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(Hymenoptera: Bethylidae)
parasitic wasps, the dominant
biological control agents of
wood-boring beetles in China
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and Ke Wei2*

1College of Biological and Agricultural Science and Technology, Zunyi Normal University,
Zunyi, China, 2Key Laboratory of Forest Protection of National Forestry and Grassland Administration,
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Objective: Sclerodermus wasps are important biocontrol agents of a class of

wood borers. Bacterial symbionts influence the ecology and biology of their

hosts in a variety of ways, including the formation of life-long beneficial or

detrimental parasitic infections. However, only a few studies have explored the

species and content of the symbionts in the Sclerodermus species.

Methods: Here, a high-throughput sequencing study of the V3-V4 region of the

16S ribosomal RNA gene revealed a high level of microbial variety in four

Sclerodermus waps, and their diversities and functions were also predicted

Results: The three most prevalent phyla of microorganisms in the sample were

Firmicutes, Bacteroides, and Proteus. The KEEG pathways prediction results

indicated that the three pathways with the highest relative abundances in the

S. sichuanensis species were translation, membrane transport, and nucleotide

metabolism. These pathways differed from those observed in S. guani, S.

pupariae, and S. alternatusi, which exhibited carbohydrate metabolism,

membrane transport, and amino acid metabolism, respectively. Bacteroides

were found to be abundant in several species, whereas Wolbachia was the

most abundant among S. sichuanensis, with a significant negative correlation

between temperature and carriage rate.

Conclusions: These results offer insights into the microbial communities

associated with the bethylid wasps, which is crucial for understanding how to

increase the reproductive capacity of wasps, enhance their parasitic effects, and

lower cost in biocontrol.
KEYWORDS

Sclerodermus, bacterial symbionts, 16S ribosomal RNA amplification sequencing,
microbial diversity, Wolbachia
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1 Introduction

Bacterial symbionts have been observed to be long-standing

partners of insects, with the capacity to aid their hosts in adapting to

a multitude of environmental challenges (Dale and Moran, 2006;

Brownlie and Johnson, 2009). The mutually beneficial symbiotic

relationship between symbiotic bacteria and insect hosts has

significant implications for host biology. Primary bacterial

symbionts provide most insects with essential nutrients that they

would not obtain from their diets. In contrast secondary bacterial

symbionts affect the biological processes of hosts in terms of

development, reproduction, and fitness (Kikuchi et al., 2009;

Ferrari and Vavre, 2011). Some symbiotic bacteria are transmitted

vertically through the infection of reproductive stem cells, blastocyst

embryos, or ovarian oocytes in host insect larvae or younger adult

females (Braendle et al., 2003; Swiatoniowska et al., 2013;

Szklarzewicz and Michalik, 2017). Some host insects obtain

symbiotic bacteria from the environment through each generation

of individuals, thereby facilitating a horizontal transmission of

symbiotic bacteria (Li et al., 2018). The influence of symbiotic

bacteria on insect host nutrition, digestion, resistance, and defense

responses to natural enemies makes symbiotic bacteria the primary

driving force for host colonization and ecological evolution in

specific habitats (Douglas, 2015; Damodaram et al., 2016). The

fitness of certain Trichogramma spp., including T. delon,

T. pretiosum, and T. cordubensis, can be significantly reduced by

infection of Wolbachia (Louis, 1993; Silva, 1999; Silva et al., 2000).

The majority of microorganisms that inhabit the gut of insects

originate from the food they consume and the external environment.

Furthermore, the gut microorganisms of different insect individuals

undergo dynamic changes in response to various factors, including

insect feeding habits, age, and external environmental conditions. For

example, the gut microbial community of Spodoptera frugiperda

feeding on oilseed rape was significantly higher than that in

individuals feeding on wild oats (Lv et al., 2021). The gut

microbiotas of the domesticated silkworm greatly differ between

early (L1 and L2) and late (L3 and thereafter) instars, and also

differ from those of wild mulberry-feeding lepidopterans (Chen et al.,

2018). Wolbachia are not transmitted to the next generation when

immature stages experience cyclical temperatures of 26°C - 37°C

during development (Ross et al., 2016). Furthermore, external

pathogen infestation represents a significant contributing factor to

host gut microbial variation. In S. exigua, there is different microbiota

composition in field insects carrying a natural viral (Martinez-Solis

et al., 2020). In addition, the pathogenic fungus Beauveria bassiana

infection causes overgrowth and translocation of the opportunistic

pathogen Serratia marcescens from the gut to the hemocoel, thereby

promoting mosquito mortality (Wei et al., 2017).

The bethylid wasps in genus of Sclerodermus (Hymenoptera:

Bethylidae), such as Sclerodermus guani Xiao et Wu, S. sichuanensis

Xiao, S. pupariae Yang et Yao, and S. alternatusi Yang are parasitoids

that parasitize longhorned beetles and buprestid beetles (Yang et al.,

2014; Zhuo et al., 2016), and those four Sclerodermus are the most

widely used as natural enemies in China. Since the discovery and

recording of Sclerodermus, great knowledge has been acquired of

many areas such as biological characteristics, parasitic habits, and
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biological control applications. Genetic improvement of parasitic

natural enemies by symbionts can markedly enhance their efficacy

as natural enemies, thereby reducing the number of natural enemies

required for release into the field. which plays a pivotal role in the pest

biological control by natural enemies in the field (Allen et al., 2007;

Wei et al., 2017). A previous prediction indicated that S. guani is

infected with Wolbachia at high densities, which influences lower

quantity of male offspring through cytoplasmic incompatibility (CI)

(Zhou and Li, 2014). However, the species and content of the

symbionts in these four Sclerodermus species remain unclear. In

this study, we used 16S rRNA sequence analysis to investigate the

species and content of symbionts in these four Sclerodermus species.

The aim of this study was to provide further details on the global

phylogenetic diversity of bacterial symbionts of the four Sclerodermus

species. This may provide further insights into the functions of these

symbionts in Sclerodermus biology and found symbiotic bacteria

whose functions have been investigated in other insects, especially

those that have an effect on the fertility, so as to lay the foundation for

subsequent studies.
2 Materials and methods

2.1 Insects

Four Sclerodermus species were used in this study, including

S. guani, S. sichuanensis, S. pupariae, and S. alternatusi. The four

species of parasitoids were reared from the same host Thyestilla

gebleri Faldermann. The larvae of T. gebleri were collected from the

roots of infested Abutilon theophrasti Medicus from Dagang

District (38°56’N, 117°29’E), Tianjin City, China. A wild-collected

female parasitoid was inoculated into T. gebleri larva in a small glass

vial (diameter: 1 cm; length: 5 cm). The parasitoid colonies were

established in environmental chambers under the standard

conditions of temperature 25 ± 1°C, 55–65% relative humidity

and 10 h light: 14 h dark regime. The laboratory colonies of the four

Sclerodermus species were cultured in four independent containers.

Twenty-four T. gebleri mature larvae (weight, 200.0–220.0 mg;

weighed using an analytical balance having sensitivity of 0.1 mg)

were selected for rearing the parasitoids and were randomly and

equally divided into four groups. Six mated winged one-week-old

females of each Sclerodermus specie were randomly selected from

the laboratory cultures. Each rearing vial contained one host larva

and one female parasitoid. All parasitoids were inoculated on the

same day to minimize the potential influence of temporal variability

on the experimental results. One newly emerged female adult

parasitoids of the next generation in each rearing vial were

selected to DNA extraction and detect the bacterial symbionts,

and each parasitoid species had six biological replicates
2.2 DNA extraction

Before DNA extraction, the insects were immersed in 75%

ethanol for 30 s to wash off the bacteria on the surface, then

rinsed with ddH2O three times. The whole insects were then pre-
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processed according to the 16S rRNA Earth Microbiome Protocol

(Earthmicrobiome.org). Then, gDNA was extracted from samples

using the QIAamp® Fast DNA Stool Mini Kit (QIAGEN, Hilden

North Rhine-Westphalia , Germany) according to the

manufacturer’s instructions. The combined duplicate DNA

extracts were purified using a DNA gel extraction kit (Axygen

Biosciences, Union City, CA, USA). A BioTek Epoch Microplate

Spectrophotometer (Agilent Technologies, Santa Clara, CA, USA)

was used to quantify each sample (Chen et al., 2018).
2.3 Library construction and 16s
rRNA sequencing

The extracted DNA samples were used as templates for PCR

amplification targeting the V3-V4 region of 16s rRNA. The forward

primer was 341F (-5-CCTACGGGNGGCWGCAG-3-), and the

reverse primer was 806R (-5-GGACTACHVGGGTATCTAAT-3-).

Each PCR reaction volume was 30 mL, containing 15 mL of 2×Taq

Master Mix, 20–30 ng of template DNA, 1 mL of forward/reverse

primer. The indexed adapters were attached to the ends of the

amplicons to generate sequencing libraries. The amplification

procedure was as follows: 94°C for 4 min; 94°C for 30 s, 54°C, 30 s;

and 72°C, 1 min for 40 cycles. PCR products were stored at -20°C

immediately after the end of the reaction. Using the Illumina HiSeq

2500 platform (Illumina, San Diego, CA, USA) at Biomarker

Technologies Co., Ltd. (Beijing, China), the PCR products were used

to construct sequencing libraries according to standard protocols.
2.4 Raw data processing

After rarefying according to the sequencing depth with a custom

script, the paired-end sequence data obtained by HiSeq sequencing

were merged into a sequence of tags based on the overlapping

relationship. The quality of the reads and the merged effect were

quality-controlled and filtered. FLASH v1.2.11 software was used to

stitch the reads of each sample through overlap and obtain the original

tags, and Trimmomatic v0.33 software was used to filter the spliced raw

tags to obtain clean tags. Finally, effective tags were obtained by

removing the chimeric sequence using UCHIME v4.2 software.
2.5 Taxonomic analysis

Operational taxonomic units (OTUs) were clustered using

UPARSE (version 9.2.64) software at a similarity level of 97%

(Edgar, 2013). Taxonomic annotation of the OTUs was

performed using the Greengene database (version gg_13_5). A

Venn graph shows the number of OTUs that are common and

unique among samples, and visually shows the overlap of OTUs

among samples. By combining with the species represented by the

OTUs, it was possible to identify common microorganisms among

different species. Venn diagrams for each classification level were

drawn using the R software VennDiagram.
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2.6 Bacterial diversity analysis and
function prediction

Alpha diversity reflects the richness and diversity of a single

sample with four measurement indicators: Chao1, abundance-

based coverage estimator (ACE), Shannon, Simpson, observed

species (Sob), and Good’s coverage. The Chao1 and ACE indices

were used to evaluate species abundance, while the Simpson and

Shannon indices were used to evaluate species diversity and were

influenced by the abundance of species in the sample community

and community evenness; Sob indicated the type of OTU that could

be detected, and Good’s coverage was used to reflect the low

abundance OTU coverage of the sample. The alpha diversity

index of the samples was evaluated using Qiime software (version

1.9.1). The module “cmdscale” in R software was used to perform

principal coordinate analysis. Finally, PICRUSt (version 2.1.4)

software was used to annotate the KEGG pathway function of the

community in combination with the integrated microbial gene

(img) database, and the abundance information of each pathway

and KO ID were enumerated.
2.7 Wolbachia detection

In order to explore the effects of high temperature on the

Wolbachia infection of the S. sichuanensis, the parasitoids were

reared under three temperature gradients (27, 30 and 33°C). The

first generation used the previously described, and four consecutive

generations were reared in those different temperature treatments

(25°C as control). Then 40 mated winged one-week-old females

from each temperature treatment were randomly selected for

detection. DNA was extracted from a single parasitoid using a

previously described method and purified for use as a template for

PCR amplification. The wsp-specific primers were wsp81F (5′-
TGGTCCAATAAGTGATGAAGAAAC-3′) and wsp691R (5′-
AAAAATTAAACGCTACTCCA-3′) (Zhou et al., 1998). PCR

reaction was added to 0.5 mL DNA, 10 mL of 2×plus Tap HiFi

PCR mix (MIKX, Guangzhou, China), 0.5 mL F/R primer (10 µM)

and 8.5 mL ddH2O, under PCR conditions of 3 min at 95°C; 25 s at

94°C, 25 s at 58°C and 30 s at 72°C with 40 cycles; 5 min at 72°C.

PCR products were detected by 1% agarose gel and purified using a

Gel Extraction Kit (OMEGA Bio-Tek, USA), then sequenced by

Sangon Biotech (Shanghai) Co., Ltd. (Shanghai, China). The

sequencing results using tBLASTn searches against the NCBI

data-base to confirm that the cloning sequences belong to

Wolbachia, and counted the number of parasitoid individuals

which containing Wolbachia under different temperature

conditions to calculate infection frequency. Each temperature

treatment had three replicates.
2.8 Statistical analysis

All statistical analyses were performed using IBM SPSS

Statistics 21 (IBM, Armonk, NY, USA). Differences compared
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among different species or different temperatures were analyzed

using one-way analysis of variance (ANOVA), followed by Least-

Significant Difference (LSD) test. The results were considered

statistically significant if the p <0.05.
3 Results

3.1 Overview of the sequencing data

After 16S rRNA sequencing of four different species of the bethylid

wasps S. guani (SG), S. sichuanensis (SS), S. pupariae (SP), S. alternatusi

(SA), the values of low abundance OTUs coverage of sequenced

samples were greater than 0.99 (Table 1), which means that the

accuracy and annotation coverage of the sequencing results were

high and can meet the requirements of subsequent analysis. In total,

344234 reads (each with an average length of 454 bp) were obtained.

After quality control and screening, 299249 reads were obtained for

subsequent analysis. The total proportion of effective tags was 86.93%,

and the proportion of each group of samples was greater than 84%

(Table 1). Based on 97% sequence similarity, the effective tags were

clustered, and the OTUs with sequence number <0.005% were filtered.

Finally, 1838 OTUs were clustered in all samples. A comparative

analysis of OTUs in the four species showed that 415 OTUs were

clustered in four species: 1084 in SP, 362 unique; 628 in SS, 108 unique;

986 in SG, 252 unique; and 1005 in SA, 268 unique (Figure 1).
3.2 Species and differences in abundance
of symbiotic bacteria

Based on the annotation results of the OTUs, symbiotic

bacterial communities in different species of Sclerodermus were

analyzed. The symbiotic bacterial communities were annotated as

26 phyla, 55 classes, 111 orders, 170 families, 312 genera, 152

species. The number of symbiotic bacteria identified to species in SS

was relatively low, with a total of 75 species annotated. The numbers

of different taxonomic elements in the other three species were

found to be similar (Table 2).

At the phylum level (Figure 2A), the symbionts of the four species

were predominantly Firmicutes, Bacteroidetes, and Proteobacteria.

However, the relative abundance of colonies exhibited notable

variation among different species. In SP, the abundance of the main
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symbiotic bacteria was found to be as follows: 48.3% Firmicutes, 29.8%

Bacteroidetes, and 18.9% Proteobacteria. In SS, the predominant

symbiotic bacteria were identified as belonging to the Proteobacteria

(65.2%), Bacteroidetes (19.5%), and Firmicutes (14.0%). In SG, the

most prevalent symbionts were classified as Bacteroidetes (35.2%),

Firmicutes (30.5%), and Proteobacteria (30.4%). In SA, the abundance

of the main symbionts ranked as Firmicutes (36.6%), Bacteroidetes

(35.1%), and Proteobacteria (24.6%).

At the genera level (Figure 2B; Supplementary Figure S1), the

compositions of the symbiotic bacterial communities of the four

wasp species were significantly different (Supplementary Table S1).

In SP, Bacteroides (20.4%) and Enterococcus (5.4%) were the most

prevalent symbionts, exhibiting high abundance. The predominant

symbiotic bacteria in SS were identified as Wolbachia (51.4%),

Bacteroides (14.6%), and Enterococcus (3.8%). In SG, Bacteroides

(20.9%), Parabacteroides, (6.6%) and Enterococcus (6.5%) were the

main symbionts with high abundance. In SA, Bacteroides (22.0%),

Enterococcus (7.8%), Blautia (6.0%), and Parabacteroides (5.7%)

were the main symbionts with high abundance.
3.3 Diversity and abundance differences of
symbiotic bacteria in Sclerodermus

The alpha diversity index was used to analyze the diversity and

richness of each sample (Figure 3). The Chao1/ACE index mainly

shows the species richness of a sample. The larger the index, the

higher is the richness. The Simpson-Shannon index comprehensively

reflects the evenness of species. The larger the index, the higher is the

evenness. Group SS had the smallest Shannon and Simpson indices,

which were significantly lower than those of the other three species

(Shannon: F=14.323, df=3,23, p<0.001; Simpson: F=11.501, df=3,22,

p<0.001). There were no significant differences in the Chao1

(F=1.369, df=3,23, p=0.281) and ACE (F=1.912, df=3,23, p=0.160)

indices among the four species.
3.4 Community function prediction

According to the species annotation and abundance information

of the OTUs, Picrust software was used to annotate the function of

the KEGG pathway and determine the abundance information of

each pathway. The KEGG pathways with higher relative abundance

predicted by the symbionts of different species of the bethylid wasps

were the same (Table 3). However, the three pathways with the

highest relative abundances in the SS species were translation,

membrane transport, and nucleotide metabolism, which differed

from the carbohydrate metabolism, membrane transport, and

amino acid metabolism observed in the other three species.
3.5 Wolbachia infection frequency of
S. sichuanensis at different temperatures

There was a significant difference (F=400.244, df=3,11, p<0.001)

in the infection frequency of Wolbachia after 4 generations of
TABLE 1 Sequencing and quality assessment of different species
of parasitoids.

Group
Raw
PE

Effective
Tags

Effective
Ratio (%)

Goods
coverage

SP 92268 77683 84.05 0.995

SS 74848 64693 86.40 0.994

SG 86082 75726 87.67 0.994

SA 91036 81147 89.38 0.995
SG, Sclerodermus guani Xiao et Wu; SS, Sclerodermus sichuanensis Xiao; SP, Sclerodermus
pupariae Yang et Yao; SA, Sclerodermus alternatusi Yang.
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rearing at different temperatures, with a significant negative

correlation between temperature and infection frequency

(Figure 4). Infection frequency of Wolbachia was still 95.0% after

4 generations of rearing at 27°C but decreased to 52.5% when the

temperature was raised to 30°C. After 4 generations of rearing

at 33°C, the infection frequency of Wolbachia was only

7.5% (Figure 4).
4 Discussion

In this study, the Illumina MiSeq high-throughput sequencing

method of the 16S rRNA V3 + V4 hypervariable region was used to

systematically analyze the microbial diversity in the four species of

Sclerodermus. The numbers of symbiotic bacteria in these

Sclerodermus parasitoids were not significantly different; however,

the community composition was significantly different, especially in

S. sichuanensis. The most abundant genera were Wolbachia, which

differed significantly from the other three species. Previous studies

have shown that symbiotic bacteria can induce host

parthenogenesis in many parasitic wasps. After reducing the titer

of Wolbachia in Encarsia formosa by antibiotic treatment, the

parasitic wasp that produces female parthenogenesis begins to
Frontiers in Cellular and Infection Microbiology 05
produce male offspring (Wang et al., 2017). Cardinium can cause

parthenogenesis in the aphid wasp E. pergandiella (Kenyon and

Hunter, 2007). Owing to the involvement ofWolbachia, two sets of

chromosomes fail to separate in the egg cells of some insects at the

late stage of the first mitosis, resulting in two sets of completely

identical chromosomes in unfertilized egg cells (Stouthamer and

Kazmer, 1994).

In addition, the Enterococcus content was found to be high in

several parasitic wasps, and Enterococcus and Enterobacter were the

most common dominant bacteria in the intestinal tracts of

lepidopteran insects (Broderick et al., 2004; Teh et al., 2016).

Enterobacter spp. is abundant in eggs and pupae and can increase

the fitness of pupae and adults (Augustinos et al., 2015), which has

been shown to have high metabolic adaptability in both the egg and

larval stages of insects. A large number of Actinobacteria was also

detected in the 1st instar larvae and male adults, similar to the

microbial community composition of Chrysoperla sinica at different

developmental stage (Zhao et al., 2019). Members of the bacterial

phylum Actinobacteria are especially prevalent as defensive

symbionts due to their ecological and physiological prerequisites,

including the ability to utilize a diverse range of nutritional resources

and a remarkable versatility in producing secondary metabolites with

antibiotic properties (Kaltenpoth, 2009). In scarab beetles of the
TABLE 2 Taxonomic information of bacteria in different species of Parasitoids.

Group
Number of different taxonomic categories

Phylum Class Order Family Genus Species

SP 21 43 82 119 215 110

SS 17 27 58 82 145 75

SG 20 38 75 105 190 100

SA 22 41 75 111 204 99

Total 26 55 111 170 312 152
SG, Sclerodermus guani Xiao et Wu; SS, Sclerodermus sichuanensis Xiao; SP, Sclerodermus pupariae Yang et Yao; SA, Sclerodermus alternatusi Yang.
FIGURE 1

Comparative analysis of OTUs in four species of Sclerodermus. SG, Sclerodermus guani Xiao et Wu; SS, Sclerodermus sichuanensis Xiao; SP,
Sclerodermus pupariae Yang et Yao; SA, Sclerodermus alternatusi Yang.
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genus Pachnoda, a number of bacterial strains with hemicellulolytic

capabilities were isolated from the hindgut, including

Promicromonospora pachnodae, an actinobacterial species capable

of producing a range of xylanases and endoglucanases - two enzyme

families involved in (hemi) cellulose degradation (Andert et al., 2010).

The dominant bacteria in insects vary from species to species, but the

resident bacteria belonging to insects, Proteobacteria, Bacteroidetes,

Actinobacteria, and Firmicutes, jointly dominate the insect microbial

community and play important roles in insect physiology and

metabolism. Amylostereum areolatum, belonging to Proteobacteria

putatively encoding CAZymes, has complementary functions for

degrading woody substrates and that such degradation may assist
Frontiers in Cellular and Infection Microbiology 06
in nutrient acquisition by Sirex noctilio (Nakamatsu and Tanaka,

2004; Engel et al., 2012).

Parasitic wasps regulate host lipid metabolism, host triglyceride

and fatty acid content (Kaeslin et al., 2005), and host fatty acid

composition (Thompson and Barlow, 1974), providing a favorable

environment for their offspring larvae, but also withstanding host

defense. Previous studies have found that Enterococcus sp. as a

symbiotic bacterium of Plutella xylostella can effectively regulate the

immune system of host insects and improve their resistance to

poisoned cicadas (Xia et al., 2018). In addition, both Enterobacter

and Serratia can degrade poisoned cockroaches and stimulate the

immune function of the host P. xylostella, thereby increasing the
A B

DC

FIGURE 3

Alpha diversity, Shannon index (A), Simpson index (B), Chao1 index (C), and Ace index (D), for the bacterial communities. SG, Sclerodermus guani
Xiao et Wu; SS, Sclerodermus sichuanensis Xiao; SP, Sclerodermus pupariae Yang et Yao; SA, Sclerodermus alternatusi Yang. Different letters over
the points indicate a significant difference using Least-Significant Difference (LSD) test (P < 0.05).
A B

FIGURE 2

Relative abundances of microbiota phyla (A) and genera (B) in different species of Parasitoids. SG, Sclerodermus guani Xiao et Wu; SS, Sclerodermus
sichuanensis Xiao; SP, Sclerodermus pupariae Yang et Yao; SA, Sclerodermus alternatusi Yang.
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resistance of P. xylostella (Daisley et al., 2018). Serratia in aphids

can significantly improve the host survival ability at high

temperatures (Russell and Moran, 2006). The intestinal symbiotic

bacteria of Bactrocera dorsalis can prolong the time that B. dorsalis

can tolerate temperature stress, and the types of symbiotic bacteria

in B. dorsalis vary with temperature (Ayyasamy et al., 2021).

The results of the present study showed that the content of

Wolbachia in S. sichuanensis was higher than that in other species,

and the infection frequency of Wolbachia was decreases with the

increase of rearing temperature. Wolbachia is the most prevalent

intracellular facultative symbiotic bacterium in arthropods and is

stably colonized in the majority of arthropods through

cytoplasmic inheritance (Hoffmann, 2020). Stresses such as
Frontiers in Cellular and Infection Microbiology 07
temperature are well-known environmental variables that

decrease Wolbachia densities and expression of reproductive

parasitism across host species (Snook et al., 2000). In Nasonia

vitripennis, heat treatment at 30°C reduce Wolbachia densities by

as much as 74% relative to wasps reared at 25°C (Bordenstein and

Bordenstein, 2011). In recent years, the functions of Wolbachia

have been further elucidated, including its role in mediating host

resistance to viruses, influencing behavior, memory, olfaction,

intestinal microbial diversity, and temperature preference

(Moreira et al., 2009; Bi and Wang, 2020; Hague et al., 2020).

Additionally, Wolbachia can confer stress resistance to the host,

markedly enhancing the host’s survival capacity in the presence of

insecticides and heavy metal stress (Burdina et al., 2021; Cai et al.,

2021). This suggests that Wolbachia can also enhance the host’s

fitness under stressful conditions while influencing its behavior

and reproduction. The previous study indicated thatWolbachia in

S. guani was identical with that of the strain in supergroup A, and

it was predicted that it should be a CI-inducing strain (Zhou and

Li, 2014). In the present study, the prediction of community

function was relatively concentrated on carbohydrate

metabolism in the species of SP, SG, and SA. Parasitic wasps

disrupt the host’s normal metabolic processes, resulting in notable

alterations in metabolite concentrations. These changes influence

the host’s nutrient composition, enabling the parasitic wasps to

more effectively utilize nutritional resources (Pennacchio et al.,

1994). Trehalose represents the primary component of blood

sugar in host body fluids. In insects that feed on high-sugar

foods, symbiotic bacteria utilize sugars to synthesize acetate and

other products that are required by the host (Lievens et al., 2015).

The intestinal symbiotic bacteria of Drosophila melanogaster,

which feed on high-sugar rot ten f ru i t s , metabo l i ze

polysaccharides to produce three- to five-carbon alcohols,

aldehydes, acids, and esters (Becher et al., 2012). The in vitro

interaction of various symbiotic bacteria can enhance the yield
FIGURE 4

Wolbachia infection frequency of S. sichuanensis at different
temperatures. Data are shown as the means ± SE of three replicates.
Different letters on the bars indicate a significant difference using
Least-Significant Difference (LSD) test (P < 0.05).
TABLE 3 The relative abundance of pathway.

KEGG Pathway
Relative abundance

SP SS SG SA

Carbohydrate Metabolism 0.1494 ± 0.0023 0.0890 ± 0.0047 0.1418 ± 0.0075 0.1522 ± 0.0006

Membrane Transport 0.1175 ± 0.0020 0.1035 ± 0.0015 0.1181 ± 0.0020 0.1201 ± 0.0017

Amino Acid Metabolism 0.1069 ± 0.0014 0.0823 ± 0.0017 0.1003 ± 0.0026 0.1036 ± 0.0003

Signal Transduction 0.0702 ± 0.0015 0.0272 ± 0.0029 0.0634 ± 0.0055 0.0690 ± 0.0011

Metabolism of Cofactors and Vitamins 0.0676 ± 0.0004 0.0809 ± 0.0010 0.0687 ± 0.0015 0.0660 ± 0.0004

Energy Metabolism 0.0625 ± 0.0006 0.0893 ± 0.0022 0.0657 ± 0.0029 0.0606 ± 0.0006

Nucleotide Metabolism 0.0625 ± 0.0012 0.0928 ± 0.0022 0.0667 ± 0.0039 0.0633 ± 0.0007

Translation 0.055 ± 0.0010 0.1167 ± 0.0045 0.0643 ± 0.0076 0.0562 ± 0.0008

Replication and Repair 0.0519 ± 0.0010 0.0824 ± 0.0022 0.0562 ± 0.0039 0.0527 ± 0.0006

Glycan Biosynthesis and Metabolism 0.0361 ± 0.0014 0.0268 ± 0.0008 0.0357 ± 0.0013 0.0379 ± 0.0003

Folding, Sorting and Degradation 0.0263 ± 0.0003 0.0425 ± 0.0012 0.0286 ± 0.0019 0.0263 ± 0.0001

Lipid Metabolism 0.0337 ± 0.0004 0.0291 ± 0.0004 0.0331 ± 0.0006 0.0337 ± 0.0001
SG, Sclerodermus guani Xiao et Wu; SS, Sclerodermus sichuanensis Xiao; SP, Sclerodermus pupariae Yang et Yao; SA, Sclerodermus alternatusi Yang.
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and diversity of digestive products; Drosophila also prefers the

digestive products of various symbiotic bacteria (Pennacchio et al.,

1994). Acetobacter pomorum uses lactic acid produced by

Lactobacillus plantarum to synthesize acetoin, whereas A.

malorum uses ethanol produced by Saccharomyces cerevisiae to

synthesize acetic acid (Farine et al., 2017; Fischer et al., 2017). The

primary predictive function of the community in S. sichuanensis is

translation, which may affect the regulation of nutrient

metabolism in the host. For instance, in D. melanogaster, the

intracellular symbiont Wolbachia modulates the expression of the

sirt-4 gene, which in turn influences the expression of the host

glutamate dehydrogenase (a key enzyme in glucose metabolism)

and host carbohydrate metabolism (Dutra et al., 2020).

Additionally, intestinal symbiotic bacteria can also use their own

metabolites, such as short-chain fatty acids, as a means of

communication with their hosts (Koh et al., 2016).

The present study found a substantial diversity of bacterial

symbionts among four Sclerodermus species. The findings of this

study provide a foundation for further investigation into the

function of the intestinal endophytic flora in Sclerodermus

parasitoids, with a particular focus on biological characteristics

such as reproductive regulation and host search. Furthermore,

these findings will enhance our understanding of the symbiotic

relationship between symbiotic bacteria and parasitic wasps, and

offer novel insights and methodologies for the population dynamics

of the Sclerodermus parasitoids.
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