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Background: Colorectal cancer is the third most prevalent cancer across the

globe. Despite a diversity of treatment methods, the recurrence and mortality

rates of the disease remain high. Recent studies have revealed a close association

of the gut microbiota with the occurrence, development, treatment response,

and prognosis of colorectal cancer.

Objective: This study aims to integrate transcriptome and microbiome data to

identify colorectal cancer subtypes associated with different gut microbiota and

evaluate their roles in patient survival prognosis, tumor microenvironment (TME),

and drug treatment response.

Methods: An integrated analysis of microbiome data was conducted on samples

of colorectal cancer from public databases. Based on this, two tumor subtypes

(C1 and C2) closely associated with patient survival prognosis were identified and

a risk score model was constructed. The survival status, clinical parameters,

immune scores, and other features were analyzed in-depth, and the sensitivity of

various potential drugs was examined.

Results: A thorough examination of microbiome information obtained from

colorectal cancer patients led to the identification of two primary tumor

clusters (C1 and C2), exhibiting notable variations in survival outcomes.

Patients with the C1 subtype were closely associated with better prognosis,

while those with the C2 subtype had higher gut microbial richness and poorer

survival prognosis. A predictive model utilizing the microbiome data was

developed to accurately forecast the survival outcome of patients with

colorectal cancer. The TME scores provided a biological basis for risk

assessment in high-risk (similar to the C2 subtype) patient cohorts. Evaluation

of the sensitivity of different subtypes to various potential drugs, indicated the

critical importance of personalized treatment. Further analysis showed good

potential of the developed risk-scoring model in predicting immune checkpoint

functions and treatment response of patients, which may be crucial in guiding

the selection of immunotherapy strategies for patients with colorectal cancer.
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Conclusion: This study, through a comprehensive analysis of colorectal cancer

microbiome, immune microenvironment, and drug sensitivity, enhances the

current understanding of the multidimensional interactions of colorectal

cancer and provides important clinical indications for improving future

treatment strategies. The findings offer a new perspective on improving

treatment response and long-term prognosis of patients with CRC through the

regulation of microbiota or the utilization of biomarkers provided by it.
KEYWORDS

colorectal cancer, microbiome, immunotherapy, drug sensitivity, risk score model
NKG7, GNLY, KLRD1
Introduction

Colorectal cancer is a prevalent form of cancer worldwide,

presenting a significant risk to humans. According to reports from

the World Health Organization, colorectal cancer ranks among the

top in terms of incidence as well as mortality rates of cancers

worldwide (Sung et al., 2021). The etiology of colorectal cancer is

still not elucidated completely, but it is known to involve several

genetic and environmental factors, including family history, intestinal

inflammation, and dietary habits, which considerably increase the

risk of its occurrence (Venugopal and Carethers, 2022). Emerging

studies suggest that lifestyle factors such as sedentary behavior and

obesity also play critical roles in the modulation of this risk, further

complicating the interaction between genetics and environmental

influences. Recent advancements in high-throughput sequencing

technology and extensive research have provided mounting

evidence linking the human gut microbiota to the development of

colorectal cancer (Qu et al., 2023). This burgeoning field of research

has begun to decode the complex dialogues between gut microbial

communities and host cellular pathways that may contribute to

carcinogenic processes. However, despite significant progress, the

specific microbial species and their mechanisms of action in

colorectal carcinogenesis remain poorly understood, highlighting

the need for more targeted studies in this area.

The gut microbiota refers to the microbiome present in the

human or animal intestines, and includes bacteria, fungi, viruses,

and other microorganisms (Adak and Khan, 2019). The impact of

the human gut microbiota on health and disease states is

increasingly being recognized (Illiano et al., 2020). These

microorganisms are essential for maintaining the health of the

host by engaging in a range of bodily functions like digesting food,

absorbing nutrients, and regulating the immune system (Zhao et al.,

2019; Zhou et al., 2021). This symbiotic relationship underscores a

critical balance, where disruptions can lead to significant health

issues, including metabolic and autoimmune diseases. Recent

research has shown a strong association between gut bacteria and

the onset and progression of different illnesses. Moreover, studies

have begun to illustrate how variations in microbiota composition
02
can influence systemic inflammation and immune tolerance, which

are pivotal in the context of oncogenesis. Research indicates that

particular intestinal bacteria could contribute to the onset and

progression of colorectal cancer, potentially influencing the

response of patients to cancer treatments like chemotherapy and

immunotherapy (Yi et al., 2021; Wong and Yu, 2023). For instance,

certain gut bacteria can produce pro-inflammatory factors and

trigger chronic inflammatory responses, leading to cancer

development (Bishehsari et al., 2020). These responses are often

mediated by specific bacterial metabolites that interact with

immune cell receptors and signaling pathways involved in

inflammation and tumorigenesis. Certain bile acid metabolites or

toxins produced by the gut can directly damage the host DNA,

increase mutation rates, and promote carcinogenesis. These

microbial byproducts could function as cancer-causing agents,

impacting the growth and death of cells lining the intestine,

altering the biology of intestinal cells (Fang et al., 2021). Research

has also shown that gut microbiota dysbiosis can weaken intestinal

barrier function, facilitating the entry of bacterial strains or their

products through the intestinal wall into the bloodstream, affecting

distant cellular populations (Gasaly et al., 2021).

The microbiome in the gut has the ability to influence the behavior

of immune cells within the tumor environment, including influencing

the roles of macrophages and dendritic cells associated with tumors,

consequently interfering with tumor growth and spread (Zhou and Li,

2023). The structure and properties of the tumor microenvironment

(TME) have been extensively studied to understand its impact on

cancer treatment. The TME plays a vital role in the progression of

colorectal cancer, involving a diverse range of immune cells like T cells,

B cells, and macrophages. These cells are essential for triggering and

maintaining immune responses and suppressing immune activity (Bu

et al., 2022). Additionally, the features of TME are considered potential

biomarkers for predicting the responses of patients to

immunotherapies such as immune checkpoint inhibitors (ICIs).

Distinct compositions of gut microbiota have been linked to the

response of patients to ICI medications, with variations in gut

microbiota potentially impacting patients’ receptiveness to

immunotherapy (Zhou et al., 2021).
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Although the association between the gut microbiome and

colorectal cancer is increasingly becoming evident, comprehensive

studies on the categorization of colorectal cancer microbiota and its

impact on patient survival predictions are, nonetheless, lacking. A

thorough understanding of the classification of microbiota and its

relationship with immune infiltration may reveal new methods for

the treatment and prognosis assessment, which are crucial for

personalized and precision medicine. Therefore, this study aimed

to identify microbiota classifications associated with survival

prognosis through comprehensive utilization of transcriptomic

and microbiome data from patients with colorectal cancer. This

study additionally aimed to investigate the relationships among

these categorizations and immune features of tumors, and how

patients react to chemotherapy and immunotherapy, providing

more insight into the influence and function of the intestinal

microbiome in colorectal cancer.
Methods

Acquisition and processing of
transcriptomic and microbiome data

RNA expression profiles and clinical data were obtained from

The Cancer Genome Atlas Rectum Adenocarcinoma (TCGA-

READ) database. The RNA sequencing data were in Transcripts

Per Million (TPM) format, and a log2 transformation was

performed for subsequent analysis. Data for the microbiome were

obtained from the website https://ftp.microbio.me/pub/

cancer_microbiome_analysis/TCGA/. The dataset Kraken-TCGA-

Voom-SNM-All-Putative-Contaminants-Removed-Data.csv was

chosen, along with the sample details in Metadata-TCGA-

Kraken-17625-Samples.csv. After filtering samples from TCGA-

READ, a total of 99 samples containing survival information were

used for model construction. The data was split into training and

validation sets in a 5:5 ratio, with the training set containing 49

samples and the validation set containing 50 samples. The

validation set was used to assess the stability and accuracy of

the model.
Acquisition and analysis of scRNA-seq data

We obtained a single-cell dataset containing colorectal cancer

samples from the GSE166555 dataset in the Gene Expression

Omnibus (GEO) database (Uhlitz et al., 2021). Data were analyzed

utilizing the Seurat package in R software (version 4.3.3) (Stuart et al.,

2019). When assessing cell quality, we specified that the number of

mitochondria should not exceed 10%, and established boundaries for

Unique Molecular Identifier counts and gene counts to fall between

200 and 20,000 and 200 and 5,000, respectively. Subsequently, data

were normalized, and 2000 highly variable genes were selected. To

reduce the impact of the cell cycle, we employed the NormalizeData,

FindVariableFeatures, and ScaleData functions in the Seurat package,

specifying the vars.to.regress parameter as c(‘S.Score’, ‘G2M.Score’).
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Batch effects were addressed using the harmony method. The

uniform manifold approximation and projection (UMAP), t-

distributed stochastic neighbor embedding (t-SNE), and Louvain

clustering algorithms to reduce dimensionality and clustering in

further analysis. Utilizing the FindAllMarkers function, differential

genes were identified across various clusters or cell types based on

specified criteria, including p-value<0.05, log2FC>0.25, and

expression proportion > 0.1.
Cell annotation

We utilized a series of cell markers to identify different cell

types, and then filtered immune cells for further analysis. The

remaining cells were subjected to re-clustering analysis. The mast

cells were identified and Sc-Type cell annotation software was

employed to annotate the remaining cells. Finally, t-SNE plots

and bubble plots of marker genes were generated to visualize the

annotation results. The cell markers utilized herein included

epithelial cells (EPCAM, KRT18, KRT19, CDH1), natural killer

(NK) cells (NCAM1, NKG7, GNLY, KLRD1), fibroblasts (DCN,

THY1, COL1A1, COL1A2), T cells (CD3D, CD3E, TRAC, CD3G),

endothelial cells (FLT1, CLDN5, RAMP2, PECAM1), myeloid cells

(LYZ, MARCO, CD68, FCGR3A), B cells (CD79A, IGHM, IGHG3,

IGHA2), and mast cells (MS4A2, KIT, GATA2).
Identifying microbiome-related
tumor subtypes

First, univariate Cox analysis was performed to identify genes linked to

patient survival within the microbiome-related gene set (P < 0.05).

Afterward, the gene expression matrix was used to conduct consensus

clustering on the microbiome data using the ConsensusClusterPlus

package (Wilkerson and Hayes, 2010). We selected the k-means method

and utilized Euclidean distance as the similarity measure for the clustering

algorithm. Then, 100 bootstrap samplings were conducted, each

comprising 80% of the samples. The clustering numbers ranging from 2

to 6 were tested and the optimal classification was determined using the

Proportion of Ambiguous Clustering (PAC) and consistency matrix.
Construction and validation of the
prognostic model

The limma package was utilized to calculate the differences in

microbiome composition between varying tumor subtypes (Ritchie

et al., 2015). Next, we employed univariate Cox analysis to identify

prognosis-linked microbiota (P < 0.05). To decrease the amount of

microbiota, we utilized the Glmnet package to conduct the Least

Absolute Shrinkage and Selection Operator (LASSO)-Cox

regression analysis (Engebretsen and Bohlin, 2019). We further

reduced the number of microbiota using Stepwise Cox regression

analysis (StepCox). Ultimately, we derived a formula to determine
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the risk score, RiskScore = b1 * exp1 + b2 * exp2 +… + bi * expi. In
this context, b symbolizes the microbiota coefficient, and ‘exp’

signifies the microbiota level. Using this equation, the risk scores

in the TCGA training set was calculated. Following that, we carried

out receiver operating characteristic (ROC) assessment using the

timeROC package (Blanche et al., 2013), illustrating ROC curves for

1, 2, and 3 years, and executing survival examination with the

survminer package to establish the threshold value (Kassambara

et al., 2021). Finally, the stability of the prognostic model was

validated using the TCGA test set and the entire TCGA dataset.
Gene set enrichment analysis and
functional annotation

The clusterProfiler package (Wu et al., 2021) was used to perform

GSEA on the upregulated genes of various tumor subtypes to evaluate

their functional characteristics. We used gene sets from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database as

enrichment signatures, considering a functional enrichment

significance when the adjusted p-value after the Benjamini-

Hochberg correction was <0.05. We utilized the enrichplot package

for visualization and the Single Sample Gene Set Enrichment Analysis

(ssGSEA) algorithm from the Immuno-Oncology Biological Research

package to compute functional scores for individual samples. We

performed differential analysis between tumor subtypes/risk groups

using the Hallmark gene set. For this assessment, we employed the

Wilcoxon test, deeming a p-value < 0.05 to be statistically significant.
Tumor immune infiltration analysis

Metrics related to immune infiltration in the The Cancer

Genome Atlas (TCGA)-READ dataset, including StromalScore,

ImmuneScore, ESTIMATEScore, and TumorPurity, were computed

using the ESTIMATE algorithm. The immune cell composition in

TCGA-READ was assessed using Cell-type Identification By

Estimating Relative Subsets Of RNA Transcripts (CIBERSORTx).

Using single-cell data on immune cell composition as a reference, we

predicted the immune composition of bulk samples. Comparisons

between different groups were conducted using the Kruskal-Wallis

test. We utilized the pheatmap package to visualize Estimation of

STromal and Immune cells in MAlignant Tumor tissues using

Expression data (ESTIMATE) score distribution and immune cells

across tumor subtypes, as well as the distribution of ssGSEA scores

for signatures such as Hallmark between risk groups (Kolde, 2019).
Prediction of the response to
immunotherapy/chemotherapy

The oncoPredict package in R was used to determine the IC50 of

standard chemotherapy medications for evaluating the effectiveness

of chemotherapy. The T-cell-inflamed gene expression profile score

was utilized to forecast the reaction to immunotherapy in various
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tumor subtypes and risk groups. Next, the cytolytic activity (CYT)

score and type 1 T helper/interferon gamma (Th1/IFNg) gene

signature score was computed utilizing the single-sample GSEA

(ssGSEA) algorithm. Additionally, the Tumor Immune

Dysfunction and Exclusion (TIDE) web analysis tool from http://

tide.dfci.harvard.edu/ was utilized to forecast the immune reaction

and ratings in the TCGA dataset. Immune checkpoint genes were

used to analyze differentially using the Kruskal-Wallis test, with a

padj<0.05 deemed as statistically significant. Subsequently, a

correlation analysis was conducted between immune checkpoint

genes and risk scores upon utilizing the ggcorrplot package

(Kassambara and Patil, 2023).

Somatic Nucleotide Variant (SNV) analysis.

The TCGA database provided us with data on SNV mutations,

and then the maftools package (Mayakonda et al., 2018) was used to

analyze and determine tumor mutation burden (TMB), mutant-

al lele tumor heterogeneity (MATH), and homologous

recombination defects (HRD) for every sample. Furthermore, a

comparative analysis among tumor subtypes/risk groups was

performed utilizing the Wilcoxon test; a p-value<0.05 was

deemed as statistically significant. Additionally, a correlation

analysis was conducted between risk scores and immune cells, as

well as the Hallmark signature, utilizing the ggcorrplot tool.
Results

Consensus clustering analysis of
microbiota-associated tumor subtypes

Microbial genera associated with survival were identified through

univariate Cox analysis of the microbiome data (P < 0.05)

(Figure 1A). Subsequently, consensus clustering on the TCGA data

was performed utilizing the abundance matrix of genera and the

ConsensusClusterPlus package. Through PAC analysis, we found

that the best grouping effect occurred with a value of k=2 (Figure 1B).

Principal component analysis revealed the distribution of samples

from the two subtypes (Figure 1C). Survival analysis results showed

poorer prognosis of subtype C2 (p=0.00046) (Figure 1D).

Furthermore, significant differences were observed between the two

subtypes in terms of the abundance expression of most genera

(Figure 1E). The abundance heatmap of genera revealed that

Robiginitomaculum, Myxococcus, Terriglobus, Clavibacter,

Chitinimonas, Alpharetrovirus, Paenarthrobacter, and Xenococcus

had higher abundance in C1, while the remaining genera

(Cytomegalovirus, Zymomonas, Lentimicrobium, Flavihumibacter,

Emticicia, Sutterella, Fimbriimonas, Segetibacter, Gemmatirosa and

Zavarzinella) had higher abundance in C2 (Figure 1F).
Variations in clinical markers and single
nucleotide variations across
tumor subtypes

We combined the subtype outcomes with various clinical

factors, including age, tumor stage, survival status, and of T, N,
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and M stages. Chi-square tests revealed that the survival status

distribution differed significantly between C1 and C2 through (P <

0.05), and other factors showed near significance (Figures 2A–F).

The SNVmutations in these two subtypes were calculated in terms

of tumor mutation burden (TMB), mutant-allele tumor

heterogeneity (MATH), and homologous recombination defects

(HRD) values. No notable variances were observed between C1

and C2 in (Figures 2G–I). The waterfall chart displays the

mutation status of the most frequently mutated top 30 genes in

both subtypes. We observed that the genes Adenomatous

Polyposis Coli (APC) (87.5% mutation rate), TP53 (70%

mutation rate), and KRAS (50% mutation rate) exhibited

relatively high mutation rates (Figure 2J).
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Functional differences in tumor subtypes

After comparing gene expression differences between the two

subtypes, we utilized the marker genes identified for GSEA to assess

their functional importance through KEGG analysis. According to

this enrichment analysis, subtype C1 was enriched in the

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION

pathway, whereas subtype C2 showed enrichment in the

KEGG_RNA_DEGRADATION, KEGG_METABOLISM

_OF_XENOBIOTICS_BY_CYTOCHROME_P450 , and

KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY

pathways (Figures 3A, B). Further evaluation of key pathways

revealed that ADIPOGENESIS, ANDROGEN_RESPONSE,
FIGURE 1

Consensus clustering analysis of microbiota-associated tumor subtypes. (A) Volcano plot and error bar graph representing survival-associated
microbiota. (B) Consistency clustering plot of microbial abundance matrix. (C) Principal Component Analysis plot with K=2. (D) Survival analysis
curves of two clusters. (E) Box plot showing differences in abundance of microbiota between two clusters. (F) Heatmap depicting the abundance of
microbiota between two clusters. *: p<0.05; **: p<0.01; ***: p<0.001; ****:p<0.0001.
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FIGURE 2

Differential clinical indicators and somatic nucleotide variants mutations in tumor subtypes (A–F) Bar charts illustrating the proportion of various
clinical indicators (age, pT, pN, pM, Tumor Stage, survival status) in two clusters. (G–I) Violin plots displaying variances in tumor mutation burden
(TMB), mutant-allele tumor heterogeneity (MATH), and homologous recombination defects (HRD) between two clusters. (J) Waterfall plot depicting
the top 30 gene mutations in two clusters.
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ANGIOGENESIS, APOPTOSIS, and EMT were more prevalent in

subtype C2, whereas REACTIVE_OXYGEN_SPECIES_PATHWAY,

PANCREAS_BETA_CELLS, and KRAS_SIGNALING_DN were

more prevalent in subtype C1 (Figures 3C, D).
Immune infiltration differences among
tumor subtypes

analysis of single-cell data of READ, particularly focusing on

isolating immune cells, resulted in a total of 18 clusters. Based on

the distribution of cell sources, immune cells were derived

primarily from tumor samples. Employing distinct markers and

the Sc-Type program, we could categorize immune cells

and acquire cell annotation outcomes for every cluster.

Subsequently, bubble expression plots of markers for various

cell types were displayed (Figures 4A–D). The ESTIMATE

algorithm produced four indices that showed no significant

differences between the two subtypes. However, ImmuneScore

and Tumor-Purity were higher in C1, while StromalScore and

ESTIMATEScore were higher in C2 (Figures 4E–H). Employing

the CIBERSORTx algorithm and leveraging single-cell data as a

reference to predict bulk data, we found higher levels of

macrophages in C1, whereas myeloid dendritic cells (mDCs)

were more abundant in C2 (Figures 4I, J).
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Examining anticipated reaction to
immunotherapy and chemotherapy in
different types of tumors

For every subtype, the IC50 values of traditional chemotherapy

medications were determined. In C2, RO-3306_1052,

Tozasertib_1096, Doramapimod_1042, and NU7441_1038

exhibited higher sensitivity levels (Figures 5A–D). Assessment of

the reaction to immunotherapy through the T-cell-inflamed Gene

Expression Profile (GEP) score, CYT score, and Th1/IFNg gene

signature showed that C1 had a greater T-cell-inflamed gene

expression profile score than C2, whereas C2 had a higher cytolytic

activity score compared to C1. Both subtypes exhibited comparable

levels of Th1/IFNg gene signature scores (Figures 5E–G). We then

examined the levels of 28 immune checkpoint genes in every subtype

and observed significant variations in the levels of CD200, TNFRSF4,

and CD86 immune checkpoint genes between the two subtypes, and

all three were more abundant in C2 (Figures 5H, I).
Construction and validation of risk
score models

Based on differential analysis between the two subtypes (|log2FC|

>0.5, P<0.05), we identified 133 distinct genera. Univariate Cox analysis
FIGURE 3

The results of functional differential analysis of tumor subtypes (A) Gene Set Enrichment Analysis (GSEA) results of upregulated genes in cluster 1
(C1). (B) GSEA results of upregulated genes in cluster 2 (C2). (C) Heatmap displaying single-sample GSEA (ssGSEA) scores for samples
categorized into two clusters using the Hallmark gene set. (D) Boxplot illustrating the variation in ssGSEA scores between samples in two clusters
using the Hallmark gene set. *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001.
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identified 16 genera exhibiting significant associations with survival

(P<0.05), with 9 genera linked to risk and 7 linked to protection.

Following this, a model was created using the LASSO-Cox regression

technique, leading to a decrease in the number of genera. With the

increase in the l coefficient, the number of genera approached zero

(Figure 6A). Ten-fold cross-validation yielded confidence intervals for

each l value (Figure 6B). Ultimately, nine prognostic-related genera

could be identified. StepCox was used to enhance the genera selection,
Frontiers in Cellular and Infection Microbiology 08
leading to the following equation for RiskScore calculation: RiskScore =

0.44*Gemmatimonas+0.378*Rhodothermus+0.351*Sutterella-

0.288*Myxococcus-0.402*Paenarthrobacter (Figure 6C). Applying this

formula, we determined the risk levels of the TCGA training set, TCGA

test set, and the complete TCGA dataset, uncovering a worse outlook

for the high-risk category. Furthermore, the estimated Area Under the

Curve (AUC) values for 1, 2, and 3 years, were all greater than 0.8 for

every dataset (Figures 6D–I).
FIGURE 4

Differential immune infiltration results of tumor subtypes (A–C) The t-distributed stochastic neighbor embedding plots of single-cell data from The
Cancer Genome Atlas Rectum Adenocarcinoma (TCGA-READ). (D) Bubble plot showing marker annotations for various cell types. (E) Violin plot
depicting the differential Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) score between two
clusters. Violin plot illustrating the differential (F) ImmuneScore between two clusters, (G) StromalScore between two clusters, and (H) TumorPurity
between two clusters. (I) Boxplot showing the differential CIBERSORTx scores between two clusters. (J) Heatmap presenting the differential analysis
results of ESTIMATE and CIBERSORTx scores between two clusters. ns: No statistical significance.
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Variations in clinical markers within
different risk groups

A combined analysis of the risk groups with various clinical

indicators revealed that with the increase in age, T stage, N stage, M

stage, pathological grading, and tumor staging, the risk value also

increased (Figure 7A). In particular, the risk assessment for C2 was

notably greater compared to C1 (Figure 7B). Figure 7C presents a

Sankey diagram for the allocation of tumor subtypes and risk categories.

Subsequently, for survival analysis, we segregated samples based on

pathological T stage, age, and tumor stage in three groups. Figure 7D

shows a worse outcome of individuals in the high-risk category.
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Differences in immune infiltration among
the risk groups

The three matrices computed through the ESTIMATE

algorithm exhibited notable variances among the risk categories

(P<0.05), and no significant variance was detected in the

ImmuneScore. In particular, the values for StromalScore,

ImmuneScore, and ESTIMATEScore were elevated in the high-

risk category, whereas the Tumor-Purity score was increased in the

low-risk category (Figure 8A). Applying the CIBERSORTx

algorithm to predict bulk information employing single-cell data

as a guide, we discovered a greater prevalence of macrophages in the
FIGURE 5

Assessment of anticipated reaction to immunotherapy and chemotherapy in different types of tumors (A–D) Violin plots depicting the differential
IC50 values of RO-3306_1052, Tozasertib_1096, Doramapimod_1042, and NU7441_1038 between two clusters (C1 and C2). (E–G) Violin plots
showing the differences in T-cell-inflamed gene expression profile (GEP) score, cytolytic score (CYT) score, and type 1 T helper/interferon-gamma
(Th1/IFNg) gene signature between two clusters. (H) Heatmap showing the expression levels of 28 immune checkpoint genes across different
subtypes. (I) A Ridge plot illustrating the levels of expression for 28 immune checkpoint genes among various subtypes (*p < 0.05; **p < 0.01;
ns, not significant).
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high-risk category, whereas mDCs and plasma B cells were more

prevalent in the low-risk category (Figure 8B). The pathway

enrichment analysis revealed enrichment of pathways like

MYC_TARGETS_V2 and BILE_ACID_METABOLISM in the

low-risk group, whereas pathways like ANDROGEN_RESPONSE

and ANGIOGENESIS were enriched in the high-risk group

(Figures 8C, E). Following this, the Spearman correlation

analysis showed a negative correlation of the risk-score with

plasma B cells, BILE_ACID_METABOLISM, and other factors,

concurrently showing a positive correlation with CD8+ NKT-

like cells, naive B cells, ADIPOGENESIS, and other factors. As

shown in Figure 8D, a positive correlation is indicated by the

dashed line, while a negative correlation is represented by the

solid line.
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Evaluation of anticipated reaction to
immunotherapy/chemotherapy within the
risk groups

In the high-risk group, enhanced sensitivity was observed

for BMS-754807_2171, ZM447439_1050, JQ1_2172, and

NU7441_1038 (Figure 9A). The mutation analysis exhibited

elevated levels of TMB, MATH, and HRD scores in the high-

risk group in comparison to the low-risk group. Furthermore, all

three metrics had a positive association with the risk factor,

although this relationship was not statistically significant, as

shown in Figures 9B–D. Investigation of immunotherapy

revealed elevated levels of T-cell–inflamed GEP score, Th1/IFNg
gene signature, and CYT score in the high-risk group compared to
FIGURE 6

Analysis of building and validation of risk score models (A) A Curve plot showing the coefficient of prognostic genera with respect to lambda values.
(B) An error bar graph showing the partial likelihood deviance for the LassoCox model at different lambda values. (C) A bubble plot showing the
coefficient values of genera in the risk score model. (D) Survival analysis findings from the TCGA validation dataset. (E) Survival analysis findings from
the TCGA validation dataset. (F) Findings from the survival analysis of the complete TCGA database. (G) The timeROC analysis results for the 1, 2, and
3-year intervals in the TCGA testing set. (H) The timeROC analysis results for the 1, 2, and 3-year intervals in the TCGA testing set. (I) The timeROC
analysis results for the 1, 2, and 3-year intervals in the entire TCGA dataset.
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the low-risk group. These three factors were all linked to the risk

value, although the association was not statistically significant

(Figures 9E–G). Using TIDE online analysis, we discovered

significantly higher TIDE value in the high-risk group compared

to the low-risk group, with results nearing statistical significance

(Figure 9H). Survival analysis showed a worse prognosis for the

high-risk non-responding group (Figure 9I). During the

examination of immune checkpoints, the level of risk showed a

strong association with the majority of immune checkpoints, and

the high-risk group had a notably higher presence of immune

checkpoints (Figures 9J, K).
Frontiers in Cellular and Infection Microbiology 11
Discussion

Colorectal cancer is a globally prevalent type of cancer; it is the

third most frequently detected cancer, according to the World

Cancer Research Fund. Traditional treatment methods for

colorectal cancer primarily include surgery, radiotherapy, and

chemotherapy. Personalized treatment options are also now

available for certain patients with the development of targeted

therapies and immunotherapy (Benson et al., 2022). However,

despite the increasing diversity of treatment modalities, the

recurrence and mortality rates of colorectal cancer remain high. A
FIGURE 7

Findings from the examination of distinct clinical markers in various risk categories (A) A Violin plot showing the variations in risk levels of different
clinical markers (age, pT, pN, pM, Tumor_Stage) within The Cancer Genome Atlas database cohort. (B) A violin plot illustrating the variations in risk
levels across two distinct clusters (C1 and C2). (C) A sankey diagram showing the compositional differences between two clusters and risk groups.
(D) Survival analysis results classified according to pT, age, and Tumor_Stage.
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strong link has been shown between the intestinal flora of

individuals with colorectal cancer and the onset, progression,

response to treatment, and outlook of the disease, suggesting a

significant impact of the intestinal flora on the treatment of

colorectal cancer.

By combining transcriptomic and microbiota data in

individuals with colorectal cancer, we could discover two unique

tumor subcategories (C1 and C2) linked to varying microbiota

compositions that significantly influence patient survival

predictions. Individuals classified as the C1 subtype exhibited a

more favorable outlook. Individuals with the C2 subtype showed

elevated abundance of various genera of gut bacteria, which is

potentially linked to tumor development (Lee et al., 2018). In line
Frontiers in Cellular and Infection Microbiology 12
with earlier research, this discovery implies a strong association

between intestinal flora and tumor development, suggesting that gut

bacteria could contribute to the occurrence of inflammatory

conditions that support tumor growth, influence immune system

avoidance, and aid in tumor spread and growth (Dzutsev et al.,

2015; Fu et al., 2024). Clinical parameters too, showed differences in

survival status between C1 and C2. Nonetheless, the lack of

significance in the variances of TMB, MATH, and HRD values

between the two subtypes indicates the presence of alternative

mechanisms contributing to the differences in subtypes.

Additionally, the APC gene was identified with a high mutation

rate. APC, a key gene involved in tumor suppression, is essential in

regulating intestinal mucosal epithelial cells by regulating cell
FIGURE 8

Analysis results of differential immune microenvironment in risk groups (A) Density distribution plots depicting StromalScore, ImmuneScore,
ESTIMATEScore, and TumorPurity across different risk groups. (B) Boxplot showing the differential CIBERSORTx scores between risk groups.
(C) Heatmap displaying single-sample Gene Set Enrichment Analysis (ssGSEA) scores using the Hallmark gene set for different risk groups.
(D) Correlation heatmap illustrating the relationship between risk values, immune cell composition, and Hallmark gene set (ssGSEA scores) (positive
correlation is shown as a dashed line and negative correlation, as a solid line). (E) A boxplot displaying the differences among different risk groups in
terms of ssGSEA scores for the Hallmark gene set. *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001.
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proliferation, differentiation, apoptosis, and cell cycle. Mutation or

loss of the APC gene can lead to dysregulated cell cycle, thereby

promoting the occurrence of colorectal tumors (Goss and Groden,

2000; Malki et al., 2020).

Tumors with a poor prognosis often have a higher mutational

burden, meaning they present more neoantigens on their surface.

These neoantigens make the tumor cells more recognizable to the

immune system. ICIs work by blocking immune checkpoint
Frontiers in Cellular and Infection Microbiology 13
molecules (like PD-1 and CTLA-4), which removes the brakes on

T cells, enabling them to attack these highly mutated tumors more

effectively. Poor prognosis tumors may have developed mechanisms

to escape immune surveillance, often involving overexpression of

immune checkpoint molecules. ICIs can reverse this immune

escape by blocking these checkpoints, leading to reactivation of

the immune response against the tumor. The heterogeneity within

tumor cells might mean that certain subgroups within a poor
FIGURE 9

Analysis of anticipated reaction to immunotherapy/chemotherapy and variations in somatic nucleotide variants (SNV) mutations among different risk
categories (A) Violin plots depicting the differential IC50 of BMS-754807_2171, ZM447439_1050, JQ1_2172, and NU7441_1038 between risk groups.
(B–D) Violin plots showing the differences in tumor mutation burden (TMB), mutant-allele tumor heterogeneity (MATH), and homologous
recombination defects (HRD) between risk groups, along with corresponding correlation scatter plots. (E–G) Violin plots demonstrating variations in
T-cell–inflamed gene expression profile (GEP) score, type 1 T helper/interferon gamma (Th1/IFNg) gene signature, and cytolytic score (CYT) score
among different risk groups, accompanied by correlation scatter plots. (H) Violin plot displaying the differences in TIDE values between high- and
low-risk groups. (I) Survival analysis results of risk groups categorized as Response and NonResponse predicted by combining risk groups with TIDE
analysis. (J) A heatmap displaying the association between risk values and the expression levels of immune checkpoint genes. (K) Heatmap
illustrating the expression levels of immune checkpoint genes in patients categorized by risk groups (*p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001; ns, not significant).
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prognosis tumor are particularly sensitive to ICIs. Patients with a

poor prognosis might have a higher proportion of these sensitive

subgroups, resulting in a better response to ICIs. Poor prognosis

tumors that do not respond well to conventional therapies (like

chemotherapy or radiation) might still undergo immunogenic cell

death. This form of cell death releases tumor antigens, which can

further activate the immune system, thereby enhancing the

effectiveness of ICIs. Studies have shown that combining ICIs

with other treatments (such as chemotherapy, radiation, or

targeted therapies) can lead to better outcomes, particularly in

patients with poor prognosis. These combination therapies might

improve the tumor microenvironment or expose more tumor

antigens, making ICIs more effective.

Interestingly, by combining microbiota and single-cell data, we

uncovered unique immune cell infiltration patterns displayed by

tumors categorized into various gut microbiota subgroups. The

presence of these patterns might have a direct impact on the

advancement of the illness and the outlook for the patient. Our

examination showed that while there was no notable variation in

immune scores among the two subtypes, the C1 subtype potentially

harbored a greater number of macrophages, thus culminating in an

enhanced anti-cancer immune reaction; whereas, the C2 subtype

showed a higher proportion of Dendritic Cells (DCs), which may

suppress anti-tumor responses, thus explaining its association with

poorer prognosis.

Response prediction to chemotherapy and immunotherapy

shows a close association between drug sensitivity and treatment

response in different tumor subtypes. For example, medications like

RO-3306, Tozasertib, Doramapimod, and NU7441 have been

thoroughly studied and shown to inhibit cancer cells, control

cellular stress responses, trigger cancer cell death, and

consequently slow down tumor progression (Moon et al., 2015;

Matsumoto, 2022; Yang et al., 2022; Huang et al., 2023). The C2

subtype appears to be more sensitive to the above-mentioned

chemotherapy drugs, suggesting better treatment outcomes for

patients with this subtype upon treatment with these drugs.

Additionally, immune checkpoint molecules CD200, TNFRSF4,

and CD86 are all enriched in the C2 subtype, while the C1

subtype exhibits enrichment of T-cell inflamed gene expression

patterns. These results indicate that patients with the C2 subtype

respond better to immunotherapy.

Poor prognosis was confirmed by the AUC values, validating

the effectiveness of the model. Combined with clinical parameters,

patients with higher-risk clinical-pathological parameters tended to

have higher scores. Additionally, the risk scores were higher in the

C2 group, consistent with its poorer prognosis. Additionally, within

the high-risk category, the levels of StromalScore, ImmuneScore,

and ESTIMATEScore were elevated, while BMS-754807,

ZM447439, JQ1, and NU7441 displayed increased sensitivity

(Carboni et al., 2009; Kaestner et al., 2009; Ding et al., 2020). In

experimental studies, these potential drugs have shown inhibitory

effects on colorectal cancer, but their clinical safety and efficacy still

need further validation. This study further confirmed the

effectiveness of the scoring model in terms of immune infiltration

and checkpoints; irrespective of microbiome-related tumor

subtypes or microbiome-based risk scoring models, they exhibit
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excellent predictive value in the prognosis, immunotherapy, and

drug sensitivity response of patients with colorectal cancer. This

research further highlights the diverse functions and efficacy of the

gut microbiome in colorectal cancer, such as its ability to predict

patient outcomes, control immune responses in the intestines, affect

the metabolism of carcinogens, influence the efficacy of

immunotherapy, and regulate the environment surrounding

tumors. Our findings align with the conclusions reported in

various other studies (Hanus et al., 2021; Kim and Lee, 2021;

Dougherty and Jobin, 2023; Yu et al., 2023; Zheng et al., 2023).

In this study, we explored the association between the gut

microbiome and colorectal cancer, unveiling significant variations

in microbiome compositions that correlate with distinct tumor

subtypes. Our findings underscore the potential clinical

applications of microbial biomarkers, as exemplified by genera

such as Robiginitomaculum and Myxococcus, which are prevalent

in the subtype associated with favorable prognosis, and Sutterella

and Zymomonas, which dominate in the subtype linked to poor

outcomes. This differential abundance not only highlights the

pivotal role of microbial markers in influencing tumor

progression and patient survival but also sets the stage for

developing targeted therapeutic strategies that harness specific

microbial profiles. Moreover, the identification and functional

analysis of these biomarkers are crucial for refining existing

treatment modalities and crafting novel personalized therapies. By

analyzing the expression patterns of these markers across tumor

subtypes, we can enhance the precision of patient-specific treatment

predictions, thereby optimizing therapeutic outcomes. Additionally,

these insights provide a new perspective on the complex

interactions between the microbiome and the tumor

immune microenvironment.

Although our research presents convincing proof of the

intricate connection between colorectal cancer, the microbiome,

and the immune environment, some constraints still persisted. The

microbiome information was collected from openly accessible

repositories, with a restricted number of samples. Moreover, the

source and collection techniques of microbiome data may have a

confounding effect on the analysis results. Additionally, although

the sample information provided by the dataset used in this study is

rich, it lacks information on directly isolated microbial samples.

Future research should consider obtaining more accurate

microbiome data from in situ tumor tissues. Additional research

is also required to assess the impact of the identified microbial

populations and microbiome communities on tumor advancement

in terms of influencing immune responses, drug processing, and

direct interactions with host cells.

In summary, our comprehensive analysis of the colorectal

cancer microbiome, immune microenvironment, drug sensitivity,

and other factors enhances our understanding of the

multidimensional interactions in colorectal cancer biology as well

as provides important clinical indications for the future

improvements in the treatment of colorectal cancer. These

findings offer a new perspective on treating colorectal cancer and

suggest the possibility of improving patient treatment responses and

long-term prognosis by modulating the microbiome composition or

utilizing biomarkers presented by the microbiome.
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