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Short-chain fatty acids (SCFAs), a subset of organic fatty acids with carbon chains

ranging from one to six atoms in length, encompass acetate, propionate, and

butyrate. These compounds are the endproducts of dietary fiber fermentation,

primarily catalyzed by the glycolysis and pentose phosphate pathways within the

gut microbiota. SCFAs act as pivotal energy substrates and signaling molecules in

the realm of animal nutrition, exerting a profound influence on the intestinal,

immune system, and intestinal barrier functions. Specifically, they contibute to

60-70% of the total energy requirements in ruminants and 10-25% in

monogastric animals. SCFAs have demonstrated the capability to effectively

modulate intestinal pH, optimize the absorption of mineral elements, and

impede pathogen invasion. Moreover, they enhance the expression of proteins

associated with intestinal tight junctions and stimulate mucus production,

thereby refining intestinal tissue morphology and preserving the integrity of the

intestinal structure. Notably, SCFAs also exert anti-inflammatory properties,

mitigating inflammation within the intestinal epithelium and strengthening the

intestinal barrier’s defensive capabilities. The present review endeavors to

synthesize recent findings regarding the role of SCFAs as crucial signaling

intermediaries between the metabolic activities of gut microbiota and the

status of porcine cells. It also provides a comprehensive overview of the

current literature on SCFAs’ impact on immune responses within the porcine

intestinal mucosa.
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1 Introduction

Short-chain fatty acids (SCFAs), integral metabolites of the gut

microbiota, have garnered significant attention in the scientific

community for their pivotal role in maintaining host health and

immue function (Koh et al., 2016; O’Riordan et al., 2022; Zhang

et al., 2023). The gut microbiota is acknowledged for its critical role

in upholding host health and immune function, with SCFAs posited

as key players in the sustenance of gut homeostasis and the balance

of the immune system (Ratajczak et al., 2019). In this regard,

considerable research endeavors have been dedicated to

elucidating the myriad functions of SCFAs and evaluating their

impact on intestinal health and immune regulation. Previous

studies have predominantly concentrated on examining the

influence of SCFAs on intestinal well-being and growth efficiency

in pigs (Che et al., 2019; Zhao et al., 2022; Lan et al., 2023). These

contributions have furnished the field with foundational insights

into the multifaceted roles of SCFAs within the gastrointestinal

milieu. Nonetheless, a robust and holistic understanding of the

mechanisms by which SCFAs modulate mucosal immune responses

remains an area that warrants further investigation. While previous

reviews have predominantly leaned on in vitro studies and animal

models, particularly murine, to extrapolate the effects of SCFAs on

immune signaling pathways, such as NF-kB, Wnt/b-Catenin and

MAPK (Li J. et al., 2020; McBrearty et al., 2021; Wang et al., 2023;

Chen et al., 2024). The direct applicability of these findings to

porcine mucosal immunity requires additional validation.

Therefore, the aim of this review is to consolidate current

knowledge regarding the regulatory functions of SCFAs in

porcine mucosal immunity and to present novel perspectives that

may guide future research endeavors in this domain.

Piglets lack passive immunity, a condition that is unique to

them due to the filtration function of the sow’s uteroplacental

epithelial villi, which restricts the passage of immunoglobulins

and other macromolecular substances (Vodolazska et al., 2023).

Unlike humans, the differentiation of T and B lymphocytes in

piglets and their commencement of immune functions begin

approximately three weeks postnatal, with full maturation

achieved by eight weeks of age (Suganuma et al., 1986; Sinkora

et al., 2005). In piglets, pulmonary macrophages reach adult

functionality levels around two weeks of age, while those in the

bloodstream differentiate and mature between 3 to 7 days postnatal

(Rothlein et al., 1981). Despite a surge in the population of porcine

neutrophils during the initial weeks of life, their chemotactic ability

remains relatively diminished (Mccauley and Hartmann, 1984).

Natural killer cells, initially quiescent in newborn piglets, undergo a

maturation process that spans approximately 2 to 3 weeks

(Harayama et al., 2022).

Piglets are born agammaglobulinemic, exhibiting limited

cellular immune capabilities. They possess a reduced count of

peripheral lymphoid cells, underdeveloped lymphoid tissues, and

are predominantly lacking in effector and memory T cells

(Leidenberger et al., 2017). Due to these factors, securing

adequate passive immunity is crucial for piglets, which requires

the ingestion of colostrum within the first 36 hours of life
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(Levas t e t a l . , 2014) . Porc ine co los t rum is r i ch in

immunoglobulins (Ig), comprising roughly 80% IgG and 20%

IgA. In addition to Ig, it contains a variety of other bioactive

components, including growth factors, cytokines, enzymes,

antimicrobial substances, and cellular components such as

neutrophils and lymphocytes. These elements are efficiently

absorbed by the neonatal gastrointestinal tract through the act of

swallowing, thereby conferring substantial passive immune

protection (Quesnel, 2011). The intestinal epithelial barrier in

newborn piglets remains permeable to antibodies and other large

molecules until the process of gut closure, which facilitates the

absorption of Igs (Matson et al., 2010; Choudhury et al., 2021).

Maternal immunization can endow newborn piglets with passive

immunity against a range of infections; however, it may

concurrently impede the development of vaccine-induced

immunity (Pravieux et al., 2007; Yuan et al., 2023). Consequently,

the immunity established at mucosal surfaces in sows is conveyed to

nursing piglets through colostrum feeding, a phenomenon known

as lactogenic immunity. This mechanism is vital for providing

immediate protection against enteric pathogens in piglets

(Langel et al., 2016).

Short-chain fatty acids (SCFAs), also known as volatile fatty

acids, are characterized by carbon chains of fewer than six atoms

and primarily consist of acetate, propionate, and butyrate (Zhang

et al., 2024). These SCFAs are the predominant end products of

microbial fermentation in the colon and serve as the principal

anions within the hindgut of mammals (Nogal et al., 2021). In the

absence of dietary supplementation, SCFA concentrations in the

hindgut typically fall within the range of 58-69 mmol/kg dry matter

(DM). However, a diet rich in fiber can elevate endogenous organic

acid production to levels of 84-98 mmol/kg DM (Rossi et al., 2010).

The rate of production and distribution of SCFAs largely depends

on the diversity and population of the colonic gut microbiota, as

well as the nature of the substrate and the transit time within the

intestine (Wong et al., 2006). The genera primarily responsible for

SCFAs synthesis include Eubacterium, Roseburia, Clostridium

anaerobes, Streptococcus, Bacteroides and Bifidobacterium (Layden

et al., 2013; Ziegler et al., 2016; McNabney and Henagan, 2017;

Mehta et al., 2022). Acetate is predominantly generated through

fermentation by Bifidobacterium and Lactobacillus Heprevotella.

While, Propionate is mainly produced via the fermentation of

Bacteroides and members of the phylum Firmicutes. In contrast,

butyrate is predominantly the result of fermentation by Firmicutes,

particularly species within the Verrucomicrobiaceae and

Lachnospiraceae families (Louis and Flint, 2017; Bach Knudsen

et al., 2018; Rowland et al., 2018; Markowiak-Kopeć and Śliżewska,

2020; Asadpoor et al., 2021). Further investigation is warranted to

elucidate the complex interplay between dietary intake, the diversity

and functionality of gut microbiota, and their collective impact on

porcine intestinal health.

As indispensable energy sources, SCFAs exert pivotal influences

on various physiological processes of the host. They significantly

impact nutritional status, immune system development, cellular

metabolism, intestinal barrier function, and motility (Nakatani

et al., 2018; Metzler-Zebeli et al., 2021). Among SCFAs, the
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production of butyrate by specific gut microbiota is instrumental in

promoting the growth and development of both the large and small

intestines (Zhu et al., 2021). Additionally, butyrate stimulates the

expression of tight junction proteins within the intestinal mucosa,

which is crucial for promoting wound healing and maintaining the

integrity of the intestinal barrier (Chen et al., 2018). In addition to

these roles, SCFAs exhibit broad-spectrum antimicrobial properties,

enhancing the host’s defense mechanisms against a range of

pathogens (Fernández-Rubio et al., 2009; Xiong et al., 2016).

Furthermore, they modulate both innate and adaptive immune

responses, influencing leukocyte recruitment and mitigating

intestinal inflammation (Li et al., 2017; Ouyang et al., 2024).

The primary objective of this study is to conduct a comprehensive

review of the regulatory role of short-chain fatty acids (SCFAs) in

mucosal immunity within the porcine model, thereby offering novel

insights into this area of research. Our investigation will specifically

address several key questions: What is the impact of SCFAs on

mucosal immune mechanisms in pigs? How do these compounds

contribute to the activation of immune cells and the regulation of

inflammation? Additionally, we will examine their influence on

intestinal barrier function and antimicrobial defense in pigs. Our

review will also examine the potential regulatory role of SCFAs in gut

immune recovery and their interactions with other immune-

modulating agents. By synthesizing the latest research findings, we

aim to provide a thorough understanding of the multifaceted
Frontiers in Cellular and Infection Microbiology 03
functions of SCFAs in modulating mucosal immunity in pigs.

Initially, we will focus on the role of SCFAs in pigs as a significant

animal model, establishing a foundation that could be extrapolated to

clinical applications. Subsequently, we will provide a summary of the

most recent research, elucidating the intricate mechanisms through

which SCFAs interact with mucosal immunity in pigs, thereby

enhancing our grasp of immune regulation. Moreover, we will

delve into the cross-talk between SCFAs and other factors known

to modulate the immune system, with the goal of offering innovative

perspectives that could inform future research directions and

therapeutic strategies.
2 Regulation of the gastrointestinal
barrier function by SCFAs

The intestinal barrier serves a dual role, not only as the central

hub for nutrient digestion and absorption but also as the frontline

defense mechanism against the incursion of pathogenic

microorganisms and hazardous substances. This dual function is

pivotal in preserving the integrity of normal health status

(Harikrishnan, 2019). Among its various components, short-chain

fatty acids (SCFA) are particularly important for sustaining the

integrity of the tight junctions (TJ) between intestinal epithelial cells

(Figure 1). By doing so, they help reduce damage caused by
FIGURE 1

Maintenance of intestinal barrier function via SCFAs. SCFAs coordinate the expression of tight junction proteins (ZO-1, Occludin, and Claudin-1) to
enhance intestinal barrier function. Intracellular SCFAs improve chemical barriers via mucins (MUC1, MUC2). Dietary propionate and butyrate
promote the growth of villi in intestinal epithelial cells and activate tricarboxylic acid metabolism by entering the mitochondria.
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pathogens and facilitate the recovery of the intestinal mucosal

barrier function (Ji et al., 2022; Yue et al., 2022).

Previous studies have demonstrated that SCFAs undergo

hepatic metabolism, where they are converted into ketone bodies,

such as acetoacetate and b-hydroxybutyrate, as well as glutamate.

These metabolites serve as essential fuels for oxidative metabolism

in the small intestine (Zhao et al., 2024). SCFAs also stimulate the

production of nerve signals that connect the autonomic and central

nervous systems, thereby influencing overall metabolism (Zhang

et al., 2019). Moreover, SCFAs promote the secretion of hormones

and growth factors by intestinal epithelial cells, which enhances

intestinal development. Chen et al. demonstrated that the dietary

supplementation of xylo-oligosaccharides significantly increased

the production of short-chain fatty acids, particularly butyrate

and propionate (Chen et al., 2021). This enhancement induced a

series of physiological responses in swine, including alterations in

cell proliferation, a reconfiguration of energy metabolism, and an

enhancement of the intestinal barrier. Furthermore, it modulated

the intestinal immune system, underscoring the potential of xylo-

oligosaccharides as a dietary intervention for gut health (Chen et al.,

2021; Li et al., 2022). Butyrate, in particular, contributes 60%-70%

of the energy source for colonic epithelial cells. Once absorbed by

intestinal epithelial cells, butyrate penetrates mitochondria to

initiate tricarboxylic acid metabolism (Zhang et al., 2019; Lee

et al., 2022). SCFAs have also been found to reduce intestinal

permeability and improve the integrity of intestinal epithelium by

upregulating proteins such as zonula occludens-1 and tight junction

protein occludin-5 (Bendriss et al., 2023). In a hyperuricemia model

using C57BL/6J mice, SCFAs produced by the intestinal microbiota

were found to upregulate mRNA and protein levels related to tight

junctions, leading to an increase in tight junctions between

intestinal epithelial cells and restoring the intestinal mechanical

barrier function (Guo et al., 2021). When administering gastric

infusions to weaned piglets, SCFAs increase serum and digestive

fluid concentrations, enhance the distribution of SCFA receptors in

porcine intestinal tissue, and upregulate genes related to intestinal

development (Diao et al . , 2019). Additionally , SCFA

supplementation decreases the abundance of proapoptotic genes

and proteins, promoting piglet growth and reducing diarrhea

incidence (Huang et al., 2015). In another study with early-

weaned piglets, dietary supplementation with sodium butyrate

(2000 mg/kg) resulted in a significant increase in mRNA

expression levels of ZO-1, occludin, and claudin-3, as well as

protein expression levels of occludin and claudin-3 (Feng W.

et al. , 2018). This supplementation reduced intestinal

permeability, alleviated diarrhea, and improved porcine growth

performance. Furthermore, when microbial butyrate formation is

low or absent, adding butyrate to total parenteral nutrition (TPN)

formulas for neonatal piglets has been shown to stimulate tissue

regeneration after jejunoileal resection (Bartholome et al., 2004). In

summary, SCFAs primarily regulate the proliferation of intestinal

cells and metabolic processes, highlighting their crucial role in

intestianl health and development.

During early life, the concentrations of short-chain fatty acids

(SCFAs) in piglets increase, with acetate levels decreasing while

butyrate and propionate levels rise significantly (Qi et al., 2020).
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Dietary supplementation with sodium butyrate has been shown to

enhance average daily gain (ADG) and improve the feed conversion

ratio in weaned piglets. Additionally, it reduces serum

malondialdehyde levels and the incidence of diarrhea by

modulating intestinal permeability and the structure of the

intestinal microbiota (Huang et al., 2015). Butyrate specifically

has been found to bolster intestinal barrier function. It does this

by increasing the mRNA expression levels of tight junction proteins

and facilitating their reassembly, as well as by elevating

transepithelial electrical resistance (TER) in Caco-2 and IPEC-J2

cells (Sekirov et al., 2010; Ma et al., 2012; Diao et al., 2019).

Propionate, on the other hand, has been shown to increase villus

height and the villus height-to-crypt depth ratio in the jejunum of

finishing pigs (Zhang et al., 2019). Therefore, further research

comparing the effects of different sources and forms of SCFAs on

piglets is essential. This will help to confirm their potential to

enhance gastrointestinal barrier function.
3 The influence on the gut microbiota
by SCFAs

The diversity and relative abundance of gut microbiota vary

across different intestinal sites. The total number of bacterial cell

count escalates from the ileum to the colon, peaking in the distal

intestine of swine. Moreover, bacterial composition is site-specific

along the the GI tract (Sekirov et al., 2010; Biagi et al., 2012). Gut

microbiota is influenced by both external factors, such as diet and

antibiotics, and internal metabolic processes. Short-chain fatty acids

(SCFAs) play a pivotal role in modulating the intestinal

environment by reducing pH and redox potential (Zheng et al.,

2017), thereby fostering the growth of beneficial probiotics and

suppressing the proliferation of pathogenic and commensal bacteria

(Lu et al., 2022; Kang et al., 2024). SCFAs also enhance intestinal

colonization resistance, which in turn can alter the gut microbiota’s

structure (Duan et al., 2021). Bifidobacterium and Lactobacillus not

only stimulate the secretion of intestinal mucin proteins, but also

impede the adhesion of pathogens, such as Escherichia coli and

Clostridium perfringens, to mucus and epithelial cells by acidifying

the environment through SCFA production (Rauch et al., 2022).

Previous research has identified Clostridium butyricum and

Enterococcus faecalis as crucial probiotics, beneficial for the

healthy development of weaned piglets. Dietary supplementation

with these probiotics can enhance intestinal growth performance

and protect hepatocytes and intestinal villi (Wang et al., 2019).

Plant-derived natural analogs play the same role by affecting gut

bacterial abundance, Astragalus and Ginseng polysaccharides

regulate host immune functioning by activating the TLR4-

mediated MyD88-dependent signaling pathway and increase

volatile fatty acids (VFAs) in the colonic contents, improvement

of intestinal morphology (Yang et al., 2019). This enrichment of

colonic microbial populations and diversity is observed in weaned

piglets. Therefore, the addition of natural analogs to the diet is also a

way to improve the immunity of piglets to maintain normal

intestinal morphology. It is well established that SCFAs provide

essential energy for bacterial communities, lower gut lumen pH,
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and contribute to an acidic environment (Yang B. et al., 2024). In

vitro tests have demonstrated that propionic acid can inhibit

Staphylococcus aureus and inactivate Salmonella and Escherichia

coli at pH 5 (Alva-Murillo et al., 2012). Butyric acid promotes the

adhesion of beneficial probiotics such as Bifidobacteria and

Lactobacilli, while reducing the adhesion of Escherichia coli (Cai

et al., 2022). Consistent with in vitro findings, in vivo studies have

have shown that high concentrations of SCFAs can reduce the

presence of conditional pathogens, like Salmonella and Escherichia

coli in the porcine intestine (Zhu et al., 2021). The dietary inclusion

of sodium butyrate has been shown to enhance the proliferation of

Lactobacilli in the porcine intestinal tract, while decreasing

Salmonella and Escherichia coli, particularly in the duodenum,

thus significantly impacting the overall microbiota balance (Gálfi

and Bokori, 1990). The addition of berberine (BBR) and ellagic acid

(EA) to the diet of weaned piglets can improve growth performance

and gut health by modifying gut microbiota composition and

increasing propionic and butyric acid concentrations (Qin et al.,

2023). Furthermore, incorporating SCFAs and medium-chain fatty

acids (MCFA) along with natural plant extracts (PHY) into the diet

has been shown to positively influence diarrhea prevention and

growth performance in weaned piglets, suggesting effective control

of pathogenic Escherichia coli in weaned piglets (Caprarulo et al.,

2023). Importantly, SCFAs can restructure the gut microbiota, and

the diversity and abundance of the gut microbiota can reciprocally

affect SCFA production. For instance, metabolites such as acetic and

lactic acids, produced by the proliferation of Bifidobacteria and

Lactobacilli in the gut, serve as energy sources for certain other

bacteria, enabling them to proliferate and produce butyric acid

(Duysburgh et al., 2021).

As key metabolites of the gut microbiota, short-chain fatty acids

(SCFAs) exhibit considerable potential as feed additives to improve

the species composition and community structure of the porcine

gut microbiota. However, there remains a significant amount of

debate regarding their impact on the early colonization stages of

gut microbiota.
4 Modulation of the porcine immune
system by SCFAs

Short-chain fatty acids (SCFAs) exert a profound influence on

the porcine immune system, modulating crucial aspects such as

mucosal immunity, adaptive immune responses, and the immune-

protective attributes of milk. A substantial body of literature has

consistently highlighted the pivotal role of SCFAs in these

immunomodulatory processes. With an evolving comprehension

of their underlying mechanisms, it is imperative to dissect the

multi-dimensional effects of SCFAs. This discourse will delve into

the intricate influence of SCFAs on the immune system of pigs,

focusing on the mucosal immune response, the protective role of

milk in immune defense, and the adaptive immune system.

Short-chain fatty acids (SCFAs) are pivotal in modulating the

mucosal immune function in pigs. They can achieve this by

influencing mucin expression in the gut (Ma et al., 2022). Also

preserve the integrity of the intestinal mucosa and bolster the
Frontiers in Cellular and Infection Microbiology 05
immune response by regulating key mucosal immune cells,

including dendritic cells and macrophages (Luu et al., 2020), as

well as the impact on the immunometabolism and epigenetic

status of regulatory lymphocytes to accomplish this. A study by

Walia K et al. demonstrated that the dietary inclusion of sodium

butyrate during the late fattening stage in pigs not only reduced

the prevalence and serum positivity of Salmonella but also

promoted growth (Walia et al., 2016). This finding implies that

SCFAs may positively influence the pig’s intestinal mucosal

barrier function and immune response, potentially decreasing

susceptibility to pathogen infections and bolstering resistance to

external environmental challenges. Research by Lin et al. revealed

that the supplementation of lactic acid bacteria-fermented

formula milk as an intestinal regulator led to several beneficial

outcomes in weaned piglets (Lin et al., 2023). Specifically,

compared with the CON group, piglets in the LFM group had

significantly higher ileal lactate levels, which may be related to the

lactate producing bacteria or the compound acidifier in LFM. It is

not only beneficial to intestinal health, but also produces more

SCFAs in the presence of lactic acid-utilizing bacteria (e.g.

Acetitomaculum). Additionally, the supplementation resulted in

a significant increase in the number of goblet cells within the

crypts. These findings suggest that lactic acid bacteria-fermented

formula milk can enhance intestinal homeostasis and mitigate the

weaning stress experienced by piglets.

Short-chain fatty acids (SCFAs) have been extensively studied

for their influence on milk immune protection in lactating pigs.

Sows convey vital immune factors to their piglets through milk,

safeguarding them against pathogenic microorganisms (Dos Santos

Bersot et al., 2019). SCFAs are known to modulate these immune

components, including immunoglobulins present in sow’s milk. A

feeding trial by Galfi P et al. revealed that diets supplemented with

sodium butyrate positively affected piglet growth performance

(Gálfi and Bokori, 1990). This suggests that the SCFA butyrate

might enhance milk immune protection either by altering the

immune factor content in the milk or by modulating the

intestinal microbiota. Further research has confirmed that SCFAs

significantly regulate mucosal immune function, adaptive immune

responses, and milk immune protection in pigs. These findings offer

crucial insights into the intricate regulatory mechanisms of the pig

immune system, emphasizing the importance of SCFAs in both

direct and indirect immune system modulation.

Recent studies have underscored the significant regulatory role

of short-chain fatty acids (SCFAs) in shaping the adaptive immune

responses in pigs. SCFAs modulate inflammatory responses within

the intestinal tract by influencing the activity of immune cells (Yang

J. et al., 2024). Specifically, they inhibit the activation of pro-

inflammatory T cells and stimulate the differentiation of immune

regulatory T cells, known as Tregs (Qiu et al., 2022). This dual

action helps maintain a balanced immune response. Moreover,

SCFAs directly influence antibody production and the functionality

of B cells (Kim et al., 2020), which are crucial for adaptive

immunity. Smith et al. discovered that microbial metabolites,

including SCFAs, are instrumental in maintaining the

homeostasis of colonic Tregs (Smith et al., 2013). This regulation

can significantly impact pigs’ immune responses and their ability to
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resist diseases. Furthermore, a review by Anshory et al. highlighted

the complex nature of butyrate’s role in immune-related diseases

(Anshory et al., 2023). While beneficial for intestinal health,

butyrate may also carry other potential risks, For example, Kaiko

et al. showed that butyrate administration leads to a reversal of

autophagy in colon cells. As a result, colon cells preferentially break

down butyrate, thereby avoiding harm to stem cells (Kaiko et al.,

2016). This duality underscores the importance of carefully

considering the regulatory effects of SCFAs on the immune

system in practical applications.
5 Alleviation of intestinal inflammation
by SCFAs

During the inflammatory response, endothelial cells facilitate the

expression of cell adhesion molecules on activated immunocytes,

including E-selectin, ICAM-1, and VCAM-1 (Birch et al., 2023). This

process results in the adhesion of leukocytes to the vascular

endothelium and their subsequent migration to specific tissues,

thereby amplifying the inflammatory response. Previous studies

have indicated that short-chain fatty acids (SCFAs) can mitigate

intestinal inflammation by modulating both innate and adaptive

immune responses and by influencing the leukocyte recruitment

process (Li et al., 2017; Ouyang et al., 2024). SCFAs stimulate the

expression of the NF-kB transcription factor in intestinal epithelial

cells through Toll-like receptors (TLRs), which in turn promotes the

secretion of TNF-a and diminishes the expression of IL-8 and MCP-
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1 (Kopczyńska and Kowalczyk, 2024; Ma et al., 2024). Furthermore,

SCFAs can enhance the expression of selective adhesion molecules on

neutrophil surfaces (L-selectin) and neutrophil chemoattractants

(CINC-2ab), which facilitates the release and migration of

neutrophils to sites of inflammation (Yang et al., 2018).

Additionally, SCFAs promote the expression of genes involved in

plasma cell differentiation in B cells, accelerating their maturation

into plasma cells (Shinde et al., 2020). Plasma cells are instrumental in

increasing the secretion of various antibodies in the intestinal

mucosa, such as secretory IgA, which plays a pivotal role in the

local regulation of intestinal microorganisms and in controlling

inflammation (Garcia-Castillo et al., 2019).

Many studies have shown that SCFAs can inhibit the

production of pro-inflammatory mediators, such as TNF-a, IL-6
and NO, induced by LPS and many cytokines. They can promote

the release of anti-inflammatory cellular factor IL-10, and reduce

the expression level of IL-10 in monocytes (Vinolo et al., 2011).

Besides, SCFAs down-regulate the PPARg and NF-kB transcription

factors, thus inhibiting the expressions of ICAM-1 and VCAM-1.

They can also block the secretion of proinflammatory factors, such

as IL-2, IL-6 and TNF-a (Li B. et al., 2020; Zhou et al., 2022). Zhang

et al. conducted an in-depth investigation into the modulatory

effects of propionate on inflammatory gene expression (Zhang et al.,

2018). Utilizing a porcine cecal fistulae model, they instilled sodium

propionate directly into the cecum to precisely assess its impact on

local inflammatory responses. NF-kB and IL-18 expression was

found to be upregulated after propionate infusion. Moreover, the

abundance of Bacteroidetes increased and the abundance of
FIGURE 2

Immunomodulatory function of SCFAs on the intestinal immune system. SCFAs regulate local inflammation and protective immunity via activation of
IgA, IgG, and IgM in B cells and promotion of differentiation into plasma cell sIgA via IPEC-J2 cells, enhancement of intestinal IL-10 expression via T
cells, and promotion of neutrophil release and migration. Meanwhile, SCFAs-mediated HDAC inhibition, a crucial regulator of NF-kB activity and
NLRP3 overexpression, lowered the expression of TNF-a, IL-6, IL-18 and MCP-1 in intestinal epithelial cells.
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Firmicutes decreased. This study aimed to elucidate the role of

short-chain fatty acid propionates in the regulation of colonic

microbiota and inflammatory cytokines.

The activation of NLRP1 inflammasome leads to an increase in

IL-18 production, which exacerbates dextran sulfate sodium (DSS)-

induced colitis in C57BL/6 mice by reducing the abundance of

butyrate-producing Clostridium species in the gut. However, the

supplementation with 2% (mass to volume ratio) butyrate has been

shown to mitigate the incidence of colitis in mice (Tye et al., 2018).

Thus, appropriate concentrations of SCFA can suppress intestinal

inflammation and enhance intestinal barrier function by inhibiting

inflammasome activity. SCFAs function as histone deacetylase

(HDAC) inhibitors, curbing the excessive activation of

inflammasomes and thereby alleviating inflammation (Zou et al.,

2022). Several studies have shown that treatment with specific

concentrations of SCFAs, such as 0.5 mmol/L acetate, 0.01 mmol/L

propionate, and 0.01 mmol/L butyrate, can inhibit HDAC expression

and significantly suppress the overactivation of the NLRP3

inflammasome (Feng Y. et al., 2018; Yuan et al., 2018; Wu et al.,

2022). Furthermore, a recent study using a co-culture model of

porcine intestinal epithelial cells (IPEC-J2) and peripheral blood

mononuclear cells (PBMC) to simulate an acute inflammatory state

has demonstrated that the addition of propionic acid can reduce the

stimulated nitric oxide (NO) release from IPEC-J2 cells.

Concurrently, it can induce an increase in the expression of tight

junction protein (TJP) genes and promote the synthesis of Claudin-4

(CLDN4) and Occludin (OCLN) proteins (Andrani et al., 2023).This

study highlights the protective effect of propionic acid against acute

inflammation (Figure 2).
6 Conclusions and perspectives

A comprehensive review and analysis of existing literature

indicate that short-chain fatty acids (SCFAs) exert a substantial

influence on the immune system, intestinal health, and growth

performance in pigs. Their effects encompass the preservation of

intestinal mucosal barrier function, modulation of immune cell

activity, regulation of inflammatory responses, and other

mechanisms. Moving forward, research should delve deeper into

the precise mechanisms through which SCFAs influence intestinal

immunity and health in pigs, with a focus on microbiota-immune

system interactions, immune tolerance, and the regulation of

inflammation. Although SCFAs have been studied in the context

of pig production, there is a need for more systematic and detailed

investigations into their effects on pigs at various stages of growth.

The response to SCFAs may vary significantly from the finishing

stage to the lactation stage, highlighting the need for more targeted

and ongoing research to offer more precise guidance for agricultural

practices. While SCFAs are recognized for their benefits to intestinal

health and the immune system, some studies have raised concerns

about their potential to exacerbate inflammation and contribute to

inflammation-related intestinal diseases. Thus, future research

should aim to examine the biological effects of SCFAs in a more

nuanced manner and explore possible solutions and preventative

measures to mitigate any adverse effects.
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This article makes a significant contribution by providing a

thorough overview of the effects of short-chain fatty acids (SCFAs)

in pig production. It delves into the multifaceted roles of SCFAs,

including their influence on mucosal immune function, the

modulation of adaptive immune responses, and their contribution

to milk immune protection. By doing so, this article underscores the

critical importance of SCFAs in maintaining and enhancing the

health and productivity of pigs. Furthermore, the article illuminates

the path for future research, emphasizing the need for ongoing

studies to uncover additional insights into the mechanisms of action

of SCFAs. It advocates for research that will yield scientific evidence

to inform pig production practices and strategies for disease

prevention. This forward-looking perspective is vital for the

continued advancement of the field. The findings presented here

carry substantial practical implications. They suggest that by

optimizing the use of SCFAs, pig managers can potentially

enhance the health and resistance of their animals. This

optimization could lead to improved production performance,

which is of paramount importance for the pig farming industry.

Our review serves as a valuable resource for both researchers and

practitioners alike, offering a synthesis of current knowledge and a

roadmap for future exploration in the realm of pig health

and production.
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