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Pregnancy is a dynamic physiological process involving significant hormonal,

immune, and metabolic changes to support fetal growth and development. This

study investigates the changes in salivary microbiome and biochemical markers

from the second to the third trimester of pregnancy. Saliva samples were

collected from 45 pregnant women enrolled in the Qatar Birth Cohort study at

two time points (second and third trimesters). DNA was extracted and subjected

to 16S rRNA gene sequencing using Oxford Nanopore Technology. Microbial

diversity and taxonomic analyses were performed, along with correlation

analyses between microbial abundance and clinical parameters. Biochemically,

significant increases in BMI, pulse rate, HbA1c, LDL, total cholesterol, and

triglycerides were observed in the third trimester compared to the second.

Microbial diversity analysis revealed significant changes in microbial richness

and composition. Taxonomy analysis showed a significant 3-fold increase in

Bacteroidota. Also, a significant decline in Selenomonas and a significant

increase in Veillonella, specifically Veillonella dispar and Veillonella atypica, as

well as an increase in Granulicatella were observed in the third trimester, along

with a significant decrease in Streptococcus sanguinis. Correlation analysis

during the second trimester revealed positive associations between BMI,

cholesterol, LDL, and Selenomonas, and negative correlations with

Streptococcus and Gemella. In the third trimester, BMI was negatively

correlated with Campylobacter, glucose levels were negatively correlated with

Neisseria, and triglyceride levels were negatively correlated with Prevotella.

These findings highlight significant biochemical and microbial shifts during

pregnancy, underscoring the importance of monitoring oral health and

metabolic changes in pregnant women.
KEYWORDS

pregnancy, oral microbiome, gut microbiota, salivary microbiome, Qatari birth cohort
(QbiC), oxford nanopore sequencing
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Introduction

Pregnancy represents a remarkable transformation for a

woman’s body. A cascade of hormonal, immune, and metabolic

changes orchestrate the nurturing and development of a healthy

fetus (Murray and Hendley, 2020). In recent years, scientific

curiosity has turned towards the fascinating role of the human

microbiome during this critical period (Fasano and Flaherty, 2021).

The gut microbiome, long recognized for its influence on

digestion and overall health, exhibits dramatic shifts throughout

pregnancy (Yao et al., 2021). Research suggests a rise in specific

bacterial groups like Proteobacteria and Actinobacteria, while

others, particularly butyrate-producing bacteria, see a decline (Fu

et al., 2019). These alterations are believed to be adaptations that

support the body’s heightened metabolic demands during

pregnancy, ultimately contributing to fetal growth (De Siena

et al., 2021). Additionally, the gut microbiome might play a role

in regulating weight gain through mechanisms like nutrient

absorption and immune system stimulation (Yoo et al., 2020).

The oral cavity harbors another complex and diverse microbial

ecosystem – the oral microbiome – which is also thought to be

susceptible to the hormonal and immunological fluctuations that

occur during pregnancy (Sedghi et al., 2021). Studies have shown an

increase in total bacterial counts in pregnant women, including

some bacteria associated with gum disease (Jang et al., 2021;

Saadaoui et al., 2021). Interestingly, correlations have been

observed between oral infections and pregnancy complications,

suggesting a potential link between the health of the oral

microbiome and the course of pregnancy (Wen et al., 2023).

Furthermore, a mother’s oral microbiome may influence the

development of her infant’s oral microbiome during the perinatal

period, potentially impacting their future oral and systemic health

(Nardi et al., 2021).

This complex community of microorganisms residing in

various body sites, including the gut and oral cavity, undergoes

distinct alterations throughout gestation (Sedghi et al., 2021;

Mohammed et al., 2024). Investigating these microbiome

fluctuations across trimesters holds promise for elucidating

potential associations with maternal health and pregnancy

outcomes (Baud et al., 2023). Therefore, this study aims to

examine changes in the salivary microbiome composition during

pregnancy across the second and third trimesters. By leveraging the

Qatari Birth Cohort (QbiC) we aim to explore the dynamic shifts in

the oral microbiomes and illuminate the intricate interplay between

the oral microbiome and the course of pregnancy.
Methodology

Sample collection and participant criteria

The proposed study was designed to gather saliva samples from

pregnant women enrolled in the Qatar Birth Cohort study at Qatar

Biobank (QBB). These samples were obtained from 45 pregnant

women taken at two different time points (second and third
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trimesters), making a total of 90 samples selected from the QBB

repository. Pregnant women who have lived in Doha for at least 15

years and were anticipated to deliver their babies in Qatar were

eligible to participate in this study. Participants had to be residents

in the study area, aged over 18 years, without any communication

handicaps. Women with clinically diagnosed metabolic, metastatic,

or chronic infectious diseases were excluded from the study.

Additionally, relevant information on physical activity, feeding

habits, socio-economic status, smoking habits, disease history,

medication, and family history were obtained from the

Qatar Biobank.

This study was conducted in accordance with the ethical

principles outlined in the Declaration of Helsinki. Approval for

the study was obtained from the Institutional Review Board (IRB) of

QBB, with the ethical approval reference number [QF-QBB-QBIC-

RES-ACC-0225-0129]. All participants provided written informed

consent before their inclusion in the study. Confidentiality of the

participants’ data was strictly maintained throughout the research

process, and the samples were anonymized to ensure privacy. The

study adhered to all relevant national and international regulations

and guidelines for research involving human subjects.
DNA extraction

Saliva samples collected from pregnant women were retrieved

from the QBB repository and transported on ice from to Qatar

University. Genomic DNA extraction of the samples was achieved

using the DNeasy Blood & Tissue Kits (Qiagen®, Germany)

according to the manufacturer guidelines.
Library preparation and sequencing

The extracted DNA from the different saliva specimens were

subjected to purification and quantification assessment using the

Nanodrop ratio A260/A280 and the Qubit dsDNA High Sensitivity

Assay kit, respectively. A total of 10ng of pure DNA was utilized for

the library preparation using ONT’s 16S Barcoding Kit (SQK-

16S024) according to the manufacturer’s guidelines. Briefly,

specimen genomic DNA was subjected to barcoding and

amplification of the full length of 16S rRNA gene using LongAmp

Hot Start Taq 2X Master Mix (New England Biolabs), and the

primer set 27F/1492R containing 5’ tags to facilitate the ulterior

ligase-free attachment of the Sequencing Adapters. The PCR end

products were then purified using CleanMag® Magnetic Beads

(Paragon Genomics) at a 0.6X ratio. All barcoded libraries were

pooled in Elution Buffer, pH8, at equal ratios of 60 fmoles. The

Rapid Sequencing Adapter (RAP) was then incorporated into the

pooled libraries and incubated for 5 min at room temperature

before adding the Sequencing Buffer (SQB) and the Loading Beads

(LB) followed by loading a primed Flongle Flow Cell R9.4.1 (FLO-

FLG001). The sequencing was launched under high accuracy base

calling parameter and with a QScore >7. Base calling was performed

using MinKNOW software (3.6.5).
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1477703
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Benslimane et al. 10.3389/fcimb.2024.1477703
Bioinformatics & statistical analysis

Fastq_pass files were analyzed using EPI2ME software (V5.1.3)

using the 16S workflow (wf-16S, V0.0.3) and minimap2 aligner

(2.26-r1175) under the default conditions: reads size ranging from

1200bp to 1700bp using a Blast E-value filter of [e=0.01] and

showing the minimum coverage was 80% and 80% identity. The

resolution was set to the species level. Phylum, genus and species

read csv files were downloaded from EPI2ME and the relative

abundance was calculated. The relative abundance was filtered to be

≥ 5%. R programming language version 4.3.1 (2023) was utilized for

filtration and statistical analysis. The alpha diversity indices (sobs

and Shannon) and beta diversity (Bray-Curtis dissimilarity) were

computed using vegan package 2.6.4 (Oksanen et al., 2015).

Significance tests for clinical were conducted using either a paired

t-test or paired Wilxcon test, depending on the data distribution.

Microbial significance was assessed using a paired t-test. A p-value

less than 0.05 was considered statistically significant. The Spearman

correlation test was performed to indicate correlation between the

microbial taxa at the genus level and clinical tests. Plots were

generated using ggplot2 package version 3.4.3 (Wickham, 2016)

and indicating the significance ggsignif package was used version

3.4.3 (Ahlmann-Eltze and Patil, 2021).
Results

Characteristics of the study population

Demographic data of the 45 pregnant women was obtained

from Qatar Biobank in their second and third trimesters (Table 1).

After excluding individuals with missing information, the study

included 35 females, among whom 14% were Qatari. The mean age

of the participants was 29 ± 5.12 years. Approximately 31% of the

participants were experiencing their first pregnancy, while about

68% had multiple births, and 7% had experienced a previous

miscarriage. Participants who took painkillers, antipyretics, or

antibiotics accounted for 51.43% of the total, and all were

included in the analysis.
Clinical changes during second and third
pregnancy trimesters

The body mass index (BMI) and pulse rate showed a significant

increase in the third trimester compared to the second trimester (p<

0.001), Table 2. Due to missing clinical data from either the second

or third trimester in four individuals, these participants were

excluded from the study. Consequently, a total of 31 participants

were included in the analysis of clinical characteristics. There was a

significant increase in HbA1c and LDL levels, p value of 0.047 and

0.005, respectively. Additionally, there was a more profound

significant increase in total cholesterol (1.25 fold) and

triglycerides (1.75 fold), Table 2.
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Microbial diversity

Alpha diversity, which measures the richness and evenness of

microbial species within a sample, showed significant changes from

the second to the third trimester of pregnancy. Specifically, the

observed species (Sobs, Figure 1B) decreased from 499.6 ± 343.3 in

the second trimester to 388.0 ± 222.7 in the third trimester, with a

highly significant p-value of less than 0.0001. Similarly, the

Shannon diversity index (Figure 1A), which accounts for both

abundance and evenness of the species present, also showed a

significant decrease from 3.15 ± 0.34 in the second trimester to 3.05

± 0.31 in the third trimester (p < 0.0001). This reduction in the
TABLE 1 Demographic Characteristics and Reproductive Outcomes of
the Study Population.

Characteristic Value

Qatari (%) 14.29

Non-Qatari (%) 85.71

Age (years)* 28.86 ± 5.12

First Born (%) 31.43

Multiple births (%) 68.57

Miscarriage or Abortion (%) 7
*Numbers are presented as percentage or mean ± standard error.
TABLE 2 Clinical characteristics during the second and third
pregnancy trimesters.

Parameters Second
Trimester

Third
Trimester

P. Value

BMI 28.16 ± 4.96 31.09 ± 4.83 <0.001

Systolic
blood pressure

98.23 ± 8.36 98.17 ± 7.49 0.954

Diastolic
blood pressure

54.86 ± 5.71 55.57 ± 5.83 0.500

Pulse Rate (BPM) 78.43 ± 9.89 86.23 ± 12.44 <0.001

Cholesterol Total
(mmol/L)

4.78 ± 0.84 5.97 ± 0.95 <0.001

Ferritin (ng/ml) 45.29 ± 87 73.26 ± 183.4 0.281

Folate (nmol/L) 38.98 ± 18.4 32.16 ± 19.7 0.072

Glucose (mmol/L) 4.24 ± 0.61 4.41 ± 0.69 0.227

HbA1C (%) 4.99 ± 0.27 5.07 ± 0.31 0.047

HDL (mmol/L) 1.77 ± 0.38 1.87 ± 0.43 0.063

Iron (µmol/L) 14.17 ± 6.5 19.77 ± 20.27 0.592

LDL (mmol/L) 2.38 ± 0.8 2.91 ± 1.09 0.005

Triglyceride
(mmol/L)

1.41 ± 0.47 2.42 ± 0.72 <0.001
HbA1C: Hemoglobin A1C, HDL: High density lipoprotein, LDL: Low density lipoprotein.
Numbers are presented as mean ± standard error. BMI to pulse rate is average of 35
participants while the rest clinical parameters are average of 31 participants.
The bold values indicate significance.
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Shannon diversity index indicates a decrease in both the number of

species and their evenness during later stages of pregnancy, possibly

indicating a shift towards a less complex microbial community as

pregnancy progresses.

Beta diversity, which measures the differences in microbial

community composition between samples, was assessed using the

Bray-Curtis dissimilarity index (Figure 1C). The Bray-Curtis

dissimilarity index indicated a significant shift in the overall

microbial community composition between the second and third

trimesters (p < 0.01). This indicates significant changes in the

overall composition and structure of the microbial community as

pregnancy progresses, likely reflecting shifts in species abundance

or presence.
Taxonomy analysis

The 16S rRNA gene sequencing analysis at the phylum level

detected a total of four phyla: Firmicutes, Proteobacteria,

Bacteroidota, and Fusobacteria (Figure 2A). Among these,

Firmicutes was the most abundant, with a relative abundance of

84.69% in the second trimester and 82.98% in the third trimester

(Figure 2A.1). There were minimal changes in the relative

abundance of most bacterial phyla between the second and third

trimesters. Firmicutes showed a slight, non-significant decrease

with a fold change of -1.02 (p = 0.54), while Proteobacteria
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exhibited a minor, non-significant increase from 9.27% to 10.28%,

corresponding to a fold change of 1.11 (p = 0.71). Fusobacteria

remained relatively stable, with a minimal change from 0.26% to

0.25% and a fold change of -1.01 (p = 0.99, Figure 2A.2). In contrast,

Bacteroidota displayed a significant increase in relative abundance,

rising from 1.15% in the second trimester to 3.34% in the third

trimester, with a fold change of 2.92 (p = 0.03, Figures 2A.2, A.3).

These findings suggest that while most bacterial phyla remained

stable, Bacteroidota underwent a significant shift during the course

of pregnancy.

At the genus level (Figure 2B), Streptococcus was the most

abundant, increasing slightly from 37.01% to 40.46% (fold change

1.09, p = 0.35, Figure 2B.1). Significant changes were observed in other

genera:Granulicatella increased significantly from 2.05% to 4.47% (fold

change 2.18, p = 0.03), and Veillonella rose from 16.19% to 23.87%

(fold change 1.47, p = 0.013). Selenomonas showed a significant

decrease from 8.03% to 1.16% (fold change -6.90, p = 0.0014), while

Acetivibrio exhibited a notable reduction to non-detectable levels in the

third trimester (p = 0.04, Figures 2B.2, B.3). Other genera, such as

Gemella, Haemophilus, Prevotella, and Fusobacterium, showed minor

changes, and several genera including Ruminiclostridium,

Oribacterium, Catonella, Aggregatibacter, Porphyromonas,

Megasphaera, and Campylobacter were non-detectable in the

third trimester.

At the species level (Figure 2C), Streptococcus mitis was the

most abundant, with a relative abundance of 4.52% in the second
FIGURE 1

Microbial Diversity. Box plot of differences in observed species richness and evenness using (A). Shannon diversity index and (B). Sobs value. (*** p<
0.001). (C). Principal component analysis plot representing beta diversity distance matrices of the Bray–Curtis distance comparing the sample
distribution between the second and third trimesters. The red dots represent samples from the second trimester, and the blue dots represent
samples from the third trimester.
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trimester and 3.80% in the third trimester (fold change -1.19, p =

0.51, Figure 2C.1). Significant changes were observed in several

other species: Granulicatella adiacens increased from 1.36% to

2.79% (fold change 2.05, p = 0.07), and Veillonella dispar rose

from 1.26% to 3.38% (fold change 2.68, p = 0.04). Veillonella atypica

also increased significantly from 2.88% to 7.69% (fold change 2.67,

p = 0.03). Streptococcus sanguinis showed a significant decrease
Frontiers in Cellular and Infection Microbiology 05
from 1.61% to 0.26% (fold change -6.28, p = 0.04, Figures 2C.2, C.3).

Several species exhibited reductions to non-detectable levels in the

third trimester, including Selenomonas noxia (p = 0.02),

Selenomonas timonensis, Acetivibrio clariflavus (p = 0.04), and

others. These findings underscore the dynamic shifts in the

microbiome composition during pregnancy, highlighting the

significant changes at multiple taxonomic levels.
FIGURE 2

Taxonomy Analysis at the (A). Phylum, (B). Genus and (C). Species levels. Microbial relative mean abundance at the (A.1). Phylum, (B.1). Genus level
and (C.1) Species levels. Relative fold change of taxa (A.2). Phylum, (B.2). Genus and (C.2). Species levels. Taxa that exhibited significant change at
the (A.3). Phylum, (B.3). Genus and (C.3). Species levels in each sample in the second trimester (red dots) and third trimester (blue dots).
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Correlation analysis

During the second trimester, significant correlations were

observed between various physiological markers and microbial

taxa. Specifically, BMI, cholesterol levels, and LDL were positively

associated with Selenomonas abundance, while inversely correlated

with Streptococcus. Additionally, BMI exhibited a negative

correlation with Gemella. Diastolic blood pressure showed a

positive correlation with Selenomonas abundance and a negative

correlation with Ruminiclostridium (Figure 3A).

In contrast, during the third trimester, different correlation trends

were observed. While the positive correlation between diastolic blood

pressure and Selenomonas, as well as the negative correlation between

diastolic blood pressure and Ruminiclostridium, remained, other

significant correlations emerged. BMI showed a negative

correlation with Campylobacter, and glucose levels were inversely

correlated with Neisseria. Triglyceride levels displayed a negative

correlation with Prevotella abundance (Figure 3B).
Discussion

Pregnancy is a transformative period marked by numerous

physiological changes, including fluctuations in hormone levels and

immune responses (Nuriel-Ohayon et al., 2016). Emerging evidence
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has highlighted alterations in the oral microbiome during this time.

The hormonal and immune modulations associated with pregnancy

may significantly influence oral microbiota composition, with

potential consequences for both maternal and fetal health

(Mockridge and Maclennan, 2019; Saadaoui et al., 2021).

Understanding these dynamic changes is crucial for enhancing

maternal oral health and, by extension, broader systemic health

during this critical period.

Our study demonstrated several significant shifts in both

clinical and microbial parameters throughout pregnancy. The

observed increase in pulse rate, a typical physiological response to

pregnancy, aligns with known cardiovascular changes driven by

elevated estrogen, progesterone, and prostaglandin levels (La et al.,

2022). These hormones contribute to increased diastolic and stroke

volumes, along with a higher heart rate, resulting in a progressive

rise in cardiac output during the latter stages of pregnancy (Morton,

2021; La et al., 2022). This heightened cardiac output primarily

serves the growing fetus and prepares the mother’s body for

postpartum lactation (Zakaria et al., 2022).

Regarding lipid metabolism, pregnancy induces dynamic

alterations that transition from an anabolic state in the first two

trimesters to a catabolic phase in the third trimester, as insulin

sensitivity decreases (Elkus and Popovich, 1992; Herrera, 2002;

Buggio et al., 2019). Our study found significant increases in

cholesterol, LDL, and triglycerides during pregnancy, consistent
FIGURE 3

Heat maps of Spearman correlation analysis between relative abundance of microbes at genus level and biochemical parameters in the (A) second
and (B) third trimester. The color intensity (white to red) indicates the r-value, with asterisks denoting significance (p-value < 0.05).
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with the typical metabolic shifts of pregnancy (Herrera, 2002).

These lipid changes are influenced by hormonal fluctuations and

metabolic adaptations, which also have an impact on gut microbiota

diversity and composition (Napso et al., 2018). Oral diseases such as

periodontal disease and gingivitis are more likely during pregnancy

due to increased sex steroid hormones and potential microbiome

dysbiosis, emphasizing the importance of periodontal care (Boggess

and Society for Maternal-Fetal Medicine Publications Committee,

2008; Silk et al., 2008; Balan et al., 2018; Figuero et al., 2020; Rapone

et al., 2020; Giannella et al., 2023; Wild and Feingold, 2023).

The notable shifts in both alpha and beta diversity in our cohort

suggest significant changes in microbial composition as pregnancy

progresses. Specifically, the decline in alpha diversity in the third

trimester likely reflects physiological adaptations to pregnancy, such

as increased insulin resistance and weight gain (Nuriel-Ohayon

et al., 2016; Zakaria et al., 2022). This reduction in diversity could be

beneficial for fetal growth, illustrating how the maternal

microbiome adapts to meet the needs of pregnancy.

Further, our findings on weight gain align with previous studies

showing that changes in microbial diversity are associated with

normal weight gain during pregnancy, especially in relation to the

increased abundance of Bacteroides (Santacruz et al., 2010; Li et al.,

2023; Sinha et al., 2023; Strobel et al., 2023). The increased presence of

Bacteroides, a member of the Bacteroidetes phylum, has been linked

to improved lipid profiles and folic acid levels, supporting the

maternal metabolic adaptations required for a healthy pregnancy

(Santacruz et al., 2010). This is consistent with previous research

reporting a similar trend in the relative abundance of Bacteroidetes

and Firmicutes, with Bacteroides showing a notable increase from the

second to the third trimester (Gao et al., 2024). However, it is

important to note that we did not observe any significant changes

at the species level within the Bacteroidota phylum; nonetheless, the

increase in the overall Bacteroidota abundance during pregnancymay

still suggest broader functional roles within the maternal microbiome.

At the genus level, our observation of a decrease in the relative

abundance of Selenomonas during the third trimester may be linked

to hormonal changes and immune modulation, which are known to

alter the oral microbiome (Balan et al., 2018; Xu et al., 2020;

Giannella et al., 2023). Although literature on Selenomonas during

pregnancy is sparse, previous studies suggest its abundance is

associated with gestational diabetes mellitus (GDM) and other

pregnancy complications (DiGiulio et al., 2015; Tuominen et al.,

2018). The reduced abundance of Selenomonas in our study cohort

could reflect positive oral health behaviors among participants, a

factor previously linked to improved pregnancy outcomes (Silk

et al., 2008).

Conversely, the increase in the mean relative abundance of

Veillonella and Granulicatella during the third trimester is

consistent with their roles as opportunistic pathogens, often

associated with oral diseases such as gingivitis (Eribe and Olsen,

2017; Knapp et al., 2017; Yang et al., 2019). Veillonella, in particular,

has been implicated in the translocation of bacteria from the oral

cavity to the placenta in murine models, suggesting its potential

involvement in maternal-fetal microbial transmission (Fardini et al.,

2010; Gomez-Arango et al., 2017). Its increase in our study further

supports findings that pregnancy promotes the growth of certain
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gram-negative anaerobic bacteria in the oral cavity due to hormonal

changes (Beighton et al., 2008; Yokoyama et al., 2008; Gürsoy et al.,

2009; MaChado et al., 2012; Bäckhed et al., 2015; Fujiwara et al.,

2017; Massoni et al., 2019).

Granulicatella, another gram-positive bacterium, has been linked

to various infections and metabolic disturbances, including

dyslipidemia and obesity (Gardenier et al., 2011; Crusell et al., 2018;

Wu et al., 2018; Sparvoli et al., 2020; Zhao et al., 2020; Aranaz et al.,

2021; Dong et al., 2021; Li et al., 2022; Gao et al., 2024). The significant

increase in its abundance during pregnancy, as observed in our study,

may have implications for lipid metabolism, maternal inflammation,

and potential complications such as gestational diabetes (Crusell et al.,

2018). Our findings contribute to the growing body of research

indicating that Granulicatella plays a role in the maternal

microbiome and metabolic health during pregnancy.

Streptococcus sanguinis, a component of the core microbiome,

exhibited higher abundance in the second trimester, suggesting that

hormonal changes and dietary habits during pregnancy influence its

prevalence (Santacroce et al., 2023). Additionally, correlations

between specific bacterial genera and metabolic parameters

indicate complex interplays during pregnancy. For instance, the

negative correlation between Streptococcus levels and metabolic

markers supports previous findings regarding probiotics and their

role in improving lipid profiles and inflammatory markers during

pregnancy (Asemi et al., 2012; Jafarnejad et al., 2016).

Gemella, linked to maternal health, showed a tendency to

decrease as BMI increased, suggesting that maternal weight may

influence microbial composition (Yao et al., 2021). The correlation

between diastolic blood pressure and Selenomonas in the second

trimester further illustrates the relationship between cardiovascular

alterations and microbial dynamics (Fu et al., 2019). Studies

indicate that elevated DBP is associated with adverse pregnancy

outcomes, highlighting the need for further exploration of this

correlation (Yoo et al., 2020; De Siena et al., 2021).

In the third trimester, negative correlations between BMI,

glucose, and Campylobacter, Neisseria, and Prevotella suggest that

metabolic changes influence oral microbiota composition (Zhang

et al., 2010). Specifically, Campylobacter levels were associated with

oral hygiene practices, indicating a link between oral health and

microbial ecology (La et al., 2022). The negative correlation between

Neisseria and glucose levels during the third trimester implies its

potential role in glucose metabolism, which warrants further

investigation (Morse Stephen et al., 1974; Exley Rachel et al.,

2005; Exley Rachel et al., 2007; Crusell et al., 2020; Ren et al., 2023).
Conclusion

In conclusion, our study reveals significant changes in both

clinical and microbial parameters during pregnancy, underscoring

the intricate relationship between maternal health and the

microbiome. These findings enhance our understanding of how

these changes may influence maternal and fetal health outcomes,

emphasizing the need for vigilant clinical oversight throughout

pregnancy. Recognizing these alterations is crucial for establishing

appropriate benchmarks for maternal health. Additionally, while
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medication use, including antibiotics, was recorded, the lack of

specific exclusion criteria for antibiotic use should be considered a

limitation, as it may impact microbiome composition. Further

research is warranted to explore the mechanisms underlying these

changes and their potential long-term effects on both maternal and

offspring health.
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