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Background: The continuous emergence and spread of polymyxin-resistant

Acinetobacter baumannii pose a significant global health challenge,

necessitating the development of novel therapeutic strategies. Aloe, with its

long-standing history of medicinal use, has recently been the subject of

substantial research for its efficacy against pathogenic infections.

Methods: This study investigates the potential application of anthraquinone

components in aloe against polymyxin-resistant A. baumannii by liquid

chromatography-mass spectrometry, in vitro activity assessment, and

construction of animal infection models.

Results: The findings demonstrate that aloe emodin, emodin, rhein, and their

mixtures in equal mass ratios (EAR) exhibit strain-specific antibacterial activities

against polymyxin-resistant A. baumannii. Co-administration of EAR with EDTA

synergistically and universally enhanced the antibacterial activity and bactericidal

efficacy of polymyxins against polymyxin-resistant A. baumannii, while also

reducing the frequency of polymyxin-resistant mutations in polymyxinssensitive

A. baumannii. Following toxicity assessment on human hepatic and renal cell lines,

the combination therapy was applied to skin wounds in mice infected with

polymyxin-resistant A. baumannii. Compared to monotherapy, the combination

therapy significantly accelerated wound healing and reduced bacterial burden.

Conclusions: The combination of EAR and EDTA with polymyxins offers a novel

therapeutic approach for managing skin infections caused by polymyxinresistant

A. baumannii.
KEYWORDS

Acinetobacter baumannii, polymyxins resistance, Aloe, anthraquinone components,
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1 Introduction

Acinetobacter baumannii is one of the most common

opportunistic pathogens responsible for nosocomial infections

globally, particularly prevalent in intensive care unit (ICU)

settings where it is a leading causative agent of ventilator-

associated pneumonia (Vázquez-López et al., 2020). In addition

to causing pneumonia, meningitis, and bacteremia, A. baumannii

also represents a source of nosocomial skin and soft-tissue

infections in the context of war wounds, surgical sites, and burns

(Al Salman et al., 2020; Cavallo et al., 2023). Due to its ability to

resist third-generation cephalosporins and carbapenems, the

treatment of A. baumannii infections faces severe challenges, with

a global average mortality rate as high as 42.6%, thereby posing a

significant threat to public health (Mohd Sazlly Lim et al., 2019;

Ikuta et al., 2022; Roch et al., 2023). According to data from the

Centers for Disease Control and Prevention of the USA, the

incidence of multidrug-resistant A. baumannii is four times

higher than that of other Gram-negative pathogens such as

Klebsiella pneumoniae and Pseudomonas aeruginosa (Giammanco

et al., 2017). In response to this challenge, polymyxins have been

reserved as “last-line” therapies in clinical practice for treating

infections caused by multidrug-resistant or extensively drug-

resistant A. baumannii (Nang et al., 2021; Shields et al., 2023).

Polymyxins, such as polymyxin B (PMB) and colistin (CST), are

lipopeptide antibiotics employed in clinical settings. Their

antibacterial mechanism involves targeting lipid A, a constituent

of the bacterial outer membrane’s lipopolysaccharide (LPS), leading

to disruption of the outer membrane’s integrity (Ledger et al., 2022).

However, due to its increased use in clinical practice, polymyxin-

resistant strains have emerged worldwide (Lima et al., 2020;

Dwibedy et al., 2024; Luo et al., 2024). Currently, A. baumannii

demonstrates a multifaceted mechanism and diversified evolution

of polymyxin resistance, including intrinsic mechanisms and

acquired mechanisms mediated by plasmids (Wang et al., 2022;

Shahzad et al., 2023; Liu et al., 2024).

In addition to the recommendations for more prudent dosing

strategies and systematic monitoring for polymyxin-resistance

(Pogue et al., 2017; Lima et al., 2020), the development of novel

synthetic and semi-synthetic analogues of polymyxins, along with

the concurrent use of polymyxins with antibiotics or non-antibiotic

adjuvants, represents a preferred strategy for addressing polymyxins

resistance (Koh Jing Jie et al., 2022; Ardebili et al., 2023; Slingerland

and Martin, 2024). The strategy of combination therapy, owing to

its economic and safety advantages, has emerged as a highly

promising approach to overcoming antibiotic resistance (Yang

et al., 2020). For example, ethylenediaminetetraacetic acid

(EDTA), a common pharmaceutical excipient and chelating agent

widely used in medicine and the food industry, has gained

considerable attention in the antimicrobial field due to its strong

metal ion chelating ability, leading to the development of various

combination therapies (Khare et al., 2021; Chang et al., 2022; Bari

et al., 2023). A study reported that the combination therapy of

colistin and EDTA exhibited potent synergistic effects both in vitro

and in vivo against mgrB-mediated colistin-resistant Klebsiella

pneumoniae, offering a novel approach for treating extensively
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drug-resistant (XDR) bacterial infections (Shein et al., 2022).

Furthermore, polymyxin B and EDTA showed synergistic

inhibitory effects on Pseudomonas aeruginosa and Staphylococcus

aureus, and were suggested for the management of biofilm-

associated conditions, particularly those amenable to topical

therapies such as cystic fibrosis (Hale et al., 2024).

The Earth harbors an estimated 250,000 to 500,000 plant

species, each of which contains a diverse array of phytochemical

compounds that represent a vast repository of potential

therapeutics (Borris, 1996). Many plant-derived antimicrobials

have been widely applied in the medical field, and their

combination with antibiotics can reduce the required antibiotic

concentrations and re-sensitize multidrug-resistant pathogens to

these drugs (Song et al., 2021). It has been demonstrated that

natural flavonoids with catechol-type structures, such as 7,8-

dihydroxyflavone, myricetin, and luteolin, are able to enhance the

bactericidal effect of colistin by disrupting the iron homeostasis of

Enterobacteriaceae, providing a reliable strategy for potentiating

colistin in clinical treatments (Zhong et al., 2023). Another study

discovered that extracts from Silene armeria, when used in

combination with polymyxin B, exhibited synergistic antibacterial

activity against A. baumannii. The active compound 6-bromo-2-

naphthol was identified as the primary synergist with polymyxin B,

offering a new direction for effectively controlling multidrug-

resistant A. baumannii (Kang et al., 2022). Thus, guided by the

principles of green pharmacy, safe medication practices, and a

return to natural remedies, research exploring natural compounds

as potential solutions to the global antimicrobial resistance crisis has

garnered growing interest and focus.

Aloe, belonging to the genus Aloe in the family Liliaceae, is a

highly adaptable plant distributed worldwide. It exhibits various

pharmacological properties, including immunomodulatory,

anticancer, antibacterial, anti-inflammatory, and wound healing

effects, endowing aloe with widespread applications in medicine,

food, and cosmetics (Ushasree et al., 2024). Currently, reports on

the antibacterial activity of aloe predominantly focus on Gram-

positive bacteria (Ushasree et al., 2024), while antibacterial activity

against Gram-negative bacteria, particularly polymyxin-resistant A.

baumannii, remains scarce. Therefore, this study investigated four

different varieties of aloe plants and their major active components,

aiming to reveal the potential of aloe-derived natural compounds as

an effective anti-infective strategy against polymyxin-resistant

A. baumannii.
2 Materials and methods

2.1 Acinetobacter baumannii strains, Aloe
and antimicrobial agents

The A. baumannii strains used in this study were listed in

Table 1, among which the type strain ATCC 19606 and 17978 are

polymyxin-susceptible, six clinical strains were isolated from Qilu

Hospital of Shandong University and identified as polymyxin-

resistant A. baumannii isolates, and 10213 was obtained by

ATCC 19606. All A. baumannii strains were routinely grown at
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37°C in tryptone soy broth (TSB, Beijing Solarbio Science &

Technology Co., Ltd., China). Four different varieties of aloe

plants leaves, i.e., Aloe arborescens Miller (AA), Aloe barbadensais

Miller (AB), Aloe ferox Miller (AF), and Aloe vera L. var. chinensis

(Haw.) Berger (AL), were purchased from Jiangsu Shuyang

Meiruoxiahua Co., Ltd., China. All antibiotics and compounds

used in this study were obtained from Shanghai Yuanye Bio-

Technology Co., Ltd. (Shanghai, China).
2.2 Preparation of natural deep
eutectic solvents

Choline chloride, D-(+)-glucose, malic acid, citric acid and

lactic acid were used to prepare the natural deep eutectic solvents

(NADESs). As previously reported (Dai et al., 2013; Wu et al.,

2018), different NADESs were employed in this study with the

molar ratios as choline chloride:D-glucose (1:1), choline chloride:

malic acid (2:1), choline chloride:citric acid (2:1), and lactate:D-

glucose (5:1), respectively. The mixtures were slowly heated in a

water bath at a temperature of 80°C with continuous stirring for a

period of 30 to 60 minutes until a uniform, transparent, and clear

liquid was formed.
2.3 Compounds extraction and purification

The fresh leaves of aloe were washed with water, cut into small

pieces and homogenized for crushing. The resulting mixture was

then filtered through a clean muslin cloth to remove any residual

plant matter, and the supernatant was collected. Subsequently, the

liquid extract was then pre-frozen at -80°C for 12 h, followed by

freeze-drying using a Crystal Alpha freeze dryer (Germany). The

freeze-drying process consisted of a 40-minute freezing step, an 8-

hour primary drying step, and a 4-hour secondary drying step,

yielding a fine powder. Ultrasound-assisted extraction was

performed in a 20 mL round-bottom flask with 0.25 g of aloe

powder and 10 mL of NADES solvent. The mixture was subjected to

ultrasonication (KQ5200B, 200 W, 40 kHz, KunShan, China) at 80°

C for 30 min. After extraction was completed, the solutions were

collected and centrifuged at 10000 rpm/min for 15 min. All crude

extracts used in the experiments were stored at -20°C under light-

protected conditions. The extracts used in subsequent experiments

were all taken from the same batch of samples to minimize the

impact of batch-to-batch variation on the experimental results. The

supernatant was diluted 100-fold with methanol and then filtered

using a 0.22 µm organic filter membrane for subsequent HPLC

injection. After being concentrated by rotary evaporation, the crude

extracts were dissolved in methanol and subsequently subjected to

separation using Sephadex LH-20 gel column chromatography.

Methanol was used for elution at a controlled flow rate of 30 s

per drop under atmospheric pressure, with fractions collected at 10-

mL intervals. Based on the colorimetric results of thin-layer

chromatography, the fractions were combined and then

concentrated by evaporation. Compounds in the fractions were

further separated by semipreparative high performance liquid
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chromatography (HPLC, ThermoFisher) equipped with a 250 × 10

mm Luna C18 column (Phenomenex) eluting with gradient eluent

of methanol in water from 60% to 100% at 30°C at a flow rate of 1.8

mL/min with 254 nm UV spectrum.
2.4 HPLC-MS analysis

HPLC analysis was performed with a Thermo Scientific

Ultimate 3000 HPLC system using a column (Thermo Fisher

Scientific, C18, 4.6 × 250 mm, 5 mm) equipped with a guard

column. The binary mobile phase consisted of water (A) and

methanol (B) in a linear gradient program from 5% B to 100% B

in 46 min at a flow rate of 0.8 mL/min. The methanol

concentrations were changed as follows: 5 ~ 100% B (0 ~ 30

min), 100% B (30 ~ 40 min), 5% B (40 ~ 46 min). The column

temperature was as 30 °C and the sample volume injected was 10

mL. Coupled MS analysis was performed on an Impact HD Q-TOF

(Bruker, Germany) equipped with an ESI source. Diode array

detector spectra were acquired at 254 nm over a scan range of

190 ~ 400 nm. ESI source parameters were used as follows: negative

ion mode, heater temperature 200°C, nitrogen (purity ≥ 99.99%)

pumped into the ion source at a rate of 4 L/min, sheath gas flow rate

50 arb, spray voltage 3.5 kV, and scanning ranges of m/z 50 ~ 1500

for both MS and MS/MS mass spectra.
2.5 Zone of inhibition assay

Broth cultures of A. baumannii COLR 10213 in the logarithmic

growth phase were collected and resuspended to 1.0×108 CFUs/mL.

A sterile cotton swab was soaked in A. baumannii COLR 10213

culture until fully absorbed. Then the surface of the TSB plate was

coated evenly by the sterile cotton. Subsequently, 100 mL aloe liquid

extracts (25 mg/mL) was added in the sterile Oxford cup and placed

on the TSB agar plate. The same volume of solvent or solution

containing 10 mg/L CST were used as controls. The plates were

gently placed into an incubator at 37°C for 24 h until the clear

inhibition zone were observed and their diameters were recorded.
2.6 Antibacterial and bactericidal
activity analysis

Minimum inhibitory concentrations (MICs) of all compounds

were determined by the broth microdilution assay according to the

Clinical and Laboratory Standards Institute (CLSI) recommendations

for A. baumannii (CLSI, 2021). Briefly, drugs or crude extracts were 2-

fold diluted inMueller-Hinton broth (Oxoid, UK)mixed with bacterial

suspensions containing approximately 5 × 105 colony forming units

(CFUs)/mL in a sterilized 96-well microliter plate (NEST

Biotechnology, China). After 18 ~ 24 h incubation at 37°C, the MIC

values were defined as the lowest concentrations of drugs with no

visible growth of bacteria. After the MIC determination, 50 mL aliquots
from all the wells which showed no visible bacterial growth were seeded

on TSB agar plates and incubated at 37°C for 24 h. Minimum
Frontiers in Cellular and Infection Microbiology 04
bactericidal concentration (MBC) was recorded as the lowest

concentration killing 99.9% of the bacterial population (CLSI, 2019).
2.7 Checkerboard assay

A microdilution checkerboard method was used to determine

the potential effects of individual compound combinations (Ju et al.,

2022). The interactions were evaluated using the fractional

inhibitory concentration index (FICI). The FICI was defined as

(MICA in combination/MICA alone) + (MICB in combination/MICB alone).

The interaction inferred from the resulting FICI values was assessed

according to the following criteria: synergy, ≤ 0.5; additivity, > 0.5 to

≤ 1; indifference (no interaction), > 1 to ≤ 4; antagonism, > 4.
2.8 Time-kill curve measurement

Bacterial cultures in the exponential phase were diluted into

MHB media to a final concentration of 5 × 105 CFUs/mL. The

bacterial suspensions were supplemented with varying

concentrations of the compounds, either alone or in combination.

The mixture was incubated at 37°C for 0, 2, 4, 6, 12, and 24 h,

respectively. Following a 10-fold serial dilution on MHB plates, the

number of surviving bacterial colonies was counted after

overnight incubation.
2.9 Determination of the frequency of
polymyxin-resistant mutation

A. baumannii 19606 and 17978 were cultured in TSB overnight

at 37°C. After adjusting the concentration of bacteria suspensions to

1 × 109 CFUs/mL, 300 mL of 1 × 109 CFUs/mL were added to TSB

plates containing 10 mg/L PMB or CST supplemented with or

without varying concentrations of EAR and 256 mg/L EDTA. The

TSB plates were incubated at 37°C for 24 h and the number of

colonies grown was recorded.
2.10 Cytotoxicity assays

To determine the cytotoxicity of reagents, the human hepatic

(HEP3B) and renal (HEK293) cells were maintained in Dulbecco’s

Modified Eagle Medium supplemented with 10% fetal bovine serum

(NEST Biotechnology, Wuxi, China) and 1% penicillin/

streptomycin (Beijing Solarbio Science & Technology Co., Ltd.).

A 250 µL of cell culture solution with a cell density of 5 × 104 cells/

mL was transferred to each well of a 48-well plate and incubated at

37°C in 5% CO2 atmosphere for 24 ~ 48 h. Test compounds at

various concentrations (256 mg/L EDTA, 0 ~ 128 mg/L EAR, and 0

~ 16 mg/L PMB or CST) with incubation medium were

supplemented and cultivated for additional 24 h in the same

conditions. Finally, 25 mL of the CCK-8 Cell Proliferation and

Cytotoxicity Assay Kit (Beijing Solarbio Science & Technology Co.,

Ltd.) was added into each well, and OD at 450 nm was measured
frontiersin.org
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using a multifunction microplate reader (Infinite M200 Pro, Tecan)

after incubation for 1 h at 37°C. The cell suspension supplemented

with CCK-8 reagent was used as the control group, while the culture

medium supplemented with CCK-8 reagent served as the black

group. Cell viability was calculated using the following formula: cell

viability (%) = (Asample - Ablank)/(Acontrol - Ablank) × 100, where A

presented absorbance at 450 nm.
2.11 Mice skin wound model

Amice skin wound model of polymyxin-resistant A. baumannii

infection was developed as previously reported with some

modification (Wang et al., 2024). Briefly, after removing the

dorsal hair of mice and sterilizing with cotton swabs dipped in

75% ethanol solution, a sterile disposable biopsy punch (Rapid

Core, Ted Pella, Inc., USA) was used to produce a full-thickness

excision wound of 11-mm in diameter on each BALB/c mouse

(Jinan Pengyue Experimental Animal. Breeding Co., Ltd, China). A

sterile cotton swab was soaked in A. baumannii 1415E culture (1 ×

108 CFUs/mL) until fully absorbed. The bacterial culture was gently

applied to the mouse skin wound using a wet swab and allowed to

air dry at room temperature, with this procedure repeated for three

consecutive days to establish continuous infection. PBS buffer was

used as negative control. On the 5th and 6th d after the infection, the

mice were euthanized by cervical dislocation. The wound cavity was

collected and homogenized, followed by dilution with sterile saline

and spreading onto agar plates. The plates were subsequently

incubated at 37°C for 24 h to facilitate bacterial growth, enabling

the determination of bacterial load through colony counting.
2.12 Treatment of the infected mice

After successful establishment of the infection by A. baumannii

1415E, mice were randomly assigned to groups with each group

consisting of six mice. Subsequently, the wound sites were gently

swabbed daily using cotton swabs soaked in a solution containing

32 mg/mL EDTA, 4 mg/mL EAR, and 2 mg/mL PMB. The PBS

solution was utilized as the blank control group, whereas 2 mg/mL

PMB was employed as the comparative group. The progress of

wound healing in mice was observed daily, alongside measurements

of wound diameter to calculate wound area. On the 12th d of

treatment, the bacterial load in wound cavity was detected as

described above.
2.13 Statistical analysis

Each measurement was performed with a minimum of three

replicates. The data are expressed as Mean ± SD (standard

deviation). P-values were calculated using Student’s t-test for

comparisons between two groups, the significance levels were

denoted as follows: *, P < 0.05, **, P < 0.01, ***, P < 0.001. NS,

not significant. Unless specified otherwise, the comparisons were
Frontiers in Cellular and Infection Microbiology 05
made against the control group. The statistical analysis was

performed using GraphPad Prism 9.5 software.
3 Results

3.1 Aloe emodin, emodin, and rhein in aloe
extracts exhibit strain-specific antibacterial
and bactericidal activities against
polymyxin-resistant A. baumannii

The fresh leaves of four different varieties of aloe plants (AA,

AB, AF, and AL) were extracted using water (Aqueous), methanol

(MeOH), or NADESs (ChCl-Glu, ChCl-Ma, ChCl-Ca, and Lac-

Glu). The crude extracts were assessed for their antimicrobial

activity using ZOI assay, employing the high-level polymyxin-

resistant A. baumannii COLR10213 as the indictive strain. As

shown in Figures 1A, B, the inhibition zones generated by

NADES extracts were larger than the water or alcohol extracts,

among which the inhibition by Lac-Glu extracts was the most

pronounced. The extracts by Lac-Glu from AA and AB exhibited a

larger zone against COLR10213 (with diameters of 50.04 ± 0.7 mm

and 52.2 ± 0.5 mm, respectively), compared to those from AF and

AL (with diameters of 39.0 ± 0.4 mm and 38.3 ± 0.4 mm,

respectively). Next, the major components in crude extracts from

AA and AB by NADESs were analyzed using HPLC. As shown in

Figures 1C, D and Supplementary Figure 1, the midsection

distribution of chromatographic peaks for different NADES

extracts was generally consistent. Compared with other NADES

extracts, Lac-Glu extract of AA (LacGlu-AA) and AB (LacGlu-AB)

exhibited three prominently different peaks with relatively high

contents between retention times of 24 and 28 minutes in the latter

half, respectively denoted as peaks 1 to 3. A distinct differential peak

was detected in the relatively polar front half with a retention time

of approximately 10 minutes, denoted as peak 4. According the

tested HPLC retention time (Supplementary Figure 2) of specific

chemical components in aloe (Liang et al., 2021), peaks 1-4 were

preliminarily identified aloe emodin, rhein, emodin, and aloesin,

respectively. Through high-resolution MS (Figure 1E) and MS/MS

(Supplementary Figure 3) analysis, these identifications were

further confirmed. Peaks 1-4 were subsequently purified from the

crude extracts following protocols described in the method, and

compounds were further confirmed by comparing their retention

times and ultraviolet absorption spectroscopy against standard aloe

emodin, aloesin, emodin, and rhein (Supplementary Figure 4).

The antibacterial and bactericidal activities of the isolated

compounds were analyzed against seven polymyxin-resistant A.

baumannii strains, including 10213 (Table 1). Among the four

compounds, aloe emodin, emodin, and rhein showed pronounced

antibacterial (MIC ranged in 0.5 ~ 2 mg/L) and bactericidal (MBC 2

~ > 1024 mg/L) activities compared to aloesin (MIC > 1024 mg/L,

MBC > 1024 mg/L). Aloe emodin, emodin, and rhein demonstrated

higher antibacterial activity (MIC 0.5 ~ 32 mg/L) against A.

baumannii 10213, 6588E, 038E, and 245B but lower antibacterial

activity (MIC 256 ~ 1024 mg/L) against A. baumannii 07AC366,

189B, and 1415E. Considering the potential synergy of active
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ingredients in medicinal plants (Williamson, 2001; Hu et al., 2023),

a mixture named as EAR was prepared by combining equal mass

ratios of aloe emodin, emodin, and rhein. In addition to

maintaining the high antibacterial and bactericidal activities

against A. baumannii 10213, 6588E, 038E, and 245B (MIC 1 ~ 2

mg/L, MBC 2 ~ 64 mg/L), EAR notably enhanced its effectiveness

against A. baumannii 07AC366 and 189B (MIC 4 ~ 16 mg/L, MBC

2 ~ >256 mg/L). However, EAR did not exhibit any significant

activity against A. baumannii 1415E (Table 1). These findings

highlighted the potential variability in EAR’s efficacy across

different polymyxin-resistant A. baumannii strains.
3.2 Combination treatment synergistically
restored the sensitivity of resistant A.
baumannii strains to polymyxins

Acknowledging the well-established potential of natural

products to synergize with polymyxins and enhance their

antibacterial effects against multidrug-resistant bacteria (Lin et al.,

2021), we attempted to assess the effects of aloe emodin, emodin,

rhein, EAR and crude extracts (LacGlu-AB as the representative)

when combined with polymyxins. Through checkerboard assay,

significant synergistic effects (FICI < 0.5) of the tested compounds

were observed that resulted for enhancing the sensitivity of certain

polymyxin-resistant A. baumannii strains to PMB and CST

(Figure 2A-left panel and Supplementary Table 1). Specifically,
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exposure to a 1 mg/L concentration of EAR reduced the MIC of

polymyxins against A. baumannii 189B from an initial value

exceeding 512 mg/L to below 0.03 mg/L (Table 1; Supplementary

Table S1). However, it was noteworthy that aside from strain 189B,

the MBC of polymyxins against other A. baumannii strains

remained considerably high, ranging from 4 to 512 mg/L

(Figure 2B-left panel). This outcome suggested the necessity for

further optimization strategies to achieve higher antibacterial

activities across diverse strains of polymyxin-resistant A.

baumannii. To facilitate this objective, EDTA was chosen for

incorporation due to its previously indicated capability to disrupt

the Gram-negative bacterial outer membrane by chelating Mg2+

and Ca2+, consequently increasing the permeability of the outer

membrane (Nabil et al., 2000).

Using A. baumannii strain 1415E as an example, a notable

decrease in the effective concentration of polymyxins was observed

when combined with EDTA and aloe emodin, emodin, rhein, EAR,

or crude extracts, respectively (Supplementary Table 2).

Particularly, in the presence of 256 mg/L EDTA, the MIC of

colistin combined with EAR against the strain 1415E decreased

by up to 16,384-folds. Therefore, the antibacterial and bactericidal

activities of polymyxins in combination with aloe emodin, emodin,

rhein, EAR, or crude extracts against seven polymyxin-resistant A.

baumannii strains were further analyzed in the presence of 256 mg/

L EDTA. As expected, the results revealed that the MIC of

combination treatments achieved a decrease of 4 to 16384 folds

compared to polymyxins treatments (Figure 2A; Supplementary
FIGURE 1

Activities of crude extracts from various Aloe species against A. baumannii COLR 10213 and component analysis of extracts from A. arborescens and
A. barbadensis. (A) Representative inhibition zones against polymyxin-resistant A. baumannii COLR 10213 produced by the crude extracts from
various Aloe species obtained using different solvent systems. The first panel shows the results of the respective solvent and 10 mg/L CST solution as
controls. (B) Diameters of inhibition zones (mm) produced by the crude extracts from aloes in triplicate experiments (mean ± standard deviation, n =
3). (C) HPLC fingerprint chromatograms of crude extracts from A. arborescens (AA) using different solvent systems, with peak alignment at 254 nm
wavelength. Chromatographic peaks of aloe emodin, rhein, emodin, and aloesin serve as standards for comparing retention times. (D) HPLC
fingerprint chromatograms of crude extracts from A. barbadensis (AB). (E) High-resolution mass spectrometry analysis of indicated peaks (denoted
as peaks 1-4 in panel C, D) in crude extracts of AA and AB using the Lac-Glu solvent. AA, A. arborescens; AB, A. barbadensis; AF, A. ferox; AL, A. vera
L. var. chinensis (Haw.) Berger; MeOH, methanol; ChClGlu, choline chloride/D-glucose in a molar ratio of 1:1; ChClMa, choline chloride/malic acid in
a molar ratio of 2:1; ChClCa, choline chloride/citric acid in a molar ratio of 2:1; LacGlu, lactic acid/D-glucose in a molar ratio of 5:1.
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Table 3), and the MBC of combination treatments reduced to 0.03 ~

64 mg/L (Figure 2B; Supplementary Table 3). Remarkably, EAR

exhibited unique advantages when combined with 256 mg/L EDTA

and polymyxins, leading to a significant reduction in both MIC and

MBC, and demonstrating clear synergistic effects (FICI < 0.5).

Therefore, subsequent research primarily focuses on combination

with the EAR mixture rather than aloe emodin, emodin, rhein or

crude extracts.

Through comprehensive analysis of MBC data (Figure 2;

Supplementary Tables 1-3), the concentrations of EDTA and

PMB (or CST) in the combination treatment were determined to

be 256 mg/L and 2 mg/L, respectively. To determine the optimal

working concentration of EAR in the combination treatment,

gradient concentrations of EAR at 8 mg/L, 16 mg/L, and 32 mg/L

was supplemented in the combination to measure its time-kill curve

against A. baumannii 1415E, respectively. As shown in Figure 3A,

256 mg/L EDTA and 2 mg/L polymyxins had no obvious impact on

the growth of 1415E when used individually. Combining EDTA

with polymyxins significantly inhibited the growth of 1415E, and

the total killing of 1415E was observed in the EDTA-CST group

after 24 h of treatment. When EAR was added in the combination,

the bactericidal efficiency against 1415E was greatly enhanced,

especially the supplement of 32 mg/L EAR achieved the complete

sterilization within 6 h and 4 h in the PMB and CST group,

respectively. Therefore, 256 mg/L EDTA, 2 mg/L PMB or CST,

and 32 mg/L EAR were used in the subsequent combination

treatment. As expected, the combination treatments showed rapid

killing effects against all the tested polymyxin-resistant strains in a

short period of time less than 6 h (Figure 3B). Notably, A.

baumannii 10213, 189B, and 6588E were completely eradicated

within 2 h, meeting the objective of rapid sterilization.
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3.3 Combination treatment suppressed the
emergence of polymyxin resistance to
polymyxin-sensitive A. baumannii strains

High-concentration polymyxin treatment (≥4 MIC) A.

baumannii populations evolved high-level and fixed resistance

(Zhao et al., 2022). Given that EDTA in combination with EAR

restored polymyxins sensitivity in polymyxin-resistant A.

baumannii, was it possible for this combination therapy to

further increase polymyxins sensitivity in polymyxins-sensitive A.

baumannii? To answer this question, determination of the

frequency of polymyxin-resistant mutation were performed with

both EAR and EDTA in combination with the polymyxins and

reference bacterial strains A. baumannii ATCC 19606 and 17978.

The frequency of resistant mutations in strains 19606 and 17978 to

polymyxins was assessed under the selective pressure of 10 mg/L

PMB or CST (Figure 4). The polymyxins-resistant mutation

frequency was determined to be 10-6 ~ 10-5 for strain 19606 and

10-7 ~ 10-6 for strain 17978. Notably, the presence of EAR led to a

significant reduction in the mutation frequency of strains 19606 and

17978 to polymyxins in a concentration-dependent manner (P <

0.001). Specifically, when the concentration of EAR exceeded or

equaled 50 mg/L, the polymyxins-resistant mutation frequency in

strain 19606 dropped below 10-9. Moreover, in the presence of 256

mg/L EDTA, EAR at a concentration of 25 mg/L was sufficient to

achieve a polymyxins-resistant mutation frequency below 10-9.

Analogously, a concentration of EAR equal to or exceeding 25

mg/L was observed to attenuate the mutation frequency conferring

polymyxins resistance in strain 17978 to below 10-9. Furthermore,

in the presence of 256 mg/L EDTA, the required EAR concentration

was reduced to 5 mg/L.
FIGURE 2

Antibacterial and bactericidal activity of combination treatment against polymyxin-resistant A. baumannii strains. (A) MICs (mg/L) against A.
baumannii strains by PMB and CST combined with E, AE, R, EAR, or CE, without EDTA (left panel) and with 256 mg/L EDTA supplementation (right
panel). The values in parentheses represent optimal concentrations of E, AE, R, EAR, and CE (mg/L). The color legend represents the calculated FICI
based on the MIC values provided in Table 1. FICI < 0.5 indicates synergism, 0.5 ≤ FICI < 1 indicates additivity. (B) MBCs (mg/L) against A. baumannii
strains by PMB and CST combined with E, AE, R, EAR, or CE, without EDTA (left panel) and with 256 mg/L EDTA supplementation (right panel). The
values in parentheses represent optimal concentrations of E, AE, R, EAR, and CE (mg/L). The color legend corresponds to varying levels of drug
sensitivities. E, emodin; AE, aloe emodin; R, rhein; EAR, emodin/aloe emodin/rhein in a mass ratio of 1:1:1; CE, crude extract of A. barbadensis by
Lac-Glu solvent; PMB, polymyxin B; CST, colistin; FICI, fractional inhibitory concentration index.
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3.4 The drug combination exhibited low
cytotoxicity and accelerated the healing of
skin wounds in mice infected with
polymyxin-resistant A. baumannii 1415E

Cytotoxicity assays, pivotal in assessing the clinical

development potential of therapeutic strategies, were performed

on kidney (HEK293) and liver (HEP3B) cell line to evaluate the

safety profile of the drug combination. As shown in Figure 5A, in

the presence of 256 mg/L EDTA, EAR not exceeding 32 mg/L were

found to have no significant effect on the viability of HEK293 cells,

while doses ranging from 4 to 32 mg/L of EAR were observed to

result in a marginal reduction (ranging from 6.31% to 13.60%, P <
Frontiers in Cellular and Infection Microbiology 08
0.05) in the viability of HEP3B cells. Upon combining 256 mg/L

EDTA and 32 mg/L EAR with polymyxins (Figure 5B), various

concentrations of PMB (ranging from 2 to 16 mg/L) showed no

significant influence on the viability of either HEK293 or HEP3B

cells. In contrast, higher concentrations of CST (16 mg/L) led to a

notable decrease in the viability of HEK293 cells by 9.39% and of

HEP3B cells, ranging from 11.96% (at 4 mg/L CST) to 19.29% (at 16

mg/L CST), which is consistent with the previous report that CST

was cytotoxic at relatively high concentrations (Ritesh and Arun,

2018). Given the comparatively lower cell toxicity observed with

PMB compared to CST, the combination strategy involving PMB

was chosen for subsequent mouse skin infection treatment.

Considering the excellent performance of Aloe in treating skin
FIGURE 3

Time-kill curves of different drug combinations against polymyxin-resistant A. baumannii strains. (A) Time-kill curves of PMB (2 mg/L, middle panel)
and CST (2 mg/L, right panel) combined with EDTA (256 mg/L) and EAR (ranging from 8 to 32 mg/L) against A. baumannii 1415E. PMB, CST, and
EDTA are used alone or in combinations as controls (left panel). (B) Time-kill curves of PMB (2 mg/L) and CST (2 mg/L) combined with EDTA (256
mg/L) and EAR (32 mg/L) against six polymyxin-resistant strains of A. baumannii. PMB and CST are used as controls. Data are presented as mean ±
standard deviation (n = 3). EAR, emodin/aloe emodin/rhein in a mass ratio of 1:1:1; PMB, polymyxin B; CST, colistin.
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diseases and promoting skin wound healing (Liang et al., 2021), the

skin wound infection in mice was used to evaluation efficacy of the

drug combination. Due to its representative nature characterized by

strong resistance to polymyxins and EAR in vitro (Table 1), the

clinically isolated A. baumannii 1415E was employed to establish

the infection. On the 5th and 6th d post-infection (Figure 6A), the

bacterial burden of 1415E at the wound site of the mice stabilized at

approximately 8×106 CFUs/mL, indicating the successful

establishment of the mouse skin wound infection, despite that the

bacterial load slightly decreased compared to the initial load (2 ×

107 CFUs/mL). After 12 d of continuous combination therapy (32

mg/kg EDTA + 4 mg/kg EAR + 2 mg/kg PMB), the wound area of

the mice gradually decreased from the initial 94.98 mm2 to 7.98 ±

3.91 mm2, showing a trend of gradual healing (Figures 6B, C). At

the same time, the wound healing both in the mock treatment (PBS

buffer) group and the PMBmonotherapy group (2 mg PMB/kg) was

remarkably slower, with wound areas of 33.36 ± 8.33 mm2 and

41.61 ± 7.66 mm2, respectively. Moreover, the colony counting of

the wound skin tissue of the mice was performed after 12 d of

treatment, and the results (Figure 6D) showed that the bacterial

burden of the combination therapy group was 10 ~ 30 CFUs/mL,
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significantly (P < 0.001) lower than that of the PMB monotherapy

group (4.20 × 104 ~ 1.03 × 105 CFUs/mL) and the mock treatment

group (9.00 × 103 ~ 5.20 × 104 CFUs/mL). The results indicated that

the drug combination exhibited great potential to treat the skin

infections caused by polymyxin-resistant A. baumannii.
4 Discussion

Polymyxins, serving as the “last-line” therapeutics for

combating multidrug-resistant A. baumannii infections, face a

formidable challenge attributed to the emergence and worldwide

dissemination of polymyxin-resistant A. baumannii strains, thereby

posing a major public health threat (Shi et al., 2024). The

occurrence of treatment failures with polymyxin monotherapies

has prompted the adoption of polymyxin combination therapy in

clinical practice, which is increasingly proposed as a potential

strategy to enhance antimicrobial activity and mitigate the

development of resistance (Lenhard et al., 2016). As crucial

reservoirs of novel antimicrobial compounds boasting diverse

mechanisms of action, natural products derived from medicinal
FIGURE 4

In vitro assessment of resistant mutation frequency of polymyxin B and colistin alone or in combination with EDTA and EAR against polymyxins-
sensitive strains of A. baumannii ATCC 19606 and 17978. Box plots represent the resistant mutation frequency of ATCC 19606 (first panel) and 17978
(second panel) to PMB (A) and CST (B) after exposure to 10 mg/L polymyxins alone or supplemented with EDTA (256 mg/L) and EAR (ranging from 0
to 500 mg/L). Each dot represents the value of an individual measurement (n = 5), and the mean value is shown by the line. EAR, emodin/aloe
emodin/rhein mass ratios of 1:1:1; PMB, polymyxin B; CST, colistin. **, P < 0.01, ***, P < 0.001; ND, not detected; NS, not significant.
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plants have emerged as potent candidates for combating

antimicrobial-resistant pathogens, either independently or when

combined with conventional antibiotics (Zhang et al., 2020; Song

et al., 2021; Arip et al., 2022). Aloe stands out prominently for its

renowned properties and various therapeutic activities, including

anti-bacterial, anti-viral, anti-cancer effects, as well as

immunoregulative and hepatoprotective properties (Gao et al.,

2018). Aloe exerts antibacterial activity through a multi-target

mode of action, with notable efficacy against Gram-positive

bacteria such as Staphylococcus aureus and Staphylococcus

epidermidis , suggesting its potential application in the

pharmaceutical field (Ushasree et al., 2024).

NADES, as an emerging green solvent, were increasingly

applied in the pharmaceutical, cosmetics, and food industries.

These solvents provided several advantages for natural product

extraction, including ease of preparation, high solubility, enhanced

conductivity, biodegradability, and low toxicity. These properties
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not only facilitated more in-depth exploration of natural

compounds but also aligned with environmental and sustainable

development objectives (Hikmawanti et al., 2021; Chen et al., 2023;

Villa et al., 2024). In this study, the extracts of AA and AB by

NADES demonstrated superior inhibitory activity against A.

baumannii COLR 10213 in comparison to those of AF and AL.

This enhanced activity was probably due to the higher

anthraquinone content in the extracts of AA and AB, a

phenomenon supported by the established ability of NADES to

enhance the solubility of anthraquinones, thereby improving the

extraction efficiency of these compounds (Wu et al., 2018). The

higher anthraquinone content in AA and AB compared to AF and

AL might be attributed to the intrinsic properties of the respective

Aloe species. Additionally, the variation in anthraquinone content

might also be associated with other factors, such as the regulation of

secondary metabolites in response to environmental stress (Breaud

et al., 2022; Maliehe et al., 2023). The superior activity of EAR
FIGURE 5

Cytotoxicity evaluation of the drug combination using HEK293 and HEP3B cells in vitro. (A) Effects of 256 mg/L EDTA supplemented with different
concentrations of EAR (ranging from 0 to 128 mg/L) on the viability of HEK293 cells (left) and HEP3B cells (right). (B) Effects of different
concentrations of PMB (blue boxes, ranging from 0 to 16 mg/L) and CST (red boxes, ranging from 0 to 16 mg/L) combining 256 mg/L EDTA and 32
mg/L EAR on the viability of HEK293 cells (left) and HEP3B cells (right). Each dot represents the value of an individual measurement (n = 3), and the
mean value is shown by the line. EAR, emodin/aloe emodin/rhein in a mass ratio of 1:1:1; PMB, polymyxin B; CST, colistin; *, P < 0.05, **, P < 0.01,
***, P < 0.001; NS, not significant.
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compared to its monomers possibly resulted from the functional

group variations among the monomers, corresponding to different

targets and thereby facilitating synergistic interactions and

enhancing overall efficacy (Hu et al., 2023).

The strain-specific antibacterial and bactericidal activities

exhibited by anthraquinone compounds from Aloe among these

polymyxins-resistant A. baumannii strains might be attributed to

the diverse mechanisms of polymyxin resistance, leading to

alterations in the outer membrane and variations in outer

membrane permeability (Nang et al., 2021). The variability in

polymyxins resistance mechanisms among these polymyxins-

resistant A. baumannii strains might be inferred from the

characteristic inter-strain differences in their susceptibility to

polymyxins (Table 1). The outer membrane of Gram-negative

bacteria was an asymmetric bilayer consisting an inner leaflet of

phospholipids and an outer leaflet that served as a crucial barrier

against harmful components like antimicrobial agents (Nikaido,

2003). The permeability barrier of the outer membrane impeded the

entry of hydrophobic substances from Aloe, thus research on the

antibacterial activity of Aloe mainly focused on Gram-positive
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bacteria (Ushasree et al., 2024). EDTA was frequently reported to

increase bacterial membrane permeability and combine with

polymyxins for anti-infective therapy (Hamel et al., 2021).

Therefore, we attempted to incorporate EDTA into the process of

combating A. baumannii.

EDTA exhibited high MIC and MBC values against A.

baumannii, indicating a lack of antibacterial activity, while EAR

exhibited a low MIC but high MBC values (Table 1), suggesting weak

bactericidal activity (Figure 2; Supplementary Tables 1–3). The

combination of EAR and EDTA still exhibited a lack of bactericidal

activity (Supplementary Table 3), suggesting that anthraquinone

compounds possibly acted as inhibitors affecting the metabolic

processes of A. baumannii. The combination of EAR and EDTA

restored the sensitivity of polymyxins-resistant A. baumannii to

polymyxins and synergistically enhanced the bactericidal efficacy of

polymyxins (Figures 2, 3). Given the weak bactericidal activity of EAR

and EDTA, the bactericidal activity exhibited by the combination

strategy against polymyxins-resistant A. baumannii was probably

contributed by polymyxins. The emergence of this phenomenon was

plausibly attributed to the interference induced by EAR and EDTA,
FIGURE 6

Therapeutic potential of combination therapy for polymyxin-resistant A. baumannii 1415E induced skin infections in BALB/C mice. (A) The bacterial
burden of A. baumannii 1415E in infected wounds by counting CFUs at the 0th, 5th, and 6th d post-infection (n = 5). (B) Representative photographs
of the infected wounds on mice skin captured at the 1st, 3rd, 4th, 6th, 8th, 10th, and 12th d post-treatments with PBS buffer, PMB (2 mg/mL) or drug
combination (32 mg/kg EDTA+ 4 mg/kg EAR+ 2 mg/kg PMB). Scale bar represents 2 mm. (C) Box plots represent the measured wound areas (mm2)
at the 1st, 3rd, 4th, 6th, 8th, 10th, and 12th d post-treatments (n = 6). (D) The bacterial burden of A. baumannii 1415E in infected wounds by CFU count
at 12 days post-treatments (n = 6). The group treated with PBS buffer serves as the mock control. Each dot represents the value of an individual
measurement, and the mean value is shown by the line. *, P < 0.05, **, P < 0.01, ***, P < 0.001. EAR, emodin/aloe emodin/rhein in a mass ratio of
1:1:1; PMB, polymyxin B; NS, not significant.
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which disrupted the intrinsic resistance mechanisms associated with

polymyxins in these strains, thereby reinstating their susceptibility to

polymyxins. Rhein demonstrated antimicrobial activity against

Staphylococcus xylosus by interfering with bacterial energy

metabolism, inducing reactive oxygen species (ROS) production,

and causing cell membrane and DNA damage (Li et al., 2024).

This suggested that EAR might operate via a similar mechanism

against A. baumannii. Higher ROS levels were linked to increased cell

membrane permeability (Seyedjavadi et al., 2020). As a metal ion

chelator, EDTA could bind to divalent cations such as Mg2+ and Ca2

+, which were critical for maintaining the structural stability of the

bacterial outer membrane (Nabil et al., 2000). This chelation further

enhanced membrane permeability, leading to the induction of even

higher levels of ROS. ROS could act as a double-edged sword, such as

being essential for regulating cellular signaling pathways and

physiological processes at low levels, while disrupting the redox

balance, pushing bacteria into a state of oxidative stress that

eventually leads to cell death at high levels. To mitigate ROS-

induced oxidative damage, bacteria have evolved an inducible

antioxidant defense system (Lu and Holmgren, 2014; Zhao and

Drlica, 2014). Research has shown that polymyxin not only

disrupting the membrane but also significantly increases ROS levels

in A. baumannii (Fu et al., 2024). However, the use of polymyxin

alone might not induce overproduction of ROS, or the ROS induced

by polymyxin might be neutralized by the bacterial antioxidant

defense system in polymyxin-resistant A. baumannii. EAR and

EDTA, which might increase membrane permeability, could assist

polymyxin in generating higher levels of ROS. This combined effect

could overwhelm the bacterial antioxidant defense system, leading to

irreversible ROS damage, accelerating bacterial death, and achieving

rapid bactericidal effects through combination therapy. However, the

precise underlying mechanism remained elusive.

In addition to polymyxins-resistant strains, the combination of

EAR and EDTA also enhanced the susceptibility of polymyxins to

polymyxins-sensitive strains, such as ATCC 19606 and 17978. The

mutational frequency detection revealed that strains ATCC 19606

and 17978 exhibited a propensity for polymyxins-resistant

mutations (Figure 4), which was consistent with prior literature

findings (He et al., 2024). However, co-administration of EAR and

EDTA markedly reduced the frequency of polymyxins-resistant

mutations, providing further evidence of their ability to sensitize A.

baumannii to polymyxins.

EDTA was primarily used in clinical settings for the treatment

of heavy metal ion poisoning, such as lead poisoning (Warsi et al.,

2024). Intravenous administration of EDTA could induce renal

toxicity, particularly in patients with renal diseases or those

receiving high doses of the drug. Additionally, EDTA could

chelate other ions, potentially leading to deficiencies resulting in

health issues like anemia, cardiac arrhythmias, and neurological

disorders. Therefore, Ca-EDTA was typically recommended for

intravenous injection due to its significantly reduced toxicity,

despite comparatively lower efficacy (Wannigama et al., 2023).

Anthraquinone derivatives, which were present in various

medicinal plants, had been increasingly associated with potential

safety issues as their applications expanded, particularly

hepatotoxicity and nephrotoxicity due to their high doses or
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improper use. Although the necessity for risk assessment of

anthraquinone derivatives was emphasized, these compounds, as

lead compounds, would still have attractive application prospects if

structural modification was performed in subsequent research

(Dong et al., 2019; Liu et al., 2020; Semwal et al., 2021). The

reported heightened risk of nephrotoxicity emerged as the primary

limiting factor in the clinical utilization of polymyxins

(Wagenlehner et al., 2021). In our study, CST exhibited relatively

greater cellular toxicity in the human hepatic and renal cell lines

than PMB (Figure 5), which was consistent with previous reports

(Ismail et al., 2018; Paul et al., 2018; Mattos et al., 2019).

To determine the appropriate therapeutic concentration for the

mouse skin infection model, the clinically recommended human

dose of EDTA, which was 25 mg/kg (Wei et al., 2023), was used as a

reference. Applying the animal equivalent dose calculation formula

based on body surface area (Nair and Jacob, 2016), the equivalent

dose for mice was estimated to be approximately 307.5 mg/kg.

Similarly, the International Consensus Guidelines for the Optimal

Use of Polymyxins recommend a clinical dose of 2.0 to 2.5 mg/kg

for PMB in humans (Tsuji et al., 2019), leading to an equivalent

mouse dose of about 24.6 to 30.8 mg/kg. Due to concerns about

drug toxicity and the tolerance of the mice, these theoretical doses

were cautiously reduced by approximately tenfold. Taking into

account the MBC and in vitro cytotoxicity, the therapeutic dose

for EDTA and PMB were ultimately set at 32 mg/kg and 2 mg/kg,

respectively. For the therapeutic dose of EAR, where standardized

guidelines were lacking, recent in vivo studies on compounds like

Emodin (>4 mg/kg, Chen et al., 2022), Aloe-emodin (>4 mg/kg, Yan

et al., 2023), and Rhein (>4 mg/kg, Liu et al., 2023) were consulted.

Based on the MBC and in vitro cytotoxicity, a safe dose of 4 mg/kg

for EAR in mice studies was established. In summary, this approach

ensured that the treatment remained within safe limits while

minimizing antibiotic use to reduce the potential for resistance

development. Ultimately, the combination of the less toxic PMB

with EDTA and EAR was selected for treating mouse skin

infections. Given that the infecting A. baumannii 1415E strain

was resistant to polymyxins, the efficacy of PMB monotherapy did

not significantly differ from that of the PBS buffer control, as

indicated by similar wound healing trends in both groups

(Figures 6B, C). Wounds in the PMB monotherapy and PBS

buffer groups healed slowly with a reduction in bacterial load,

possibly due to the response of the mice’s own immune system.

With the addition of anthraquinone compounds (EAR), wound

healing significantly accelerated (Figure 6D), which was consistent

with reports that Aloe played an important role in promoting

wound healing (Liang et al., 2021).
5 Conclusion

Anthraquinone compounds represented by aloe emodin,

emodin, and rhein, when used in combination with EDTA, could

sensitize A. baumannii to polymyxins, thereby restoring the

polymyxins-sensitive phenotype in polymyxins-resistant A.

baumannii. In addition to enhancing antibacterial activity, this

combination strategy significantly increased the bactericidal
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efficiency of polymyxins. Under this combined strategy, the

resistant mutation frequency of polymyxins-sensitive A.

baumannii to polymyxins was suppressed. This combination

strategy exhibited less toxicity to human hepatic and renal cell

lines and accelerated the healing of mouse skin wounds infected by

polymyxins-resistant A. baumannii. In summary, our findings

provided a potential therapeutic strategy for infections caused by

polymyxins-resistant A. baumannii.
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