.2 TRIM proteins modulate ACE2 expression
SARS-CoV-2 binds to angiotensin-converting enzyme 2

(ACE2) to enter into host cells. TRIM28 was validated as a novel

regulator of ACE2 expression and SARS-CoV-2 cell entry.
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Knockdown of TRIM28 upregulated IFN-g receptor 2 expression

and enhanced IFN-g-induced ACE2 expression in both A549 and

primary pulmonary alveolar epithelial cells. However, the

upregulated ACE2 was partially reversed by dexamethasone in

A549 cells, which may aid in developing a specific COVID-19

treatment target (Wang et al., 2021b).
3.2 TRIM-mediated coronavirus promotion

The host-mediated post-translational modifications of viral

proteins have been shown to be an important strategy for

regulating virus proliferation. TRIM6 facilitated SARS-CoV-2

proliferation by catalyzing the K29-linked ubiquitination of NP to

enhance the ability to bind viral genomes (Zhou et al., 2024).

TRIM28-mediated NP SUMOylation enhanced SARS-CoV-2

virulence (Ren et al., 2024). Mechanically, TRIM6 could interact

with NP’s CTD via its RBCC domains and K29-linked ubiquitinate

NP at K102, K347, and K361, increasing its binding to viral genomic

RNA. Notably, the relatively conserved NP of SARS-CoV can also

be ubiquitinated by TRIM6, indicating that NP could be a broad-

spectrum anti-coronavirus target. TRIM28 SUMOylated SARS-

CoV-2 NP at Lys65. Subsequent mediation of homo-

oligomerization, RNA association, and liquid–liquid phase

separation led to robust immunosuppression. This phenomenon

has been further increased in SARS-CoV-2 NP R203K mutation

with a novel site of SUMOylation. Surprisingly, an interfering

peptide blocked the TRIM28-NP interaction by impeding NP

SUMOylation, ultimately rescuing antiviral immunity.
4 Discussion

It has become clear that many TRIM proteins serve as

commanders in various virus infections. As reviewed here, we

have highlighted their critical roles in combating respiratory virus

replication either by directly targeting specific viral components or

by modulating host immune responses (e.g., interferon-dependent

antiviral pathways or autophagy). Elucidating the interplay between

TRIM proteins and viruses has promisingly opened new

opportunities for respiratory virus therapeutic development.

However, a significant challenge in clinical applications of TRIM

proteins is their multifunctional properties. First, TRIM-mediated

inhibition seems to be virus family- or even strain-specific. Human

metapneumovirus was insensitive to TRIM56 even though it could

strongly restrict replication of various viruses, such as the influenza

virus and the human coronavirus (Liu et al., 2014; Liu et al., 2016).

TRIM21 inhibited replication of H3/H5/H9 IAV subtypes by

ubiquitination-dependent degradation of M1, while being

ineffective against H1 and H7 M1 (Lin et al., 2023). Second,

several TRIM proteins have more than one antiviral action. One

prominent example is the RNA-binding protein TRIM25, whose

role in the activation of the RIG-I is well demonstrated. Recent

evidence has shown alternative mechanisms for TRIM25’s anti-IAV

function independent of ubiquitin ligase activity and IFN response.
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On the one hand, TRIM25 could destabilize IAV mRNAs to restrict

IAV replication (Choudhury et al., 2022). On the other hand,

nuclear TRIM25 specifically targeted IAV ribonucleoproteins by

blocking the onset of RNA chain elongation to inhibit RNA

synthesis (Meyerson et al., 2017). Third, only a few TRIM

proteins restrict distinct viruses in a common way. TRIM56 has

developed multiple domains to inhibit IAV, HCoV-OC43, YFV,

and DENV2 infections. Meanwhile, TRIM56 impeded intracellular

IAV/YFV/DENV2 RNA synthesis, while interfering at a later step

in the HCoV-OC43 life cycle (Liu et al., 2014; Liu et al., 2016).

Another well-characterized antiviral TRIM protein is the E3

ubiquitin ligase TRIM22. TRIM22 restricted IAV and SARS-CoV-

2 replication through ubiquitin-proteasome degrading NP and

NSP8, respectively (Di Pietro et al., 2013; Fan et al., 2024).

Rather, TRIM22 suppressed RSV replication by targeting JAK-

STAT1/2 signaling (Wang et al., 2021a). Fourth, TRIM proteins

have dual roles in regulating virus infection. In the case of SARS-

CoV-2, knockdown of TRIM28 could facilitate SARS-CoV-2 cell

entry by regulating ACE2 expression (Wang et al., 2021b). In

contrast, TRIM28-mediated NP SUMOylation enhanced SARS-

CoV-2 virulence (Ren et al., 2024). Hence, going forward in

understanding the altered expression of TRIM proteins and their

potential antiviral mechanisms, we should address some significant

gaps in knowledge regarding the crystal structure and post-

translational modifications’ regulation of TRIM proteins.

Recent studies have identified certain viral proteins as

antagonists of TRIM proteins to block their antiviral properties.

The mechanisms by which viruses circumvent TRIM-mediated

antiviral functions to facilitate infection are still elusive. TRIM25-

mediated RIG-I activation, whose mechanisms were thought to be

well understood, has been demonstrated to be suppressed by viral

proteins, including IAV NS1/PB1, SARS-CoV-2 NP/ORF6/NSP8,

and MERS-CoV NP (Gack et al., 2009; Rajsbaum et al., 2012; Hu

et al., 2017; Ban et al., 2018; Koliopoulos et al., 2018; Chang et al.,

2020; Cheung et al., 2020; Jureka et al., 2020; Gori Savellini et al.,

2021; Oh and Shin, 2021; Evseev et al., 2022; Tanaka et al., 2022;

Khatun et al., 2023; Zhang et al., 2023).

In conclusion, TRIM proteins are rapidly evolving

multifunctional proteins experiencing species-specific expansion.

Some TRIM proteins are beginning to employ common antiviral

strategies. Future research on the diverse aspects of virus–TRIM
Frontiers in Cellular and Infection Microbiology 06
interactions will be crucial in determining the relevance of antiviral

TRIM proteins across different tissues and host species. Further

investigation into the mechanisms of TRIM proteins holds promise

for developing them into inhibitors of viral replication,

underscoring the potential of targeting host factors associated

with viral replication as a suitable antiviral strategy.
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