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Summary: The gutmicrobiota plays a crucial role in foodwebs, carbon cycling, and

related elements. Exopalaemon annandalei and Exopalaemon carinicauda are two

important forage species in the Yangtze River estuary with extremely similar living

habits andmorphological characteristics. Exploring themicroorganisms in the guts

of these two shrimp species can help us understand the survival status of forage

species and gut microbiota in the Yangtze River estuary. Therefore, this study

analyzed the similarities and differences in the intestinal flora of E. annandalei and

E. carinicauda through high-throughput sequencing of 16S rRNA gene amplicons.

The results showed that the dominant bacteria in the intestinal flora of E.

annandalei and E. carinicauda at the phylum level were Proteobacteria and

Firmicutes, respectively. At the genus level, the intestinal flora had higher

concentrations of Psychrobacter, Bacillus, Pseudomonas, Acinetobacter, and

Macrococcus. In both shrimp species, the contents of Acinetobacter and

Macrococcus were higher in spring than in winter. The most important potential

functions of the intestinal microbiota were amino acid metabolism and purine

metabolism. Additionally, the functions ofmetabolism and diseases in the intestinal

microbiota of E. annandalei were greatly influenced by the season. Furthermore,

the experimental results indicated that a lower ratio of Firmicutes to Bacteroidetes

was associated with a larger body weight in shrimp. Overall, this study provides a

theoretical reference for understanding the intestinal bacterial community of

shrimp in estuaries and the healthy cultivation of E. annandalei and E. carinicauda.
KEYWORDS

gut microbiome, Exopalaemon annandalei, Exopalaemon carinicauda, high-throughput
sequencing, Yangtze River estuary
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1 Introduction

The intestines of shrimp are inhabited by a vast number and

diverse array of bacteria. The gut of shrimp is home to a large and

diverse number of bacteria that can affect the healthy growth,

disease, and feeding of shrimp. Studying the intestinal microbiota

can assist in revealing the operational patterns of the shrimp

intestine. And laying a foundation for a deeper understanding of

the relationship between shrimp and microorganisms. At the

same time, winter and spring are the seasons when the intestinal

microbiota of shrimp changes greatly (Tang et al., 2014). Therefore,

it is necessary to study the intestinal microbiota to reveal the

operation mode of shrimp gut. The common dominant genera in

the intestinal flora of shrimp include Photobacterium, Vibrio,

Aeromonas and Pseudomonas (Yasuda and Kitao, 1980; Dempsey

et al., 1989). Additionally, Pseudomonas, Brevundimonas, Ralstonia,

Caulobacter, Lactococcus, and Sphingomonas have also been

identified as dominant species in the intestines of some shrimps

(Kim et al., 1997; Lin et al., 2022). The structure of the gut

microbiota has a significant impact on the growth and

development of shrimps. In terms of nutritional functions, the gut

microbiota of shrimps not only synthesizes nutrients but also affects

the metabolism of shrimps by synthesizing amino acids and

unsaturated fatty acids (Semova et al., 2012; Zhang et al., 2014).

Furthermore, bacteria can sometimes serve as a food source for

shrimps (Yasuda and Kitao, 1980). In terms of aiding digestion,

secretions from the gut microbiota, such as vitamins, amino acids,

and highly unsaturated fatty acids, can all be utilized by the host

(Almansa et al., 2012). In terms of immune function, nutrients

produced by the gut microbiota can provide energy for the

intestinal mucosa, indirectly promoting mucosal repair and

growth (Zhao et al., 2013; Lee and Hase, 2014; Antonissen et al.,

2016; Kubasova et al., 2019; Ocejo et al., 2019). Additionally,

probiotics can significantly enhance the immunity of shrimps

(Aguilera-Rivera et al., 2014; Zokaeifar et al., 2014).

Currently, high-throughput sequencing technology is widely

utilized in the analysis of gut microbiota structure in aquatic

organisms. By comparing the sequencing results with databases,

the classification of the gut microbiota can be accurately determined

down to the species level (Zhou et al., 2011). Compared to

conventional detection methods, high-throughput sequencing

technology offers advantages such as high sensitivity (able to

capture low-frequency DNA sequences), high sequencing

throughput, high accuracy, and cost-effectiveness. It is one of the

effective techniques for studying the structure of the gut microbiota

today and in the near future (Backhed et al., 2004; Backhed et al.,

2005; Ley et al., 2005). Currently, high-throughput sequencing

technology has been applied in the study of the gut microbiota of

various shrimp species, including Procambarus clarkia (Shui et al.,

2020), Macrobrachium rosebergii (Xu et al., 2023) and Penaeus

monodon (Rungrassamee et al., 2014). The high-throughput

sequencing has the effectiveness and potential in understanding

the composition and function of the gut microbiota in shrimp.

E. annandalei and E. carinicauda are widely distributed in

China. As important bait species in the Yangtze River estuary
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(Pei et al., 2017), they are an integral part of the resources in the

estuary (Geng et al., 2022). The study of the intestinal microbiota of

E. annandalei and E. carinicauda aims to provide insights into the

changes in aquatic biological resources in the region. This research

also serves to further enhance our understanding of the structural

and functional information of the aquatic ecosystem in the area,

providing a theoretical basis for promoting ecological restoration

efforts. Additionally, it offers literature references for shrimp

farming and introduces a novel technical approach for analyzing

the feeding habits of aquatic organisms in the Yangtze River estuary.

Given the ecological conditions of the Yangtze River estuary,

this study selected the dominant species, E. annandalei and E.

carinicauda, as the research subjects. By utilizing 16S rRNA

primers, we analyzed the gut microbiota diversity of these two

shrimp species in winter and spring in the Yangtze River estuary,

and predicted their functional roles.
2 Materials and methods

2.1 Sample collection

In February and May 2023, E. annandalei and E. carinicauda in

the Yangtze River estuary (121°33′E~122°14.5′E、31°46′N~31°24′
N) were collected by single-bag otter trawls (Figure 1). The body

length of E. annandalei ranged from 22 to 42 mm, and the body

weight ranged from 0.173 to 1.242g The body length of E.

carinicauda ranged from 28 to 71 mm (Figure 2), and the body

weight ranged from 0.4216 to 7.1278 g (Figure 3). 20 shrimps were

randomly selected at each sample. Four experimental groups are set

up as follows: intestinal flora of E. annandalei in winter with 7

parallel samples; intestinal flora of E. annandalei in spring with 7

parallel samples; intestinal flora of E. carinicauda in winter with

3 parallel samples; intestinal flora of E. carinicauda in spring with 3

parallel samples. For each parallel sample, intestines of 20 shrimps

are selected for mixing.
2.2 DNA extraction and PCR amplification

DNA was extracted from the intestine of shrimp using the

E.Z.N.A.® Soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.). The

V4-V5 region of the bacterial 16S rRNA gene was amplified through

PCR. Using the primers 515F 5’-barcode-GTGCCGCCAGC

MGCCGG-3’ and 907R 5’-CCGTCAATTCMTTTRAGTTT-3’,

where the barcode represents a unique eight-base sequence for each

sample. Three replicate PCR reactions were performed in a 20 mL
mixture containing 4 mL of 5× FastPfu buffer, 2 mL of 2.5 mM dNTPs,

0.8 mL of each primer (5 mM), 0.4 mL of FastPfu polymerase, and 10 ng

of template DNA. All samples were processed in accordance with the

official experimental conditions, with each sample replicated three

times. For the study of bacterial community structure, PCR

amplification was performed using primers targeting the V3-V4

region of the 16S rRNA gene, specifically the 341F primer

(upstream) and the 806R primer (downstream).
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2.3 Processing of sequencing data and
statistical analysis

The purified PCR product was quantified by Qubit®3.0 (Life

Invitrogen) and each of the 24 amplicons with different barcodes was

mixed equally. The amplicon libraries were sequenced using the

Illumina MiSeq platform (Shanghai BIOZERON Co., Ltd.) with a

standard dual-end sequencing protocol (2×250).After initial filtering

and removal of chimeras, the raw sequencing data were processed to

obtain valid data. Concurrently, the self-sequences of the two species of

shrimp were excluded, and manual verification was conducted in

accordance with the distribution information of aquatic organisms

across various ecological types in the Yangtze River estuary (Fang,
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2011). Clustering OTUs by QIIME software, bar charts were generated

to depict the diversity of bait organisms and the relative abundances of

different species. Based on the functional prediction results from

PICRUSt2, the relative abundances of KEGG pathways in each

sample or group were analyzed at the level 1, level 2, and level 3

categories. Subsequently, KEGG pathway abundance statistical charts

were generated to visualize these data. Using the Spearman correlation

method, a coexistence network of microbial communities in the study

samples was constructed. Calculate the Spearman correlation between

the abundances of every two OTUs and calibrate the results with FDR.

Only results with a correlation coefficient greater than 0.8 and a

calibrated p-value less than 0.05 were retained, and a coexistence

network graph was plotted accordingly.
FIGURE 2

Histogram of average shrimp body length and weight caught at each point.
FIGURE 1

Survey sampling map of shrimp in the Yangtze River estuary.
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3 Results and discussion

3.1 Bacterial communities in two
shrimp intestinal

Based on the analysis of 20 samples, the top ten bacterial flora

with the highest content in the intestinal tract of E. annandalei and

E. carinicauda are Psychrobacter, Acinetobacter, Macrococcus,

Bacillus, Vibrionimonas, Lysinibacillus, Bradyrhizobium, Pantoea,

Mycobacterium and Carnobacterium. The top five bacterial flora

with the highest content in the intestinal tract of E. carinicauda in

February are Psychrobacter, Bacillus, Vibrionimonas, Pseudomonas,

and Staphylococcus. In May, the top five bacterial flora with the

highest content in the intestinal tract of E. carinicauda are

Psychrobacter, Acinetobacter, Macrococcus, Vibrionimonas, and

Bradyrhizobium. In February, the top ten bacterial flora with the

highest content in the intestinal tract of E. annandalei are

Psychrobacter, Macrococcus, Vibrionimonas, Mycobacterium, and

Pantoea. In May, the top five bacterial flora with the highest content

in the intestinal tract of E. annandalei are Acinetobacter,

Psychrobacter, Macrococcus, Bradyrhizobium, and Mycobacterium.
3.2 Cluster analysis

Through cluster analysis of the four groups of 20 samples, a

total of 541 OTUs were obtained. As shown in Venn (Figure 4), the

OTU sequences detected in the intestinal microbiota of E.

carinicauda in February, E. carinicauda in May, E. annandalei in

February, and E. annandalei in May were 193, 380, 391, and 432,

respectively. Among them, 137 OTU sequences were shared by all

four groups, accounting for 25.3%. Additionally, 330 OTUs were

unique to E. annandalei, accounting for 57.46%, and 153 OTUs

were unique to E. carinicauda, accounting for 28.259%.
3.3 Functional prediction

Based on the KEGG functional prediction, the functions of the

intestinal microbiota are primarily concentrated in metabolism,

specifically in energy metabolism, carbohydrate metabolism, and

amino acid metabolism, accounting for 70.19%, 14.95%, and 3.67%
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respectively. According to the bubble chart of KEGG level 1 inter-

group differences, there are differences in the intestinal flora

functions of the two species of shrimp in two aspects: metabolism

and human diseases. There are also differences in the intestinal flora

functions of E. annandalei in February and May, while there are no

significant differences in the intestinal flora functions of E.

carinicauda sinensis in the two months.

Further analysis suggests that the function of human pathogens

pneumonia may be lower in the intestinal flora of E. annandalei

compared to that of E. carinicauda. Additionally, the increase in the

function of aromatic compound degradation and the decrease in the

function of nitrate reduction in both species of shrimp in May may

have contributed to these observed differences.
3.4 Network analyze

According to the Co-occurrence network comparison chart

between winter and spring for the two types of shrimp, February

Exopalaemon annandalei network had 60 nodes and 587 edges,

February E. carinicauda network had 36 nodes and 342 edges, May

Exopalaemon annandalei network have 76 nodes and 827 edges, May

E. carinicauda network have 69 nodes and 1038 edges. According to

previous research (Zeng QC, An SS, Liu Y, Wang HL,Wang Y (2019)

Biogeography and the driving factors affecting forest soil bacteria in

an arid area. Sci Total Environ 680:124–131), the higher the

proportion of competition between bacterial species, the better the

stability of the network under environmental interference. In the

spring when bacterial richness and diversity are high, the interaction

between bacteria is also stronger, further complicating the network.

Therefore, the intestinal microbiota results of the two shrimp species

were susceptible to seasonal variation.
4 Discussion

4.1 Analysis of major bacterial populations
in the gut of two shrimps

In this study, we identified Proteobacteria and Actinobacteriota

as the dominant bacterial phyla in the intestines of two species of

shrimp based on OTU abundance. They are one of the most widely
FIGURE 3

Schematic diagram of the shape of the shrimp.
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distributed bacterial phyla in freshwater bodies and sediments

(Kendrick and Hyndes, 2005). In addition, Proteobacteria

perform functions and may also have cellulose and agar

degradation as well as nitrogen fixation in the rectum of shrimp

(Li et al., 2018). The Actinobacteriota phylum can improve the

digestion and immunity of shrimp. This bacterium has been

reported to be a potential probiotic in aquaculture ponds

(Costantini et al., 2017). Bacteria of Bacteroidota mainly exist in

pond sediments and can effectively degrade refractory organic

matter in wastewate (Tzeng et al., 2015). In February (winter)

and May (spring), the dominant genus shared by the intestinal

microbiota of E. carinicauda and E. annandalei was Psychrobacter.

The proportion of Psychrobacter in E. carinicauda decreased from

57.72% in winter to 35.59% in spring, while the proportion of

Psychrobacter in E. annandalei decreased from 65.88% in winter to

22.53% in spring (Figure 5).

Research has shown that Psychrobacter can help improve the local

microbial diversity in the gastrointestinal tract of Escherichia coli-like

bacteria (Yang et al., 2011). In addition, Psychrobacter produces

chitinase and protease, which are extracellular enzymes secreted by

bacteria. These enzymes exhibit catalytic activity under acidic

conditions (pH 2–5) and within a temperature range of 15 to 30°C.

This genus is a potential probiotic that can promote the digestion of

shrimp (Moss et al., 2000). Previous studies have shown that

Psychrobacter can effectively promote the growth, immunity,

antioxidant capacity, and disease resistance of fish, indicating that the
Frontiers in Cellular and Infection Microbiology 05
intestinal health of the two species of shrimp in winter is better than

that in spring (Bakermans et al., 2006; Zhao et al., 2018). In future

studies, it is recommended to simultaneously evaluate environmental

physicochemical factors and microbial community composition to

assist in analyzing the characteristics of the intestinal microbiota of

benthic animal communities. Psychrobacter can also be used as an

indicator to judge the health of shrimp.
FIGURE 5

Venn of intergroup core OTUs.
FIGURE 4

Analysis diagram of intestinal microbiota composition. To optimize the visual effect, components with an abundance below 0.1% can be combined as “other
genera” for display in the graph. In the circos species analysis chart, the top 30 most abundant bacterial communities among all detected microbiota are
shown. Group 2A represents Exopalaemon annandalei collected in February (Winter), Group 2J represents Exopalaemon carinicauda collected in February
(Winter), Group 5A represents Exopalaemon annandalei collected in May (Spring), and Group 5J represents Exopalaemon carinicauda collected in May
(Spring), same as above. Different shades of the same color are used to indicate different sampling locations within the same group.
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4.2 Relationship between intestinal
microbiota and seasons in two
shrimp species

At the phylum level, there is little difference in the intestinal

microbiota of E. annandalei between winter and spring, which is

mainly dominated by Proteobacteria (Sekirov et al., 2010). At the

same time, the relative abundance of Firmicutes in the intestinal

microbiota is also relatively high. In contrast, the intestinal

microbiota of E. carinicauda exhibits significant differences

between winter and spring. At the phylum level, the number of

Firmicutes in the intestinal microbiota of E. carinicauda is higher in

winter than in spring, while the number of Bacteroidota is much

lower in winter than in spring. Research has shown that the ratio of

Firmicutes to Bacteroidota is directly related to body weight (Ley

et al., 2006). The increase in the number of Firmicutes directly leads

to an increase in the number of lipid droplets, thereby

proportionally enhancing the absorption of fatty acids (Semova

et al., 2012). In addition, the ratio of Firmicutes to Bacteroidota

continues to change with different life stages and salinity levels of

shrimp (Mariat et al., 2009; Fan et al., 2019). Since the body weights

of both species of shrimp in spring are greater than those in winter,

it can be concluded that a smaller ratio of Firmicutes to Bacteroidota

corresponds to a larger body weight of shrimp (Figure 6) (Arora et

al., 2011).

At the genus level, the proportion of Acinetobacter and

Macrococcus in the intestinal microbiota of E. annandalei increased

from less than 0.1% in winter to 38.23% and 9.85%, respectively. In

contrast, the proportion of Acinetobacter and Macrococcus in the

intestinal microbiota of E. carinicauda increased from less than 0.1%

in winter to 9.04% and 12.13%, respectively. Additionally, there was a

significant decrease in the proportion of Pseudomonas in the

intestines of both E. annandalei and E. carinicauda. The

Macrococcus genus, a Bacterial genus, was found in the intestinal
Frontiers in Cellular and Infection Microbiology 06
microbiota of both E. carinicauda in February and E. annandalei in

February and May. Research has shown that Macrococcus can digest

and decompose high-carbohydrate, low-protein diets (Villasante

et al., 2022). This genus can produce enzymes such as amylase and

protease, which contribute to the digestion of carbohydrates in the

intestine (Kloos et al., 1998). Acinetobacter is a common genus in the

intestinal microbiota of both E. annandalei and E. carinicauda in

May. Studies have shown that Acinetobacter can metabolize lactic

acid and acetic acid produced by cytoplasmic secretions (Savard et al.,

2023). It is speculated that the abundance of prey organisms in the

estuary of the Yangtze River in spring leads to an increase in the

feeding rate of shrimp, resulting in an increase in cytoplasmic

secretions in the intestines of shrimp. Therefore, the increase in

cytoplasmic secretions may have contributed to the increase in the

relative abundance of Acinetobacter in the samples. Research has

indicated that most Pseudomonas species play an important role in

wastewater treatment and oil spill cleanup (Kersters et al., 2006).

Based on this, it is speculated that the pollution levels from

wastewater and oil spills in the estuary of the Yangtze River are

lower in spring than in winter, which may be related to the water

volume of the Yangtze River (Warwick and Clarke, 1991). It can be

inferred that both species of shrimp consume more carbohydrates

and proteins in spring than in winter. Based on this, it can be

speculated that the Yangtze River Estuary consumes more

carbohydrates and proteins in spring, which leads to the increase of

Acinetobacter and Macrococcus in both intestines.
4.3 Functions of the intestinal flora of two
species of shrimp

Intestinal microbiota play a crucial role in metabolic processes by

providing direct substrates for memory cells (Block and Carey, 1985;

Bäckhed, 2011. The prediction of KEGG pathways in this study
FIGURE 6

Co-occurrence network diagram.
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indicates that the intestinal microbiota of E. carinicauda and E.

annandalei play crucial roles in several aspects of metabolism,

including xenobiotics biodegradation and metabolism, nucleotide

metabolism, metabolism of terpenoids and polyketides, metabolism

of other amino acids, metabolism of cofactors and vitamins, lipid

metabolism, glycan biosynthesis andmetabolism, energy metabolism,

carbohydrate metabolism, and amino acid metabolism. Meanwhile,

they also play significant roles in Signal Transduction and Membrane

Transport, which are two aspects of Environmental Information

Processing, as well as Translation, Replication and repair, and

Folding, sorting and degradation, which are three aspects of

Genetic Information Processing (Figure 7).

Through the functional analysis of intestinal microbiota, we can

infer that the intestinal microorganisms of E. carinicauda and E.

annandalei have specific feeding habits, and they may consume

foods containing amino acids and purines. Such feeding habits may

have significant impacts on the growth and health of shrimp.

Amino acids are essential nutrients for organisms, playing a

crucial role in protein synthesis. Purines are organic compounds

in organisms that participate in the synthesis of biological molecules

such as DNA and RNA, which are crucial for the normal

physiological functions of organisms. Therefore, this feeding habit

of intestinal microbiota provides crucial substrates for the growth

and health of shrimp (Shen et al., 2015; Zhao et al., 2023).

The research results indicate that there are differences in the

function of intestinal microbial communities between E. annandalei

and E. carinicauda in terms of metabolism and disease. The

intestinal microbial community function of E. annandalei varies
Frontiers in Cellular and Infection Microbiology 07
with seasonal changes, while the function of the intestinal microbial

community of E. carinicauda is less affected by seasonal changes.

Therefore, in aquaculture, more attention should be paid to the

impact of seasonal changes on E. annandalei compared to E.

carinicauda. Additionally, appropriate bacteria or bait can be

introduced to promote the metabolism and disease resistance of

these shrimp species. By understanding the specific microbial

communities and their functions in different shrimp species,

aquaculture practices can be optimized to improve the health and

productivity of these economically important animals.
5 Conclusion

In summary, protein metabolism and purine metabolism are

the main functions of the intestinal microbiota in both shrimp

species, and both shrimp species consume more carbohydrates and

protein foods in spring than in winter. There are similarities and

differences in the intestinal microbiota of the two shrimp species.

The intestinal microbiota function of E. annandalei is greatly

influenced by seasons, while the intestinal microbiota function of

E. carinicauda is not affected by seasons. In addition, it was also

found that the smaller the ratio of Firmicutes to Bacteroidetes, the

greater the body weight of the shrimp. Future research should

focus on the functions of the shrimp intestinal microbiota and the

impact of environmental factors on the intestinal microbiota,

providing information for establishing sustainable biological

management strategies.
FIGURE 7

KEGG pathway abundance statistics chart.
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