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Infertility is a disease of impaired fertility. With socioeconomic development,

changes in human lifestyles, and increased environmental pollution, the problem

of low human fertility has become increasingly prominent. The incidence of

global infertility is increasing every year. Many factors lead to infertility, and

common female factors include tubal factors, ovulation disorders,

endometriosis, and immune factors. The gut microbiota is involved in many

physiological processes, such as nutrient absorption, intestinal mucosal growth,

glycolipid metabolism, and immune system regulation. An altered gut flora is

associated with female infertility disorders such as polycystic ovary syndrome

(PCOS), endometriosis (EMs), and premature ovarian failure (POF). Dysbiosis of

the gut microbiota directly or indirectly contributes to the development of female

infertility disorders, which also affect the homeostasis of the gut microbiota.

Identifying the etiology and pathogenesis of infertility in patients is the focus of

reproductive medicine physicians. We studied the developmental mechanism

between the gut microbiota and PCOS, EMs, and POF from a new perspective,

providing new ideas for diagnosing and treating female infertility diseases and

specific reference values for eugenics.
KEYWORDS
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1 Introduction

The aging process of female ovaries is accelerating, and the incidence of infertility is

significantly increasing at a younger age (Inhorn and Patrizio, 2015). Delayed childbearing has

become a global problem. The WHO predicts that infertility will become the third most

important disease of the 21st century after tumors and cardiovascular disease (Carson and

Kallen, 2021). Clinical conditions that lead to female infertility include PCOS, EMs, and POF
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(American College of Obstetricians and Gynecologists Committee on

Gynecologic Practice and Practice Committee, 2014; Gu et al., 2022;

Salmeri et al., 2024). Reduced human fertility is not simply a

reproductive health issue but also raises a variety of social,

economic, and family issues. Approximately 100 trillion

microorganisms colonize the human gastrointestinal tract, and gut

microorganisms form interdependent symbioses with their hosts,

affecting normal physiology and susceptibility to disease (Illiano

et al., 2020). James et al. proposed that the gut microbiota plays a

vital role in the pathogenesis of various estrogen-dependent diseases

and proposed the concept of the “estrogen-gut microbiota axis.” The

gut microbiota regulates estrogen by secreting b-glucuronidase (Flores
et al., 2012). Disruption of this process by dysbiosis of the gut

microbiota results in a decrease in circulating estrogen. Alterations

in circulating estrogen can lead to the development of diseases such as

obesity, metabolic syndrome, PCOS, EMs, and decreased fertility

(Saunders and Horne, 2021). With the increasing development and

improvement of microbiome research, the involvement of the gut

microbiota in the curative mechanism of female infertility diseases

such as PCOS, EMs, and POF deserves further investigation, which is

highly important in guiding the improvement of female infertility and

fertility (Dinsdale and Crespi, 2021).
2 Gut microbiota

2.1 Composition of the gut microbiota

The gut microbiota is a general term for all microorganisms

colonizing the human gastrointestinal tract, with a wide variety of

species, large numbers, and complex functions, known as the

“second genome of the human body” (Adak and Khan, 2019).

The proportion of Firmicutes and Bacteroidetes in the gut

microbiota in the human body is as high as 90%, followed by

Actinomycetes, Proteobacteria, and Fusobacteria, which are

involved in the maintenance of the microecological balance in the

human body (Zeng et al., 2019). The relationships between the gut

microbiota and the host are divided into three major categories:

beneficial bacteria, such as Lactobacillus and Bifidobacterium,

which help the body digest and absorb toxins, reduce the release

of toxins, improve the body’s immune system, alleviate

inflammatory reactions, and decrease the incidence of tumors.

Harmful bacteria, such as Salmonella and Staphylococcus,

increase the toxin content, disrupt the internal environment of

the intestine, and increase the incidence of cancer. Harmful

bacteria, such as Salmonella and Staphylococcus, can increase the

level of toxins and damage the internal environment of the

intestine, leading to intestinal diseases and increasing the

incidence of cancer; intermediate bacteria, such as Bacteroides

and Escherichia coli (Liu et al., 2017; McQuade et al., 2019).
2.2 Functions of the gut microbiota

The species and number of microorganisms colonizing the gut

vary within a certain range and are in dynamic equilibrium (Zemel,
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2017). The gut microbiota plays important roles in human growth

and development , metabol i sm, immunity , and other

pathophysiological processes, including the promotion of host

immune system maturation, the inhibition of pathogen

overgrowth, the regulation of intestinal endocrine function, neural

signaling, and the synthesis of neurotransmitters (He and Li, 2020).

The gut microbiota not only exerts various effects on the intestinal

environment but also regulates distal tissues and organs and is

considered to be a mature endocrine organ (Martin-Gallausiaux

et al., 2021). With the development of gene sequencing technology,

in-depth knowledge of the gut microbiota has increased, and many

studies have confirmed that the gut microbiota composition and

diversity are altered when dysbiosis occurs and that dysbiosis of the

gut microbiota can promote the occurrence and development of

diseases through various pathways, such as neuroendocrine and

metabolic immunity pathways, in the human body (Di Vincenzo

et al., 2024) (Figure 1). The gut microbiota has become one of the

hotspots of research in medicine, microbiology, genetics, etc (Yan

and Charles, 2018). The gut microbiota plays a vital role in female

reproductive health. It can be involved in the occurrence of diseases

of the female reproductive system by directly or indirectly

participating in the regulation of sex hormones, stimulating the

production of inflammatory factors, and influencing immune

function and metabolic homeostasis (Escobar-Morreale, 2018).
3 The gut microbiota and
female infertility

Infertility has been a significant challenge in reproductive

medicine (Wild, 2002). The leading causes of female infertility

include PCOS, EMs, and POF (Torres et al., 2018a). PCOS is one

of the most common reproductive endocrine disorders in women of

reproductive age, and it is one of the most important causes of

ovulatory dysfunction and infertility in women of reproductive age

(Shi et al., 2021). The etiology and pathogenesis of PCOS have not

been elucidated. PCOS is characterized clinically by irregular

menstruation, hyperandrogenism, or hyperandrogenism. Polycystic

changes characterize ultrasound-generated ovaries. PCOS is

characterized by irregular menstruation, hyperandrogenism or

hyperandrogenaemia, and polycystic ovarian changes on

ultrasound, with infertility as the primary manifestation (Sadeghi

et al., 2022). EMs is a common gynecological disease with a trend of

increasing incidence yearly. Pain and infertility caused by EMs are

severe threats to women’s physical and mental health (Johnson et al.,

2017). The natural pregnancy rate of patients with EMs decreases

annually with increasing postoperative time, and ART also leads to

low implantation rates due to the poor quality of oocytes and

embryos in patients with EMs (Bailey and Coe, 2002; Flores et al.,

2012). POF is a reproductive endocrine disease with a complex

etiology, with genetic, immunologic, environmental, oxidative

stress, chronic inflammation, and other influences that may

contribute to the development of POF (Sullivan et al., 2016). The

specific etiology of POF has not been fully elucidated. POF not only

affects the reproductive function of patients but also increases the risk

of depression, anxiety, cognitive decline, premature death,
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osteoporosis, and cardiovascular disease (Arroyo et al., 2019).

Infertile couples aspire to seek ART to help them conceive, but the

treatment process is complex, lengthy, and expensive, further

increasing the psychological and financial burden on infertile

patients (Tay et al., 2020).

The body microbiome affects every stage of female

reproduction, including follicular and oocyte maturation in the

ovary, fertilization, embryo migration, implantation, gestation, and

delivery. The gut microbiota is closely associated with the onset and

development of reproductive system diseases (Kelley et al., 2016).

Disturbances in the gut microbiota increase the production of

short-chain fatty acids (SCFAs), lipopolysaccharides (LPS), etc.,

which influence the secretion of gonadotropins and sex hormones

from the central nervous system, including the hypothalamus and

pituitary gland, through neural and humoral signaling (Backhed

et al., 2004; Grunewald et al., 2019). Many aspects of the female

pregnancy process are related to estrogen. The growth and

development of the follicle, endometrial hyperplasia, endometrial

tolerance, gestational maintenance of the ovarian corpus luteum,

and early placental perfusion cannot be achieved without normal

estrogen regulation of the body (Baker et al., 2017; Durack and

Lynch, 2019). Through a variety of pathways, including the brain

−gut signaling axis, endocrine system, metabolic system, and

immune system, gut microbiota dysregulation can contribute to

the onset and progression of diseases such as PCOS, EMs, and POF

and increase the incidence of infertility in women of reproductive

age (Qi et al., 2021) (Figure 2). Disease can also disrupt the
Frontiers in Cellular and Infection Microbiology 03
homeostasis of the gut microbiota. Correction of abnormal

microbiota may improve reproductive outcomes (Rizk and

Thackray, 2021). We focused on the interactions between the gut

microbiota and multiple diseases that cause infertility and explored

the pathogenesis of the gut microbiota and female infertility to

provide ideas for the diagnosis and treatment of female

infertility disorders.
4 The gut microbiota and PCOS

4.1 Overview of PCOS

PCOS is the most common endocrine disorder leading to

anovulatory infertility (Zhang et al., 2022). The incidence of

PCOS, which has a severe impact on women’s bodies, minds, and

families, is increasing annually (Li et al., 2016). PCOS is

characterized mainly by metabolic abnormalities and other

clinical features, including sparseness or anovulation,

hyperandrogenism (HA), polycystic changes in the ovaries,

insulin resistance (IR), obesity, chronic low-grade inflammation,

and infertility (Masjedi et al., 2019). Patients with PCOS are at

increased risk for long-term metabolic disorders such as

cardiovascular disease and metabolic syndrome (MS) (Witchel

et al., 2022). The Rotterdam criteria are currently the most widely

used criteria for the diagnosis of PCOS: (1) clinical manifestations

of hyperandrogenism or hyperandrogenaemia; (2) sporadic
FIGURE 1

Factors determining intestinal barrier impairment and consequent systemic diseases (Di Vincenzo et al., 2024).
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ovulation or anovulation; (3) polycystic changes of the ovary:

ovarian volume ≥10 ml or ultrasound suggests that there are ≥12

follicles with a diameter of 2–9 mm in one or both ovaries; and (4)

two of the three itEMs and exclusion of other hyperandrogenic

aet iologies (Rao and Bhide, 2020). The four crit ica l

pathophysiological alterations in PCOS are excessive carbohydrate

intake, hyperandrogenism, hyperinsulinaemia, and inflammation

(Li et al., 2022a). The relationship between changes in the gut

microbiota and PCOS has been the focus of numerous studies in

recent years (Barroso et al., 2020). Alterations in the gut microbiota

profile are prevalent in patients with PCOS, and an intestinal

microecological imbalance is also closely related to the occurrence

and progression of PCOS (Ostadmohammadi et al., 2019).
4.2 Mechanisms of gut microbiota
involvement in PCOS

The gut microbiota is the “endocrine organ” that maintains

human health. The microbiota in the gut affects the reproductive

endocrine system by interacting with estrogens, androgens, insulin,

etc (Lan et al., 2023). The typical features of PCOS include

abnormal sex hormone levels, IR, polycystic changes in the

ovaries, chronic inflammation, and oxidative stress (Liu et al.,

2021; Azizi-Kutenaee et al., 2022). Disturbances in the gut

microbiota are involved in endotoxemia, SCFA production, bile

acid metabolism, and abnormal ghrelin secretion, and these

processes are closely related to the manifestations of HA, IR,

chronic inflammatory response, and abnormal ghrelin levels in

individuals with PCOS (Chu et al., 2020a). Gut microbiota

structural disorders can impair the integrity of the intestinal

mucosa, decreasing intestinal barrier function and triggering
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systemic chronic low-grade inflammation, which in turn leads to

endocrine and metabolic disorders that can induce the occurrence

and development of PCOS and affect fertility (Tremellen and

Pearce, 2012; Insenser et al., 2018). PCOS can lead to gut

microbiota dysregulation, and gut microbiota dysregulation

exacerbates metabolic and endocrine dysfunction in patients with

PCOS. The gut microbiota is involved in the pathogenesis of PCOS

by affecting follicular development, sex hormones, and metabolic

levels through HA, IR, chronic inflammation, MS, and the gut

−brain axis, among other pathologies (Zhang et al., 2022) (Figure 3).

4.2.1 Dysregulation of the gut microbiota and HA
HA is the core pathological manifestation of PCOS. Excessive

androgen secretion leads to ovarian stromal hyperplasia, peritoneal

thickening, and accelerated follicular atresia, which prompts the

conversion of testosterone to dihydrotestosterone in peripheral

tissues, causing women to exhibit hirsutism and acne and

inducing hormonal disorders of the gonadal axis, resulting in

abnormalities in follicular growth and development and ovulation

(Sun et al., 2019; Torres et al., 2019). Gene sequencing analysis of

fecal microorganisms from healthy women, women with PCOM,

and patients with PCOS revealed that patients with PCOS had the

lowest alpha diversity, followed by patients with PCOM, and that

HA, testosteroneemia, and hirsutism were negatively correlated

with alpha diversity (Torres et al., 2018b; Jobira et al., 2020). Free

testosterone levels are associated with the Firmicutes/Bacteroidetes

ratio (Chu et al., 2020b). In PCOS patients, Bacteroidaceae,

Raoultella, and Prevotella were positively correlated with

testosterone. An elevated abundance of the gut microbiota

Bacteroidetes was positively correlated with testosterone, BMI,

and inflammatory factors in PCOS patients (Qi et al., 2019). After

gut microbiota transplantation from adult male mice into the
FIGURE 2

The gut microbiota and its impact on the female reproductive tract, embryo development and pregnancy (Qi et al., 2021).
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intestines of immature female mice, the testosterone content in the

females was significantly greater than that before transplantation,

suggesting that the androgen levels of the mice significantly

changed after dysbiosis. Compared with those of normally

ovulating women, the gut microbiota of PCOS patients tended to

simplify the flora, and the more pronounced this trend was, the

greater the androgen levels were in the patients (Zhang et al.,

2019a). There is a correlation between HA and the gut

microbiota, but the causal relationship between HA and gut

microbiota disorders is not clear.

4.2.2 Dysregulation of the gut microbiota and IR
IR plays a vital role in the abnormalities in reproductive

function and metabolic disorders caused by PCOS and is closely

related to the development of PCOS (Sjogren et al., 2009; Siristatidis

et al., 2015). IR levels are associated with the gut microbiota (Qi

et al., 2019). The gene count of the gut microbiota was found to be

negatively correlated with IR levels (Le Chatelier et al., 2013).

Dysregulation of the gut microbiota induces IR, which leads to an

imbalance of material and energy metabolism in the body and the

activation of chronic inflammatory and immune response systems

in the body and affects insulin receptor sensitivity (Zheng et al.,

2021). A significant reduction in the number of Prevotella was

found in PCOS patients with IR compared with that in PCOS

patients without IR, and the number of Prevotella was negatively

correlated with elevated clinical parameters such as IR, sex

hormones, and inflammation (He and Li, 2021). Dysregulation of

the gut microbiota in PCOS patients can lead to increased intestinal

mucosal permeability, increased incidence of intestinal villus

destruction and enteritis, entry of branched-chain amino acids

into the body’s circulation, activation of the body’s immune

system and inflammatory mediator system, reduced insulin

receptor sensitivity, increased insulin levels, and increased insulin
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and androgen production through positive feedback; thus,

androgens further increase the content and interfere with the

regular ovulation of the ovary (Ding et al., 2021). IR levels are

correlated with gut microbiota disorders, which can cause the

activation of relevant inflammatory signaling pathways in the

body, thereby triggering the impairment of the insulin signaling

pathway and leading to IR (Saad et al., 2016). Improving the gut

microbiota is helpful for improving IR and ovulation function in

individuals with PCOS (Helli et al., 2022).

4.2.3 Gut microbiota dysregulation and
chronic inflammation

A chronic inflammatory state exists in patients with PCOS

(Mohadetheh, 2019). The gut microbiota-mediated inflammatory

state is highly important for the pathological process of PCOS

(Schmidt, 2015). Wadsworthia is a pathogen associated with the

proinflammatory response and is closely related to the development

of several inflammatory diseases. As detected by 16S rDNA

sequencing, wadsworthia levels were greater in the PCOS fecal

transplantation group than in the healthy fecal transplantation

group, suggesting that wadsworthia is involved in the

pathogenesis of PCOS through the inflammatory process. Patients

with PCOS exhibit gut microbiota dysregulation, chronic

inflammation, and IR, and the degree of change in the gut

microbiota is related to the degree of inflammation and the level

of IR (Atarashi et al., 2013; Karlsson et al., 2013). The activity of the

gut microbiota was increased in PCOS patients, and the levels of

dimethylamine and N-acetylglycoprotein in the blood were

significantly greater than those in ordinary women. The elevated

levels of dimethylamine and N-acetylglycoprotein demonstrated

chronic inflammation in PCOS patients, suggesting that the

inflammatory state of PCOS patients is associated with gut

microbiota dysregulation (Sun et al., 2012). Patients with PCOS
FIGURE 3

Crosstalk between PCOS and gut metabolites (Zhang et al., 2022).
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have elevated levels of B. vulgatus in the gut; decreased levels of

intestinal bacterial metabolites, bile acids, taurocholate,

ursodeoxycholic acid, and glycodeoxycholic acid; and decreased

levels of IL-22. The gut microbiota influences the pathologic process

of PCOS through the B. vulgatus−bile acid−IL-22 axis.

Inflammatory signaling pathways crosstalk with insulin signaling

pathways, and endotoxemia due to gut microbiota dysregulation is a

crucial contributor to the inflammatory state, IR, and the

development of obesity (Cani et al., 2007; Copps and White,

2012). Dysregulation of gut microbiota levels due to chronic

inflammation is one of the pathogenetic mechanisms of PCOS

(Liang et al., 2020). Increased LPS entry into the bloodstream

promotes the expression of inflammatory mediators such as TNF-

a, IL-6, and other inflammatory mediators, which leads to IR,

which in turn is involved in HA and metabolic abnormalities in

PCOS patients and prevents normal follicular development

(Lindheim et al., 2017).

4.2.4 Dysregulation of the gut microbiota and MS
The gut microbiota is closely related to human metabolic

disorders, and the occurrence and development of various

endocrine and metabolic diseases are affected by the structural

dynamics of the gut microbiota (Zhou et al., 2020). MS is a

pathological state in which the metabolism of carbohydrates, fats,

and proteins in humans is out of order, and it is a group of complex

metabolic disorders that mainly manifest as hyperglycemia,

hyperlipidemia, hypertension, and obesity (Coviello et al., 2006).

The incidence of MS in PCOS patients is greater than that in healthy

controls (Behboudi-Gandevani et al., 2016; Hallajzadeh et al., 2018).

A high-fat diet alters intestinal microecology and permeability,

promoting LPS production by gastrointestinal gram-negative

bacteria and inhibiting the production of SCFAs. A significant

increase in Bacteroides and Escherichia coli of the genus gram-

negative bacillus in the intestinal tracts of patients with PCOS leads

to an increase in LPS, which serves as a trigger factor that further

contributes to IR and obesity. Among SCFAs, acetic acid, propionic

acid, and butyric acid play essential roles in the body’s metabolism,

with effects such as balancing glucose homeostasis; regulating

insulin sensitivity; and exerting anti-inflammatory, anticancer,

and immunomodulatory effects (Maslowski et al., 2009).

Disturbances in the gut microbiota lead to a decrease in

circulating SCFAs, causing metabolic disturbances involved in the

pathology of PCOS. Decreased SCFA levels in patients with PCOS

induce metabolic disturbances in the body by affecting the

metabolism of glucose, mediating inflammatory processes, and

thereby contributing to obesity. Dietary analyses of PCOS patients

and healthy people revealed that dietary fiber and vitamin D intake

were significantly lower in PCOS patients and that the number of

gamma-aminobutyric acid (GABA)-producing bacteria was

increased in PCOS patients and was positively correlated with the

luteinizing hormone (LH)/follicular stimulating hormone (FSH)

ratio. Gut microbes promote fat accumulation and thus induce

obesity by inhibiting the expression of fasting-induced adipokines.

Gut microbes influence the progression of MS and PCOS by

affecting metabolic levels and regulating intestinal motility,

glucolipid metabolism, and fat storage processes.
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4.2.5 Involvement of the gut microbiota in the
progression of PCOS via the gut−brain axis

Disorders of the gut microbiota may be involved in the

progression of PCOS via the gut−brain axis (Liang et al., 2021).

The gut–brain axis regulates appetite, food intake, glucose

metabolism, and energy maintenance (Li et al., 2023c) (Lach

et al., 2018). Intestinal parasitic bacteria can produce SCFAs,

which are involved in ghrelin secretion (Wang et al., 2023b).

SCFAs regulate ghrelin expression by activating the mTOR

pathway via G protein-coupled receptor (GPCR) 43 (Zhao et al.,

2018). Ghrelin is involved in regulating LH secretion; ghrelin can

inhibit the excessive synthesis and release of LH by delaying its

release from the pituitary gland and is thus involved in regulating

the function of the reproductive system in PCOS (Nohr et al., 2015).

A study in which a letrozole-induced PCOS model was used to

assess the effects of Lactobacillus plantarum on the brain−gut axis

revealed that Lactobacillus plantarum CCFM1019 attenuated

pathological changes in the ovary and restored testosterone and

LH levels while altering the gut microbiota diversity and the relative

abundance of bacteria that produce SCFAs. The rats in the

CCFM1019 treatment group presented increased butyric acid

levels while the extent of liver damage was reduced by altering

the expression of GPCR41, which may be related to a butyric acid-

dependent brain−gut axis mechanism (Cryan et al., 2019). Studies

on the involvement of the gut microbiota in the progression of

PCOS through the gut−brain axis are limited, and the specific

mechanisms involved still require further investigation.
5 The gut microbiota and EMs

5.1 Overview of EM

EMs is a disease in which endometrial glands and stroma with

normal growth function attach to and grow outside the uterine cavity,

with progressive worsening dysmenorrhea, dyspareunia, chronic

pelvic inflammatory disease, and infertility as the primary clinical

symptoms (Horne and Saunders, 2019). EMs can be characterized by

the following symptoms: dysmenorrhea, pain during sexual

intercourse, chronic pelvic inflammation, and infertility (Bulletti

et al., 2010). Although EMs are benign, they are malignant tumors

characterized by adhesion, invasion, and metastasis. It is prone to

recurrent attacks, which seriously affect the life and physical and

mental health of female patients (Louis et al., 2011). The specific

pathogenesis of EMs is still unclear, and there are mainly the

endometrial implantation theory, retrograde flow of menstrual

blood theory, epithelial chemotaxis theory, and genetic expression

difference theory (Moradi et al., 2021). The doctrine of retrograde

menstrual flow, proposed by Sampson, is thought to be the prevailing

pathogenesis of EMs (Sampson, 1927). Up to 90% of women of

childbearing age have menstrual blood reflux, but only 10% develop

EMs, suggesting that other factors may be involved in the

development of EMs (Becker et al., 2017). Multiple factors, such as

inflammation, immunity, endocrinology, genetics, the environment,

and metabolism, coordinate and promote each other, leading to the

occurrence and development of EMs. Because of the comparative
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proximity of EMs to the intestinal tract and their malignancy-like

invasive and recurrent properties, many studies have shown that EMs

are closely linked to the functional homeostasis of the gut microbiota

(Huang et al., 2021). Compared with normal controls, EMs patients

have a greater Firmicutes/Bacteroidetes ratio (Le et al., 2021).

Another study also revealed that, compared with those in the

control group, the abundances of Actinobacteria, Firmicutes,

Proteobacteria, and Verrucomicrobia in the gut microbiota of EMs

patients were significantly greater, whereas the abundance of

Lactobacillaceae was significantly lower (Leonardi et al., 2020). The

significantly increased microorganisms in the gut microbiota of EMs

patients are mainly gram-negative bacteria. Therefore, there is a close

correlation between alterations in the gut microbiota and the onset

of Ems (Shan et al., 2021).
5.2 Mechanisms of Gut Microbiota
Involvement in EMs

5.2.1 Involvement of the gut microbiota in
immune system regulation in patients with EMs

The interaction between the immune system and the gut

microbiota is fundamental for maintaining immune homeostasis

(Zhang et al., 2022). EMs are characterized by autoimmune

disorders such as reduced apoptosis, elevated cytokine levels, and

cell-mediated abnormalities; thus, EMs are closely related to

immune disorders (Kagbo-Kue et al., 2018). Immune imbalance is

one of the most critical features of ectopic lesions and can lead to

the development and exacerbation of symptoms of pain and

infertility in patients (Vallve-Juanico et al., 2019). Toll-like

receptor (TLR)4 is an essential receptor that is recognized by LPS

and protects the host from bacterial and viral infections (Karen,

2015). The gut microbiota can cause EMs by influencing immune

regulation. E. coli contamination of cyclic retrograde menstrual

blood in EMs patients may be a persistent source of LPS in the

peritoneal fluid (Khan et al., 2010). In turn, LPS produced by

Escherichia colimay cause a proinflammatory response in the pelvis

and the growth of endometriotic foci through the LPS/TLR4

cascade. Inflammatory factors produced by LPS can inhibit T-cell

activation in the local inflammatory microenvironment through

activation of the programmed cell death protein 1 (PD-1) and

programmed cell death-ligand 1 (PD-L1) signaling pathways,

leading to a reduction in the body’s immune capacity and

allowing ectopic endometrial cells to escape immune cells (Wu

et al., 2019). One study revealed that the growth of ectopic foci

continued even in ovariectomized animals, suggesting that the

innate immune system in the pelvic environment can also

regulate the growth of ectopic foci in EMs. A deficiency of the

immune system leading to difficulties in removing ectopic

endothelial tissue is an essential factor in the pathogenesis of EMs.

5.2.2 Dysregulation of the gut microbiota and the
inflammatory microenvironment

The inflammatory response is a central process in the

development of EMs. Increased proinflammatory cytokines in

the peritoneal fluid of patients with EMs and pain-related
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stress increase intestinal permeability. In the event of intestinal

barrier disruption, intestinal microbes infiltrate the intestinal

epithelium and stimulate an immune response guided by

intestinal mucosal dendritic cells (DCs), which induces defensive

secretion of IgA, aggregation of neutrophils toward the site of

inflammation, and an increase in the number of macrophages

in the peritoneal cavity, resulting in the generation of an

inflammatory microenvironment (Campbell et al., 2020). A

decrease in the blood Treg/Th17 cell ratio was found after the

induction of EMs, which may drive intestinal bacterial changes and

thus promote disease progression by producing inflammatory

mediators (Le et al., 2022). The inflammatory microenvironment

is closely associated with the development of EMs, and the estrogen-

driven inflammatory response is a central process in the formation

of EMs, leading to pain, tissue remodeling, fibrosis, adhesion

formation, and infertility. SCFAs can mediate the anti-

inflammatory activity of macrophages and DCs, promote the

differentiation and development of Treg cells, alleviate the

inflammation of EMs through GPCRs, and inhibit histone

deacetylase (HDAC) activity (Chadchan et al., 2021; Li et al.,

2022b; Salliss et al., 2022).

5.2.3 The gut microbiota is involved in the
development of EMs by regulating circulating
estrogen levels

Estrogen is a significant regulator of gut microbes, and the gut

microbiota gene pool that metabolizes estrogen is known as the

“estrogen metabolome” (Dabek et al., 2008). EMs are hormone-

dependent diseases, and high levels of estrogen are directly associated

with the development of Ems (Yuan et al., 2018). Gut microbes are

involved in the estrogen cycle, forming the estrogen−gut microbe axis

(Chen et al., 2017). Beta-glucuronidase and beta-glucosidase enzymes

produced by Bacteroides, bifidobacteria, and lactobacilli in the

intestinal tract promote estrogen catabolism and increase the

reabsorption of free estrogen, leading to high circulating estrogen

levels. The gut microbiota regulates estrogen levels through the

production of SCFAs: butyric acid is one of the most abundant

SCFAs, and butyric acid can regulate P and E2 synthesis in granulosa

cells through the cAMP signaling pathway, which in turn promotes

estrogen synthesis (Ata et al., 2019). The gut microbiota can

synthesize estrogen-like compounds from dietary sources, which

enhances the body’s estrogenic effects, thereby promoting the

development of EMs. Increased estrogen levels can stimulate the

growth and inflammatory activity of ectopic lesions. High estrogen

exposure due to the gut microbiota may be a risk factor for the

development of EMs. There were significant differences in the

expression of 17b-E2 and 2-hydroxyestrone between patients with

EMs and healthy individuals, and there was a significant positive

correlation between the gut microbiota and urinary estrogen in

patients with EMs. Studies in men and postmenopausal women

have shown that the urinary levels of estrogen and most estrogen

metabolites are closely related to the abundance and alpha diversity of

the fecal microbiota, suggesting that the gut microbiota is closely

related to estrogen metabolism in vivo. Research has shown that

estrogen may play a role in regulating the microbial flora and

immune metabolism in endometriosis (Alghetaa et al., 2023).
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6 The gut microbiota and POF

6.1 Overview of POF

POF refers to ovarian failure in women younger than 40 years of

age for various reasons and is the end stage of premature ovarian

insufficiency (POI), which manifests as amenorrhea, infertility,

FSH>40 IU/L and decreased estrogen levels (Di-Battista et al.,

2020). Patients with POF often suffer from hot flashes, night

sweats, osteoporosis, and other symptoms, and a lack of estrogen

also causes metabolic disorders in the body; the risk of

cardiovascular disease increases significantly, and a series of

psychological problems, such as anxiety and depression, develop

(Caserta et al., 2013). The increasing prevalence of POF in recent

years, together with a trend toward rejuvenation, has had a severe

impact on the quality of life of women and their physical health

(Giudice and Kao, 2004). The pathogenic factors of POF are

complex and diverse and include chromosomal abnormalities, the

environment, oxidative stress, immune factors, metabolic disorders,

and psychological factors (Schuh-Huerta et al., 2012; D’Avila et al.,

2015). The pathogenesis of POF is closely related to the SIRT

signaling pathway, TGF-b/Smad signaling pathway, PI3K/AKT

signaling pathway, and Wnt/b-catenin signaling pathway (John

et al., 2009; Tatone et al., 2018). Certain unhealthy habits, such as

smoking, excessive alcohol consumption, and staying up late, can

accelerate the process of POF. The specific etiology of POF has not

been fully elucidated, and there is no satisfactory individualized

treatment plan (Rahman and Panay, 2021). Clarifying the

pathogenesis of POF and selecting the optimal treatment plan

are the most important tasks for medical personnel. Ovarian

endocrine levels can indirectly reflect ovarian function. The

body regulates the secretion of various hormones through

the hypothalamic−pituitary−gonadal axis. The hypothalamus acts

on the pituitary gland through the secretion of gonadotropin

release hormone (Gn RH), which releases FSH and stimulates

the secretion of E2 through a positive feedback effect on the

ovaries. When E2 is too high, the levels of Gn, RH and FSH are

regulated through negative feedback to maintain the dynamic

balance of hormones in the body. Estrogen levels in the

blood are associated with the gut microbiota, and dysbiosis affects

the enterohepatic circulation in mice, influencing the conversion of

bound estrogen to free estrogen (Noguera-Julian et al., 2016). The

gut microbiota and its metabolites are closely related to the

development of autoimmune and metabolic diseases .

Autoimmune abnormalities are essential factors in the

pathogenesis of POF, and fluctuating sex hormone levels are

among the critical clinical manifestations of POF (Jagarlamudi

et al., 2010). Abnormal microbiota imbalances can affect immune

cytokines and estrogens, ultimately leading to the development of

POF (Fayed, 2015; Jeong et al., 2017). The gut microbiota

participates in the regulation of sex hormones through direct or

indirect pathways. It can also ameliorate POF by affecting the

expression of immune-related cytokines such as Tregs, IFN-g, and
Th17 cells (Adlercreutz et al., 1984).
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6.2 Gut microbiota-immune cytokine-POF

The gut microbiota promotes the synthesis of intestinal mucosal

immunoglobulins, which regulate each other to maintain the

homeostasis of the intestinal mucosal immune system.

Relationships between the gut microbiota and immune cytokines,

such as Tregs, IFN-g, and Th17 cells, have been demonstrated

(Fujimura et al., 2016; Han et al., 2019; Ji et al., 2019). On the basis

of the role of immune cytokines in the gut microbiota and POF,

immune cytokines are used as a bridge to connect POF and the gut

microbiota to explore the relationship between POF and the gut

microbiota: (1) There is a correlation between the gut microbiota,

POF, and Treg cells. The gut microbiota promotes the expression

and differentiation of Treg cells, mediates the participation of Treg

cells in anti-inflammatory responses, and influences immune and

metabolic homeostasis in the body. Clinically, POF patients exhibit

changes in Treg numbers and improved immunomodulation after

treatment (Russell, 1997). Human amniotic epithelial cells restore

ovarian function by increasing the number of Treg cells in the

spleens of AOD mice and regulating the function of activated

macrophages in a paracrine manner to reduce inflammatory

responses (Zhang et al., 2019b). Studies using human adipose-

derived mesenchymal stem cells in combination with estrogen in

POF patients have shown that human adipose-derived

mesenchymal stem cells in combination with estrogen treatment

have an immunomodulatory effect that promotes the proliferation

of Tregs and improves impaired ovarian function (Song et al.,

2018). (2) There is a correlation between the gut microbiota, POF

and IFN-g. Treatment with the gut microbiota can affect serum

IFN-g levels. IFN-g can promote granulosa cell MHC class II

antigen expression and stimulate an autoimmune response,

leading to follicular atresia and POF (Coulam and Stern, 1991). A

study in which human placental mesenchymal stem cells were

transplanted into POF mice revealed that the decrease in serum

TGF-b and increase in IFN-g were reversed, suggesting that the

restoration of ovarian function is related to the production of TGF-

b and IFN-g in POF mice (Yin et al., 2018). (3) There is a correlation

between the gut microbiota, POF and Th17 cells. The gut

microbiota affects immune function by regulating Th17 cells. The

gut microbiota influences the body’s immune function by regulating

Th17 cells; thus, the PI3K/Akt signaling pathway is involved in the

restoration of ovarian function by altering the Th17/Tc17 and

Th17/Treg cell ratios in POF mice after the transplantation of

human mesenchymal stem cells.
6.3 The gut microbiota−HPO axis and
estrogen−POF

The gut microbiota can affect ovarian function through the

HPO axis. The hypothalamus secretes GnRH, which binds to

pituitary GnRH-a and promotes pituitary secretion of LH and

FSH, which act on the gonads to stimulate the synthesis and

secretion of the steroid hormones testosterone, E2, and P. These
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1450310
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2024.1450310
hormones are also known as estrogens. Thus, the gut microbiota is

closely related to ovarian function (Tetel et al., 2018). The gut

microbiota affects ovarian function through estrogen levels. A

decrease in Firmicutes and Bacteroidetes has been shown to

increase serum glucagon-like peptide-1 (GLP-1) expression

(Hwang et al., 2015). GLP-1 is an intestinal hormone and one of

the stimulators of GnRH neurons and can influence GnRH

secretion by modulating kissing peptide neurons (Outeirino-

Iglesias et al., 2015). The GnRH pathway is a critical pathway

involved in the regulation of reproductive function. The gut

microbiota metabolites SCFAss and bile acids are both potent

regulators of hypothalamic GnRH neuron function (Liao et al.,

2021). Decreased gut microbiota diversity and an increased

Firmicutes/Bacteroidetes ratio cause the gut microbiota to be

ecologically imbalanced and secrete less glucuronidase activity.

An imbalance in the gut microbiota leads to a decrease in

estrogen and progesterone serum levels. A decrease in estrogen

levels is one of the critical factors in the development of POF.

Estrogen directly stimulates follicular development and can also

indirectly affect ovarian function via negative feedback through the

HPO axis, affecting the release of GnRH.
7 The gut microbiota provides
potential treatments for infertility-
related diseases

7.1 Gut microbiota and PCOS treatment

Probiotic therapy to restore gut microbiota homeostasis has

been used with some success in treating female reproductive

disorders (Karamali et al., 2018). Inulin and metformin can

reduce the weight of mice, decrease the level of testosterone, and

increase the level of E2 by altering the composition of the gut

microbiota and inhibiting inflammation, altering the morphology

of the ovaries (Huang et al., 2022). Probiotics restored the diversity

of the gut microbiota in rats with PCOS, further improving the

reproductive function of the rats (Cozzolino et al., 2020). Dietary

improvements, as well as probiotic therapy, have been shown in

clinical studies to positively impact the metabolic profile of

women with PCOS, such as lower body weight and improved

IR and lipid metabolism profiles (Jakubowicz et al., 2013).

However, the types and doses of probiotics used in these studies

vary widely, and further standardization is needed for future clinical

studies. By studying the phenotype of prenatal androgenized

mice, it was found that the appearance of gut microbiota

abnormalities preceded the appearance of a PCOS-like

phenotype in prenatal mice compared with controls, suggesting

that the early gut microbiota is a potential target for the prevention

of PCOS. Fecal microbiota transplantation (FMT) technology is

gradually improving disease quality. Both fecal microbe

transplantation and Lactobacillus transplantation in mice were

found to decrease serum androgen levels, increase serum estrogen

levels, improve ovarian dysfunction, and improve the estrous cycle

(Yanjie et al., 2016). FMT has not been studied in the PCOS
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population. Further studies of FMT may provide novel alternative

treatment options for PCOS.
7.2 Microecological agents against EMs

The gut microbiota structure and function are specific to

patients with EMs, and treatments targeting the gut microbiota

structure and metabolites, such as probiotics, antibiotics, and a-
linolenic acid, have shown promising results (Ni et al., 2021). The

difference in the levels of IL-1 and IL-6 produced by peripheral

blood mononuclear cells in EMs patients and healthy controls was

statistically significant, and the application of Lactobacillus

acidophilus induced the production of IL-1 and IL-6; therefore,

probiotics can be used to treat EMs patients. Probiotics can improve

neurotransmitter synthesis and signaling in the gut microbiota,

modulate neurotransmitter levels, affect pain pathways, and reduce

pain perception in patients with Ems (Khodaverdi et al., 2019).

Lactobacillus gasseri OLL2809 inhibits the development of ectopic

endothelial cells by activating natural killer cells. The

administration of Lactobacillus gasseri OLL2809 for three months

significantly reduces dysmenorrhea (Itoh et al., 2011). In animal

models, broad-spectrum antibiotic treatment has been shown to be

effective in the treatment of EMs. Chadchan et al. reported that the

use of antibiotics to remove Bacteroidetes inhibited the growth of

ectopic endometrial foci in mice, suggesting that antibiotics may

have the potential to prevent the progression of EMs by altering the

gut microbiota to improve the inflammatory microenvironment.

When mice with reduced ectopic foci were transplanted with fecal

bacteria from endometriosis model mice, the ectopic foci of the

former mice were significantly enlarged, suggesting that specific gut

microbiota can promote the development of EMs (Chadchan et al.,

2019). Exogenous supplementation with the bacterial metabolite

unsaturated fatty acid a-linolenic acid improved the gut microbiota

structure, dominant bacterial abundance, and intestinal wall barrier

in EMs mice; regulated the intraperitoneal LPS content and

inflammatory environment; and improved EMs. The use of gut

microbiota preparations for diagnosing and treating EMs has broad

research prospects (Pascale et al., 2019). No studies have reported

the use of FMT for the treatment of EMs, and further exploration is

needed. The combination of antibiotic treatment with other

conventional therapies may be a potential treatment option for

combating EMs.
7.3 The gut microbiota provides a new
scientific basis for POF prevention
and treatment

Studies on POF and the gut microbiota are relatively limited.

The diversity of the gut microbiota was significantly greater in POF

mice than in normal mice, with a low abundance of Helicobacter,

Odoribacter, and Alistipes and a high abundance of Clostridium

XIVa, Barnesiella, and Bacteroides (Cao et al., 2020). A comparison

of the gut microbiota between POF patients and healthy women

revealed that Firmicutes were more abundant in the intestines of
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healthy women. Moreover, Bacteroidetes, Butyricimonas, Dorea,

and Lachnobacterium are more abundant in the intestines of POF

patients (Wu et al., 2021). Dysregulation of the gut microbiota plays

a vital role in the pathogenesis of POF (Wang et al., 2020). During

cyclophosphamide-induced POF, the mouse gut microbiota is

significantly altered, with a decrease in Akkermansia abundance

and a marked increase in Lactobacillus abundance (Lin et al., 2020).

Fisetin attenuates cyclophosphamide-induced ovarian damage by

modulating the gut microbiota in a manner that decreases CCR9+,

CXCR3+, CD4+, T lymphocytes, and IL-12. The factors

contributing to POF do not exist independently but interact with

each other and synergistically contribute to the accelerated

progression of ovarian senescence. The gut microbiota affects the

occurrence and development of POF through various pathways and

factors, and the underlying mechanism needs to be further

explored. In the future, further exploration should be conducted

to identify the characteristics of the gut microbiota profile in

patients with POF, as well as to discover specific microbial

spectra associated with the onset and progression of POF. These
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findings provide a deeper understanding of the pathogenesis of POF

from metabolic, inflammatory, and other perspectives, ultimately

leading to the development of effective treatment strategies.
8 Conclusion

Infertility is a public health problem that has a significant effect

on women’s quality of life and reproductive health, as well as on

economic and social development and population security. The gut

microbiota can affect the development of infertility in various ways.

Dysregulation of the gut microbiota leads to an increase in intestinal

permeability, resulting in an increase in lipopolysaccharide levels in

the body, triggering inflammatory and immune responses in the

body, resulting in disruption of glucose metabolism in the body and

disruption of the gut microbiota, which ultimately leads to the

development of infertility symptoms in the patient (Table 1).

Intervening in infertility by regulating the gut microbiota through

probiotics, nutrients, antibiotics, and FTM supplementation
TABLE 1 Changes in the gut microbiota associated with infertility-related diseases.

Disease Sample
source

Main findings References

PCOS human the beta diversity of microbiomes in women with PCOS was significantly decreased, and B. vulgatus was
markedly increased

(Qi et al., 2021)

PCOS mice PCOS mice exhibited reduced abundances of gut microbiome species, as well as decreased phylogenetic
diversity, with significantly higher levels of Firmicutes compared to control mice

(Qi et al., 2019)

PCOS human The abundance of the Tenericutes phylum in women with PCOS was significantly lower (Kelley et al., 2016)

PCOS human In PCOS women, there was a decrease in Akkermansia and Ruminococcaceae, while gram-negative
bacteria belonging to the Bacteroides and Escherichia/Shigella genera were significantly increased

(Zhou et al., 2020)

PCOS human The gut microbiome of PCOS women experienced a significant increase in gram-negative bacteria
belonging to the genera Bacteroides and Escherichia/Shigella

(Liu et al., 2017)

PCOS human Bilophila, Blautia, and Holdemania exhibited a protective effect against PCOS, whereas the
Lachnospiraceae family of bacteria was associated with detrimental effects in individuals with PCOS

(Li et al., 2023a)

PCOS human Women with PCOS have reduced alpha diversity in the gut microbiota compared to healthy people, and
the relative abundance of Bacteroidaceae was significantly increased

(Zou et al., 2023)

PCOS human women with PCOS possess significantly lower microbial alpha diversity compared with controls (Sola-Leyva et al., 2023)

PCOS human The depletion of Lachnospira and Prevotella and enrichment of Bacteroides, Parabacteroides, Lactobacillus,
Fusobacterium, and Escherichia/Shigella in PCOS

(Li et al., 2023b)

EMs mice Firmicutes/Bacteroidetes ratio was elevated, and Bifidobacterium was also increased (Jess et al., 2012)

EMs mice the Firmicutes/Bacteroidetes ratio was elevated in mice with endometriosis (Yuan et al., 2018)

EMs human More women in the stage 3/4 endometriosis group had Shigella/Escherichia dominant stool microbiome (Ata et al., 2019)

EMs mice mice with endometriosis had more Bacteroidetes and less Firmicutes in their guts than mice
without endometriosis

(Chadchan et al., 2019)

EMs human the EM group had a lower a diversity of gut microbiota and a higher Firmicutes/Bacteroidetes ratio (Shan et al., 2021)

EMs human There were differences in abundance of 12 genus belonging to the classes Bacilli, Bacteroidia, Clostridia,
Coriobacteriia, and Gammaproteobacter between endometriosis patients and controls

(Svensson et al., 2021)

EMs mice The increased abundance of chenodeoxycholic and ursodeoxycholic acids and the decreased abundance of
ALA and 12,13-EOTrE were found in the feces of EMS mice

(Ni et al., 2020)

(Continued)
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provides new ideas for treating infertility. The many roles of the gut

microbiota in the pathogenesis of infertility disorders are well

documented, but certain limitations remain: (1) studies on the

relationship between the gut microbiota and infertility are focused

primarily on the correlation level, and there are still few studies on

its specific mechanism of action; (2) the influence of regional,

dietary, ethnic, and cultural differences on the structural

composition of the gut microbiota is a significant interfering

factor in related studies; and (3) there are individual differences in

the number and types of human gut microbiota, and individualized

application is an important issue that needs to be explored in

further research in the future. Future exploration of the potential

mechanisms by which gut microbiota alterations mediate infertility

is needed to provide new strategies for the prevention, diagnosis,

and treatment of infertility.
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