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Background and purpose: While there is evidence that gut microbiota (GM) and

blood metabolites are associated with ovarian cancer (OC), the precise

mechanisms underlying this relationship are still unclear. This study used

Mendelian randomization (MR) to elucidate the causal connections between

GM, blood metabolite biomarkers, and OC.

Methods: In this study, we leveraged summary data for GM (5,959 individuals

with genotype-matched GM), blood metabolites (233 circulating metabolic traits

with 136,016 participants), and OC (63,702 participants with 23,564 cases and

40,138 controls) from genome-wide association studies (GWASs). We performed

MR analysis to explore the causal relationship between GM and OC. Further, we

harnessed univariable MR (UVMR) analysis to evaluate the causal associations

between GM and circulating metabolites. Finally, we employed a two-step

approach based on multivariable MR (MVMR) to evaluate the total genetic

prediction effect of metabolites mediating the GM on the risk of OC to

discover a potential causal relationship.

Results: In the MR analysis, 24 gut bacteria were causally associated with the

pathogenesis of OC, including 10 gut bacteria (Dorea phocaeense,

Succinivibrionaceae, Raoultella, Phascolarctobacterium sp003150755,

Paenibacillus J, NK4A144, K10, UCG-010 sp003150215, Pseudomonas aeruginosa,

and Planococcaceae) that were risk factors, and 14 gut bacteria (CAG-177

sp002438685, GCA-900066135 sp900066135, Enorma massiliensis, Odoribacter

laneus, Ruminococcus E sp003521625, Streptococcus sanguinis, Turicibacter

sp001543345, Bacillus velezensis, CAG-977, CyanobacteriaStaphylococcus A

fleurettii, Caloranaerobacteraceae, RUG472 sp900319345, and CAG-269

sp001915995) that were protective factors. The UVMR analysis showed that these

24 positive gut bacteria were causally related to lipoproteins, lipids, and amino acids.

According to theMVMR analysis, Enormamassiliensis could reduce the risk of OC by

raising the total cholesterol to total lipids ratio in large low-density lipoprotein (LDL)

and cholesteryl esters to total lipids ratio in intermediate-density lipoprotein (IDL).

Turicibacter sp001543345, however, could reduce the risk of OC by lowering free
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cholesterol in small high-density lipoprotein (HDL) and increasing the ratios of

saturated fatty acids to total fatty acids, total cholesterol to total lipids ratio in very

small very-low-density lipoprotein (VLDL), and cholesteryl esters to total lipids ratio

in very small VLDL.

Conclusion: The current MR study provides evidence that genetically predicted

blood metabolites can mediate relationships between GM and OC.
KEYWORDS

gut microbiota (GM), ovarian cancer (OC), metabolites, Mendelian randomization (MR)
analysis, biomarker
1 Introduction

Ovarian cancer (OC) is a prevalent type of cancer affecting

women worldwide and with a high incidence and the lowest

survival rate in all gynecological malignancies, is seriously

endangering women’s health (Salehi et al., 2019; Sung et al., 2021;

Yang et al., 2022; Zara et al., 2022). The early symptoms of OC are

imperceptible, and most of them are already advanced when

diagnosed (Torre et al., 2018). It is very significant to clarify the

incidence factors for the treatment and prevention of OC; however,

the pathogenesis of OC is still unknown.

Studies have shown that the risk factors for OC mainly include

family history of OC or endometriosis, environmental pollution,

and bad living habits (Mallen et al., 2018). Observational and

experimental studies have recently shown an association between

gut microbial dysbiosis and the occurrence of various tumors,

including gastric, breast, and intestinal cancer (Banerjee et al.,

2017; Łaniewski et al., 2020). Patients with OC are sensitive to the

gut microbiota (GM), often showing obvious intestinal symptoms

in the early stage of the onset, including abdominal pain and

distension, indigestion, constipation, and early satiety. Moreover,

the gastrointestinal symptoms of patients with OC are more

prominent in the treatment process than those of patients with

cervical cancer or endometrial cancer. Some scholars have

compared and analyzed the GM in high-grade serous OC

(HGSOC) and benign tumors by 16S rRNA sequencing and

confirmed that gut microbial dysbiosis played an important role

in OC with animal models (Zhou et al., 2019; Hu et al., 2023).

Furthermore, GM are associated with chemotherapy sensitivity, and

the regulation of GM can alleviate cisplatin resistance in OC

(Chambers et al., 2022), while fecal microbiota transplantation of

Akkermansia muciniphila plays an important role in inhibiting OC

progression through T cell activation (Wang et al., 2022). In

addition, the proportion of Proteobacteria and Firmicutes was

significantly higher in cancer samples than in controls. In a 2019

study, Nené et al. reported that the number of Lactobacillus was

significantly reduced in women with ovarian cancer compared with

controls. This change was particularly pronounced in patients with
02
BRCA (1/2) mutations; these mutations seemed to promote the

growth of microbial communities dominated by non-Lactobacillus

bacteria. Lactobacilli produce lactic acid through glycogen

metabolism, and high estrogen levels cause glycogen secretion by

vaginal epithelial cells. Widschwendter et al. found that BRCA

mutation carriers had higher progesterone levels throughout the

menstrual cycle, especially during the luteal phase. High

concentrations of progesterone lead to a decrease in vaginal

glycogen levels, making the environment unfavorable for the

growth of Lactobacilli. However, no clinical studies have

confirmed a causal relationship between GM and the risk of OC.

Currently, molecular biology studies have shown that disorders

of glycerophospholipid metabolism, sphingolipid metabolism, and

glyceride lipid metabolism are important metabolic pathways in the

progression of OC. Animal-level studies through liquid

chromatography-mass spectrometry (LC-MS) testing of serum

from mice with early and advanced HGSOC, respectively, have

shown that lipid metabolism disorders such as glycerophospholipid

metabolism and sphingolipid metabolism often occur with altered

levels of 29 metabolites in the early stages of OC (Huang

et al., 2019).

As mentioned above, the specific relevance of GM to the onset

of OC has not been fully elucidated, and the mechanism of

metabolites between OC and GM is still unknown. Therefore, a

thorough study of the relationship between the GM, metabolites,

and OC is urgently needed. This study may expand our

understanding of the pathogenesis of OC and may provide new

biomarkers and therapeutic targets based on multi-omic studies

on OC.

Mendelian randomization (MR) utilizes genetic variation as an

instrumental variable (IV) for risk factors or exposures and disease

occurrence as a clinical outcome to analyze the causal relationship

between clinical outcomes and risk factors (Lawlor et al., 2008;

Zheng et al., 2017). This approach can avoid confounders and

reverse causality in observational studies and allow for more robust

causal inferences between exposures and clinical outcomes. In

addition, growing evidence has illustrated the value of clinical

studies using human genetic information for gut microbial traits,
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allowing us to employ MR to infer a causal relationship between

GM and OC. Herein, employing summary data from genome-wide

association studies (GWASs), we conducted MR analysis to explore

the causal relationship between GM and OC. Furthermore, we

conducted mediation analysis with MR, applying a two-step

approach to investigate the total genetic prediction effect of

metabolites mediating the GM on the risk of OC, thus guiding

the prevention, diagnosis, and treatment of OC.
2 Methods

2.1 Study design

Single nucleotide polymorphisms (SNPs) were used in this

study as IVs to explore the causal relationship between GM and

OC. The three criteria listed in the Strengthening the Reporting of

Observational Studies in Epidemiology using Mendelian

Randomisation (STROBE-MR) checklist (Skrivankova et al.,

2021) must be fulfilled. 1) There is a significant association

between exposure and each IV. 2) The exposure alone influences

each IV’s result. 3) Linkage disequilibrium (LD) reduces the bias by

ensuring no confounding factors impact any IV (van Kippersluis

and Rietveld, 2018).

We evaluated the causal associations between GM, circulating

metabolites, and OC using univariable MR (UVMR) and

multivariable MR (MVMR) analysis.

Figure 1 shows the flowchart for the UVMR study. First, the

positive UVMR analysis was investigated between GM as the

exposure and OC as the outcome; subsequently, the robustness of

the causal association between GM and the development of OC was

verified using Inverse Variance Weighted (IVW), Robust IVW,

Penalized IVW, and Penalized Robust IVW. MR-Egger Intercept,

Penalized MR-Egger Intercept, Robust MR-Egger Intercept, and
Frontiers in Cellular and Infection Microbiology 03
Penalized Robust MR-Egger Intercept were employed to lessen the

influence of horizontal pleiotropy. Finally, the MR-PRESSO test was

employed to eliminate the abnormal IVs, resulting in the most

robust GM following the detection and correction of outliers.

We further employed a two-step approach based on MVMR to

evaluate the total genetic prediction effect of metabolites mediating

GM on the risk of OC. The flowchart of mediation analysis based on

MVMR is shown in Figure 2, with GM as the exposure, metabolites

as the mediator, and OC as the outcome. In the first step of the two-

step method, routine UVMR analysis of gut microbes and

metabolites was performed to obtain b1 (P < 0.05). In the second

step, MVMR analysis of the positive metabolites, GM, and OC was

carried out to yield b2 (P < 0.05). In this way, with the UVMR

analysis of GM and OC, the direct effect was b-b1 * b2, the
mediation effect was b1 * b2/b, and the total effect was b.
2.2 Data sources

GWAS data for OC were obtained from the Catalog GWAS

database with GCST GCST90016665 (https://www.ebi.ac.uk/gwas/

studies/GCST90016665) (Dareng et al., 2022), which included

63,702 participants (23,564 cases and 40,138 controls).

GWAS data for GM were obtained from the study by Qin et al.

in 2022 (Qin et al., 2022). This study examined the impact of human

genetic variation on the abundance of GM by analyzing data from

5,959 individuals with genotype-matched GM, diet, and health

records and identified 567 independent SNP-taxon associations.

The GWAS data for the metabolites were derived from a study

published by Karjalainen et al. in 2024 (Karjalainen et al., 2024).

With 136,016 participants, a GWAS analysis of 233 circulating

metabolic traits revealed over 400 independent loci, of which two-

thirds were likely causal genes. This highlighted the significant

impact of sample and participant characteristics on genetic
FIGURE 1

The flowchart of the UVMR study. MR, Mendelian randomization; gut microbiota, used as the exposure; and ovarian cancer, used as the outcome.
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associations, revealed the genetic basis of circulating metabolic

traits and their impact on complex diseases, and provided an

ample data resource for metabolism-disease relationships.
2.3 Instrument selection

To ensure the stability of the study data and the accuracy of the

results when GM was used as an exposure factor and OC was used

as the outcome, we proposed the following requirements for IVs: (a)

the significance threshold of P < 1×10-5 is applied to IVs related to

the GM to ensure genome-wide significance (Cheng et al., 2020); (b)

to satisfy the conditions for the MR analysis, we performed an LD

analysis based on the European Thousand Person Genome Project,

which required R2 < 0.001 of IVs, LD = 10000 kb; (c) we assessed the

statistical strength of genetic variation as the IVs using the F-

statistic to prevent the effect of the allele on the causal relationship

between the GM and OC. IVs with an F-statistic of variation ≤ 10

are treated as weak IVs and may bias the analysis results, while an F-

statistic > 10 indicates that the IVs are strong. Thus, we excluded

IVs with an F-statistic of variation ≤ 10 (Burgess et al., 2017).

Moreover, in the two-step mediation analysis based on MVMR,

the IVs of metabolites should meet the following requirements: P <

1×10-5, R2 < 0.001, LD = 10000 kb. Similarly, IVs with an F-statistic

of variation ≤ 10 were excluded.
2.4 Statistical analysis

After obtaining the required data from the Catalog GWAS, we

conducted an MR analysis to explore the causal relationship

between GM and OC. Finally, we applied a two-step mediation

analysis with MR to investigate the total genetic prediction effect of

metabolite-mediated GM on the risk of OC.

During the MR analysis, we mainly used R (version 4.3.1) with

the “Two Sample MR” R package (version 0.5.7) (Mounier and

Kutalik, 2023), “Mendelian Randomization” R package (version

0.9.0) and “Bayesian Weighted Mendelian Randomization

(BWMR)” R package (version 0.1.1) (Zhao et al., 2020). The R2

was used to represent the proportion of the phenotypic variants

explained by the SNPs and was calculated by the equation R2 =
Frontiers in Cellular and Infection Microbiology 04
2�b�EAF�(1−EAF)
2�b2�EAF�(1−EAF)+SE2�2�Sample size�EAF�(1−EAF)

. To assess the strength

of the IVs; we calculated the F-statistic with the formula F =

R2�(Samplesize−1−k)
(1−R2)�k , where R2 was the proportion of phenotypic

variation explained by SNPs and k was the number of SNPs

included in the tool (Lai et al., 2018). Thresholds with an F-

statistic > 10 were generally considered statistically significant,

indicating that bias did not affect causal links (Zuber et al., 2020).

In the UVMR study, we first verified the validity of all IVs using

the IVWmethod and obtained the weighted total effect according to

the P-value (Brion et al., 2013). To verify the robustness of the

conclusions, we used the following three methods to reduce the bias

of the causal analysis: (a) using the Robust IVW to reduce the

sensitivity of IVs to outliers and strong pleiotropy; (b) using

Penalized IVW to adjust for effect estimates of outliers or

inconsistency in the data, thus to gain more reliable causal

estimates; (c) using Penalized Robust IVW to adjust for outliers

in the data and for inconsistent effect estimates, and to reduce the

effects of IVs with pleiotropy, thus providing the most rigorous and

robust causal estimates. Secondly, the P-value of the MR-Egger

intercept was introduced to detect the presence of directional

pleiotropy (Burgess et al., 2024). If P > 0.05, no obvious

directional pleiotropy was considered, which increased the

reliability of the causal effect estimate. Meanwhile, to verify the

reliability of causal effects in the conclusions, we used four methods

to exclude the interference of horizontal pleiotropy: (a) using MR-

Egger Intercept to detect the directional pleiotropy of IVs,

indicating whether the average effect of pleiotropy differed from

zero; (b) using Penalized MR-Egger Intercept, with a penalty term

introduced into the MR-Egger Intercept method to reduce the

impact of pleiotropic IVs; (c) using the Robust MR-Egger

Intercept to adjust the robustness of the MR-Egger Intercept

method, thus reducing the effects of outliers and strong

pleiotropic IVs; (d) using Penalized Robust MR-Egger Intercept,

with both robustness and pleiotropy penalties considered and

acting together to improve the accuracy and robustness of causal

estimates. Finally, outliers were detected and corrected by removing

abnormal IVs using the MR-PRESSO test (Fan et al., 2023), and the

results were more reliable when the effect size of IVW was

consistent with the sensitivity analysis and P < 0.05. We also

performed a variety of supplementary MR analyses, including
FIGURE 2

The flowchart of the mediation analysis is based on MVMR. Gut microbiota are used as the exposure; Metabolites are used as the mediator; and
Ovarian cancer is used as the outcome.
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Contamination mixture, maximum likelihood, Debiased IVW, MR-

Egger, and BWMR. Although Contamination mixture MR analysis

did not remove abnormal IVs, based on the assumption that valid

IVs were the largest subset of all IVs, the analysis method would

have a more precise causal effect than IVW results (Burgess et al.,

2020). The MR analysis method of maximum likelihood is applied

to unrelated and related genetic variants. In IVW, if the fixed effect

model was incorrect and there was great heterogeneity in the causal

effect of different variables, the MR analysis method of maximum

likelihood analyzed the existing heterogeneity by random effect

model (Burgess et al., 2013). If there were unavoidable weak IVs, we

performed MR analysis using the method of Debiased IVW. This

approach was robust to many weak IVs and did not require

screening (Ye et al., 2021). MR-Egger evaluated whether genetic

variation was pleiotropic for results that, on average, differ from

zero by targeted pleiotropy tests, causal effect tests, and causal effect

estimates, and provided a consistent estimate of causal effect under

weaker assumptions (Burgess and Thompson, 2017). BWMR

considered the uncertainty of weak effects due to polygenes and

detected their outliers through Bayesian Weighted, thus solving the

violation of MR assumptions due to polygenes.

In the two-step mediation MR, first, the most robust GM and

metabolites were used to perform UVMR analysis to obtain b1;
then, the positive mediator (metabolites) determined by the first

step was combined with the most robust GM to obtain b2. At this
Frontiers in Cellular and Infection Microbiology 05
time, with the UVMR analysis of GM and OC, the total effect was b,
the mediation effect was b1 * b2, the direct effect was b-b1 * b2, and
the mediation effect was b1 * b2/b. In the second step of the two-

step MR for MVMR, we used Multivariable IVW to verify the

validity of all IVs and generate weighted total effects by judging the

magnitude of the P-value.
3 Results

3.1 Causal effect of the gut microbiota on
ovarian cancer

The preliminary IVW results showed that a total of 24 gut bacteria

played a causal role in OC (Figure 3), of which the bacteria with a

positive correlation were Dorea phocaeense, Succinivibrionaceae,

Raoultella, Phascolarctobacterium sp003150755, Paenibacillus J,

NK4A144, K10, UCG-010 sp003150215, Pseudomonas aeruginosa and

Planococcaceae (OR > 1), and the bacteria with a negative correlation

were CAG-177 sp002438685, GCA-900066135 sp900066135, Enorma

massiliensis, Odoribacter laneus, Ruminococcus E sp003521625,

Streptococcus sanguinis, Turicibacter sp001543345, and Bacillus

velezensis, CAG-977, CyanobacteriaStaphylococcus A fleurettii,

Caloranaerobacteraceae, RUG472 sp900319345, and CAG-269

sp001915995 (OR > 1).
FIGURE 3

The causal link between gut microbiota and ovarian cancer was assessed using a Mendelian randomization (MR) forest plot. Gut microbiota, used as
the exposure; Ovarian cancer, used as the outcome; SE, standard error; CI, confidence interval; SNP, single nucleotide polymorphism; OR,
odds ratios.
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Moreover, we conducted sensitivity analysis, horizontal

pleiotropy, and removal of abnormal IVs on the above 24 positive

gut bacteria (Figure 4), which also confirmed the robustness of the

causal association between GM and OC.
3.2 Causal effect of the gut microbiota
on metabolites

In MR analysis, we analyzed the above 24 positive gut bacteria

with 233 metabolites. As shown in Figure 5, 242 positive results

were presented as a heatmap (part had been overlapped), which

suggested that the above 24 positive gut bacteria may be causally

related to the following categories of metabolites. The first category

included lipoproteins, such as the ratio of free cholesterol to total

lipids in very large high-density lipoprotein (HDL), the ratio of

phospholipids in medium HDL, and the total lipids in medium

HDL; the second category included lipids, such as levels of linoleic

acid (18:2), the ratio of 18:2 linoleic acid to total fatty acids, and the

ratio of saturated fatty acids to total fatty acids; the third category

included amino acids, such as citrate, glycine, and histidine levels.
3.3 Causal effect of metabolites on
ovarian cancer

According to the MVMR analysis of the positive gut bacteria

and their corresponding positive metabolites together with the

outcomes, the metabolites with a causal relationship with OC

were obtained. Finally, the mediation effect ratio was calculated.
Frontiers in Cellular and Infection Microbiology 06
After excluding the mediation effect ratio, which was negative and

of P > 0.05, six metabolites that had a causal relationship with OC

were gained.

Since OR > 1 is a positive correlation, it indicates that the

corresponding metabolite is a risk factor for the outcome. At the

same time, OR < 1 is a negative correlation, which indicates that the

corresponding metabolite is a protective factor. As illustrated in

Figure 6, an increase in free cholesterol in small HDL (OR = 1.09,

95% CI 1.02-1.18; P = 0.015) was associated with higher odds of

developing OC. Conversely, five other metabolites, including the total

cholesterol to total lipids ratio in large low-density lipoprotein (LDL)

(OR = 0.97, 95% CI 0.95-0.99; P = 0.009), cholesteryl esters to total

lipids ratio in intermediate-density lipoprotein (IDL) (OR = 0.97,

95% CI 0.95-0.99; P = 0.011), the ratio of saturated fatty acids to total

fatty acids (OR = 0.69, 95% CI 0.60-0.79; P < 0.001), the total

cholesterol to total lipids ratio in very small very-low-density

lipoprotein (VLDL) (OR = 0.85, 95% CI 0.79-0.92; P < 0.001), and

the cholesteryl esters to total lipids ratio in very small VLDL (OR =

0.87, 95% CI 0.80-0.95; P = 0.001) were linked to decreased odds of

developing OC.
3.4 Mediation effect of metabolite-
mediating genetic predictions of the gut
microbiota on ovarian cancer

Based on the causal effect of positive gut bacteria and positive

metabolites on the risk of OC, we analyzed the mediation effect of

metabolite-mediating genetic predictions of the gut microbiota on

the risk of OC (Table 1).
FIGURE 4

Heatmap of the causal effect of gut microbiota on ovarian cancer. The x-axis represents the 24 positive intestinal bacteria. The y-axis represents
various sensitivity analysis methods, horizontal pleiotropy, and removal of abnormal IVs. The change from red to blue indicates P < 0.05; gray
represents P > 0.05.
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In the process of Enorma massiliensis acting as a risk factor for

OC, the total cholesterol to total lipids ratio in large LDL (mediation

effect ratio = 1.82%) and the cholesteryl esters to total lipids ratio in

IDL (mediation effect ratio = 2.60%) both mediated the total genetic

prediction impact of Enorma massiliensis on the risk of OC. This

suggests that Enorma massiliensis could lower the risk of OC by

increasing the total cholesterol to total lipids ratio in large LDL and

cholesteryl esters to total lipids ratio in IDL.
Frontiers in Cellular and Infection Microbiology 07
Turicibacter sp001543345 was found to be a risk factor for OC in

the following ways: free cholesterol in small HDL (mediation effect

ratio = 11.64%), ratio of saturated fatty acids to total fatty acids

(69.09%), total cholesterol to total lipids in very small VLDL

(mediation effect ratio = 49.36%), and cholesteryl esters to total

lipids in very small VLDL (mediation effect ratio = 35.92%). These

factors, in turn, mediated the overall genetic prediction impact of

Turicibacter sp001543345 on the risk of OC. These findings suggest
FIGURE 6

Forest plot of the causal effect of positive gut bacteria and positive metabolites on ovarian cancer. Metabolites are used as the exposure; Ovarian
cancer is used as the outcome; OR, odds ratios; CI, confidence interval.
FIGURE 5

Volcano plot of the causal effect of positive gut bacteria on metabolites. Black dots, P > 0.05; red dots, P < 0.05; blue dots, P<0.001. IDL,
intermediate-density lipoprotein; VLDL, very-low-density lipoprotein; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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that Turicibacter sp001543345may lower the risk of OC by reducing

free cholesterol in small HDL and increasing the ratio of saturated

fatty acids to total fatty acids, total cholesterol to total lipids in very

small VLDL, and cholesteryl esters to total lipids in very

small VLDL.
4 Discussion

In this study, MR analysis found that GM (24 gut bacteria) had

a causal relationship with the pathogenesis of OC, among which 10

gut bacteria including Dorea phocaeense, Succinivibrionaceae,

Raoultella, Phascolarctobacterium sp003150755, Paenibacillus J,

NK4A144, K10, UCG-010 sp003150215, Pseudomonas aeruginosa,

and Planococcaceae (OR > 1) were risk factors and 14 gut bacteria

including CAG-177 sp002438685, GCA-900066135 sp900066135,

Enorma massiliensis, Odoribacter laneus, Ruminococcus E

sp003521625, Streptococcus sanguinis, Turicibacter sp001543345,

and Bacillus velezensis, CAG-977, CyanobacteriaStaphylococcus A

fleurettii, Caloranaerobacteraceae, RUG472 sp900319345, and CAG-

269 sp001915995 (OR < 1) were protective factors. Moreover, the

robustness of the causal association between GM and OC was

verified by IVW, Robust IVW, Penalized IVW, and Penalized

Robust IVW.

The UVMR analysis suggested that the above 24 positive gut

bacteria were causally related to three categories of metabolites,

including lipoproteins, lipids, and amino acids. Furthermore, the

MVMR analysis indicated that six metabolites had a causal

relationship with OC. The mediation effect of metabolite-mediating

genetic predictions of the gut microbiota on the risk of OC suggested

that two protective factors (Enorma massiliensis and Turicibacter

sp001543345, OR < 1) could reduce the risk of OC by increasing or

decreasing the mediation effect ratio. Specifically, Enorma massiliensis

can potentially lower the risk of OC by increasing the ratio of total

cholesterol to total lipids in large LDL and cholesteryl esters to total

lipids in IDL. Turicibacter sp001543345 can potentially lower the risk of

OC by lowering free cholesterol in small HDL and increasing the ratio
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of saturated fatty acids to total fatty acids and total cholesterol to total

lipids ratio in very small VLDL.

Our research results suggested that Enorma massiliensis and

Turicibacter sp001543345 may act as protective agents against OC.

Notably, Enorma massiliensis is a new genus within the family

Coriobacteriaceae, Enorma gen. nov., and was found in the stool of a

26-year-old woman who had morbid obesity as part of a culturomics

study that attempted to cultivate every species of bacteria found in

human feces individually (Mishra et al., 2013). This is a rod-shaped,

anaerobic, non-endospore-forming, indole-negative bacterium that is

Gram-positive. In addition, a study on the gut microbiome of breast

cancer patients in Vietnam revealed that patients who experienced a

significant delay in diagnosis had higher abundances of Enorma

massiliensis (Nguyen et al., 2024). There is very little literature on

the study of Enorma massiliensis, which also indicates that this genus

Enorma massiliensis deserves further exploration as a protective factor

for the pathogenesis of OC. Turicibacter sp001543345 is a member of

the family genus Turicibacter, which can reach relative abundances of

0.5% in the human fecal microbiota (Martıńez et al., 2015; Browne

et al., 2016). In numerous microbiota community profiling studies,

correlations between Turicibacter and features of host fat metabolism,

including adiposity and dietary lipids, have been revealed (Liu et al.,

2016; Jiao et al., 2018; Li et al., 2019; Petersen et al., 2019; Velázquez

et al., 2019; Dhakal et al., 2020). A recent study identified genes that

allow different strains of Turicibacter bacteria to alter host bile acids

and lipid metabolism, demonstrating how these bacteria affect host

metabolites, including lipids and bile acids. These findings position

Turicibacter bacteria as modulators of host fat biology (Desorcy-

Scherer et al., 2024).

Blood metabolites may be linked to the pathogenesis of OC and

can predict survival outcomes, but little is known about the genetics of

these metabolites. Previous studies have shown that patients with

ovarian tumors have higher cholesterol levels in the ascites. An early

report by Helzlsouer et al. indicated a positive correlation between

blood cholesterol concentration and ovarian cancer risk. In addition,

LDL, as the main transporter of cholesterol, is associated with the

aggressiveness of ovarian cancer and poor survival prognosis. In a
TABLE 1 Mediation effect of metabolite-mediating genetic predictions of GM on OC.

Exposure Mediator Outcome
Mediation
effect ratio LCI ratio UCI ratio Z P

Enorma
massiliensis

Total cholesterol to total lipids
ratio in large LDL

Ovarian
cancer 1.82% 0.001 0.035 2.13 0.03

Enorma
massiliensis

Cholesteryl esters to total lipids
ratio in IDL

Ovarian
cancer 2.60% 0.001 0.051 2.05 0.04

Turicibacter
sp001543345 Free cholesterol in small HDL

Ovarian
cancer 11.64% 0.003 0.230 2.00 0.05

Turicibacter
sp001543345

Ratio of saturated fatty acids to
total fatty acids

Ovarian
cancer 69.09% 0.019 1.363 2.02 0.04

Turicibacter
sp001543345

Total cholesterol to total lipids
ratio in very small VLDL

Ovarian
cancer 49.36% 0.139 0.848 2.73 0.01

Turicibacter
sp001543345

Cholesteryl esters to total lipids
ratio in very small VLDL

Ovarian
cancer 35.92% 0.050 0.668 2.28 0.02
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mouse ID8 ovarian cancer model, mice fed a high-cholesterol diet had

accelerated tumor growth compared with the control group. Studies

have shown that cholesterol homeostasis disorders may enhance the

resistance of ovarian cancer to platinum drugs. At the same time,

elevated cholesterol levels in invasive ascites activate LXR a/b nuclear

receptors, upregulating multidrug resistance protein 1 (MDR1) and

causing ovarian tumor cells to become resistant to cisplatin. Liver

cancer cells become resistant to chemotherapy when their

mitochondria have a high cholesterol load. It interferes with

mitochondrial function, inhibits membrane permeability, and

reduces the pro-apoptotic signal cytochrome c release. In addition,

cholesterol affects energy metabolism, thereby promoting tumor

development. Exogenous cholesterol can alter metabolic pathways,

enhance cell proliferation in a manner dependent on the estrogen-

related receptor a, elevate oxidative phosphorylation, and activate the

tricarboxylic acid cycle (TCA cycle) in breast cancer cells. Studies have

found that exogenous cholesterol can enhance aerobic glycolysis in

triple-negative breast cancer cell lines. In addition, elevated

mitochondrial cholesterol load promotes hexokinase transfer to

mitochondria and may augment aerobic glycolysis in cancer cells. In

this study, we analyzed the mediation effect of metabolite-mediating

genetic predictions of the gutmicrobiota on the risk of OC based on the

causal effect of 24 positive gut bacteria and 6 positive metabolites on the

risk of OC, providing insights into the positive gut bacteria could affect

the risk of OC by decreasing or increasing the mediation effect ratio of

corresponding metabolites. This study evaluated the causal relationship

between GM and the pathogenesis of OC based on MR analysis and

confirmed the association of GM with the pathogenesis of OC. The

advantages of this study mainly included the following aspects: first,

MR could infer the causal association of exposure to the outcome and

not be affected by confounding factors; second, GWAS data acquisition

based on large population samples in this study improved the reliability

of the results; finally, multiple methods were applied to reduce the bias

of the causal analysis, thus ensuring the confidence and robustness of

the results. However, the present study also had some limitations. On

the one hand, the data set used in the study may have some unknown

confounders that would impact the results. On the other hand, the GM

GWAS data contained multiple populations, but mainly European

populations, and the OC GWAS data was also a European population,

so the universality of the conclusion needs to be further confirmed.

In conclusion, this study explored the causality of GM,

metabolites, and risk of OC and revealed the mediation effect of

metabolite-mediating genetic predictions of GM on OC. Therefore,

this study could reference GM-based control measures against OC.

On this basis, in the future, it is necessary to explore further the
Frontiers in Cellular and Infection Microbiology 09
mechanism of causality of specific gut bacteria, specific metabolites,

and the risk of OC and find new strategies for preventing and

treating OC with specific gut bacteria and metabolites.
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