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Introduction: The coronavirus disease 2019 (COVID-19) pandemic, caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed

extraordinary challenges to global health systems and economies. The virus’s

rapid evolution has resulted in several variants of concern (VOCs), including the

highly transmissible Omicron variant, characterized by extensive mutations. In

this study, we investigated the genetic diversity, population differentiation, and

evolutionary dynamics of the Omicron VOC during the fifth wave of COVID-19

in Pakistan.

Methods: A total of 954 Omicron genomes sequenced during the fifth

wave of COVID-19 in Pakistan were analyzed. A Bayesian framework was

employed for phylogenetic reconstructions, molecular dating, and population

dynamics analysis.

Results: Using a population genomics approach, we analyzed Pakistani Omicron

samples, revealing low within-population genetic diversity and significant

structural variation in the spike (S) protein. Phylogenetic analysis showed that

the Omicron variant in Pakistan originated from two distinct lineages, BA.1 and

BA.2, which were introduced from South Africa, Thailand, Spain, and Belgium.

Omicron-specific mutations, including those in the receptor-binding domain,

were identified. The estimated molecular evolutionary rate was 2.562E-3

mutations per site per year (95% HPD interval: 8.8067E-4 to 4.1462E-3).

Bayesian skyline plot analysis indicated a significant population expansion at

the end of 2021, coinciding with the global Omicron outbreak. Comparative

analysis with other VOCs showed Omicron as a highly divergent, monophyletic

group, suggesting a unique evolutionary pathway.
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Conclusions: This study provides a comprehensive overview of Omicron’s

genetic diversity, genomic epidemiology, and evolutionary dynamics in

Pakistan, emphasizing the need for global collaboration in monitoring variants

and enhancing pandemic preparedness.
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1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by

the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

has presented unprecedented challenges to global health systems and

economies (Filip et al., 2022; Naseer et al., 2022; Nayak et al., 2022;

Albreht, 2023; Katole, 2023; McKibbin and Fernando, 2023). Since its

emergence in late 2019 (Wu et al., 2020; Zhu et al., 2020), the virus

has undergone rapid evolution, leading to the appearance of several

variants of concern (VOCs) characterized by increased

transmissibility, altered pathogenicity, and potential immune escape

(Otto et al., 2021; Scovino et al., 2022; Carabelli et al., 2023; Markov

et al., 2023; Zhao et al., 2024). Genomic mutations have led to the

emergence of such variants, which significantly impacted the

pandemic by increasing morbidity and mortality rates worldwide

(Khandia et al., 2022; Markov et al., 2023). Among these, the Alpha,

Delta, and Omicron VOCs have been particularly noteworthy due to

their unique genetic profiles and effects on disease transmission and

severity. The Alpha VOC, also designated B.1.1.7, was initially

detected in the United Kingdom and rapidly propagated globally

(Bayarri-Olmos et al., 2021; Stadtmüller et al., 2022). This variant is

marked by mutations in the spike protein, especially N501Y, which

contributed to its heightened transmissibility and raised concerns

about its ability to circumvent immunity acquired from previous

infection or vaccination (Bayarri-Olmos et al., 2021). Subsequently,

the Delta VOC (B.1.617.2) became predominant, driving increases in

COVID-19 cases worldwide. Key mutations in Delta, such as L452R

and P681R, were linked to its enhanced infectivity and potentially

greater severity compared to earlier strains (Zhan et al., 2022).

Among the VOCs, the Omicron variant (B.1.1.529), first

identified in South Africa in late 2021 (Karim and Karim, 2021;

Tegally et al., 2022; Viana et al., 2022), has swiftly become a

dominant strain worldwide due to its extensive spike protein

mutations. With over 50 sub-lineages identified, Omicron has

shown rapid evolution and diversification since its initial

discovery, posing significant challenges for vaccine efficacy and

diagnostics (Alkhatib et al., 2022; Chen et al., 2022; VanBlargan

et al., 2022; Zhou et al., 2022; Piubelli et al., 2024). This variant is

particularly notable for its high number of spike protein mutations

(Callaway, 2021; Liu et al., 2024), which is the primary target for

neutralizing antibodies elicited by both natural infection and
02
vaccination. These mutations have raised concerns about reduced

vaccine efficacy and increased potential for breakthrough infection

and reinfection. Initial studies suggest that Omicron exhibits

enhanced transmissibility compared to previous VOCs, likely due

to its ability to evade immune responses (Jung et al., 2022; Willett

et al., 2022; Reuschl et al., 2024). The rapid global spread of

Omicron underscores the necessity for a thorough understanding

of its genomic characteristics and evolutionary dynamics across the

globe, which is critical for monitoring the virus’s evolution and

implementing effective public health strategies to mitigate

its spread.

Genomic surveillance has been pivotal in monitoring the

evolution of SARS-CoV-2 variants (Robishaw et al., 2021; Tosta

et al., 2023). Through the analysis of viral genomes from diverse

geographical locations and temporal points, researchers have

pinpointed critical mutations linked to alterations in viral

phenotype and transmission dynamics. For example, mutations in

the spike protein, such as D614G, have been associated with increased

viral infectivity and transmissibility (Korber et al., 2020).

Furthermore, the detection of variants with mutations in the

receptor-binding domain (RBD), such as E484K found in the Beta

variant, has heightened concerns about immune evasion and vaccine

resistance (Wang et al., 2021). Epidemiological studies leveraging

genomic data have clarified the evolutionary relationships of the virus

by employing whole-genome sequencing (WGS) and phylogenetic

analysis. These methods have provided crucial insights into the

origins and spread of the COVID-19 pandemic across different

countries (Chrysostomou et al., 2023; El Mazouri et al., 2024;

Gerashchenko et al., 2024; Linosefa et al., 2024). Understanding the

genomic epidemiology, evolutionary history, and population

dynamics of variants of concern (VOCs), such as Omicron, is

critical for effective public health strategies and future pandemic

preparedness. Genomic surveillance, particularly through whole-

genome sequencing (WGS) and population genomics analyses, has

emerged as a powerful tool in this regard. These methods offer

profound insights into the transmission patterns, genetic diversity,

and evolutionary history of viral pathogens. Such comprehensive

analyses are indispensable for informing targeted interventions and

controlling the spread of the virus.

Pakistan, like many other countries, has experienced multiple

waves of COVID-19 (Umair et al., 2022a, Umair et al., 2022b;
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Ahmad et al., 2023; Arif and Mahmood, 2023; Javed et al., 2024),

with the Omicron variant contributing significantly to the surges in

cases (Khan et al., 2022; Bukhari et al., 2023). Despite the substantial

impact of Omicron on the Pakistani population, detailed studies

focusing on its molecular epidemiology and evolutionary trajectory

within this region are limited. This gap in knowledge necessitates a

comprehensive analysis to provide deeper insights into the genetic

diversity, population structure, and evolutionary dynamics of the

Omicron variant in Pakistan. By leveraging WGS data, we

implemented a population genomics approach to elucidate the

evolutionary history, population dynamics, spread patterns, and

genomic epidemiology of Omicron VOC within the Pakistani

context. Our analysis reveals patterns of genetic diversity and

population dynamics of Omicron, highlighting notable similarities

and differences compared to other VOCs, particularly the Delta

variant and the earlier Wuhan strain. By providing insights into the

origins, spread, and mutation patterns of the Omicron variant, this

study enhances our understanding of the evolutionary dynamics of

the Omicron wave in Pakistan.
2 Materials and methods

2.1 Data set

The fifth wave of COVID-19 in Pakistan occurred from

December 2021 to early April 2022 and was caused by the

Omicron VOC. Nationwide data on the Omicron VOC were

collected during this period. A total of 954 whole-genome

sequences and associated metadata (Supplementary Table 1) for

the Omicron VOC were obtained from the GISAID database

(https://www.gisaid.org/) by applying filters for “Omicron VOC,”

“Pakistan,” and the relevant date range. After rigorous quality

assurance (by sequence alignment and visually inspecting),

sequences that were incomplete or ambiguous were excluded,

resulting in 877 complete sequences being selected for subsequent

analyses. For phylogenetic reconstructions and comparative

analysis, nucleotide sequencing data were sourced from the

GenBank and GISAID databases. This dataset included Omicron

sequences from various countries, the ancestral Wuhan strain, other

VOCs, as well as sequences from SARS-CoV-1 and coronaviruses

found in bats and pangolins. Additionally, nucleotide sequences

from the ancestral Wuhan strain, Omicron from various countries,

other VOCs, SARS-CoV-1, and coronaviruses from bats and

pangolins (Supplementary Table 2) were retrieved from the

GenBank database (https://www.ncbi.nlm.nih.gov/genbank/).
2.2 Sequence alignment and
mutation analysis

The software tools SnapGene (https://www.snapgene.com) and

BioEdit (Hall, 1999) were used to handle the sequencing data. The

Wuhan-1 sequence of SARS-CoV-2 (GenBank accession number:
Frontiers in Cellular and Infection Microbiology 03
NC_045512) served as the reference genome, and multiple sequence

alignment (MSA) was performed against it using MUSCLE

algorithm in software Unipro UGENE v50.0 (https://ugene.net/).

For Spike protein (S) based analyses, the sequences were trimmed

according to the genomic coordinates (nucleotide positions 21563

to 25384) corresponding to the Spike protein on the reference

genome. Single nucleotide polymorphisms (SNPs) and insertions-

deletions (InDels) were visualized using BioEdit software.
2.3 Genetic diversity and haplotype
network analysis

The MSA files were analyzed to compute population genetic

parameters including the number of haplotypes (H), nucleotide

diversity (Pi), the average number of nucleotide differences (k),

genetic differentiation (FST), Tajima’s D, haplotype diversity (Hd),

and Watterson’s estimator (qw) using DnaSP6 software (Rozas

et al., 2017). The FST score matrix was used to visualize the

heatmap of population structure in the ClustVis tool (https://

biit.cs.ut.ee/clustvis/) by clustering both rows and columns using

correlation distance and average linkage models. A median-joining

haplotype network was constructed using PopART software (Leigh

and Bryant, 2015). The MSA file (in Nexus format) of SARS-CoV-2

sequences was used as input.
2.4 Phylogenetic reconstructions and
molecular dating

The ModelFinder tool (Kalyaanamoorthy et al., 2017) was used

to determine the best-fit model of evolution for phylogenetic

reconstruction. The results from the Akaike and Bayesian

Information Criteria (AIC and BIC) were employed to select the

best-fit evolutionary models for the dataset.

Before executing the Bayesian framework, the dataset was refined to

reduce its size, thereby saving the extensive computational time and resources

required by Bayesian simulations. To achieve an optimal tree topology,

sequences were initially analyzed using maximum-likelihood-based

phylogenetic reconstructions with the IQ-TREE2 tool (Minh et al., 2020).

Time-calibrated phylogenies were reconstructed using tip

dating within a Bayesian framework using BEAST2 (Bouckaert

et al., 2014) and Markov chain Monte Carlo (MCMC) algorithms

(Drummond et al., 2002, Drummond et al., 2003, Drummond et al.,

2005, Drummond et al., 2006, Drummond et al., 2012). A general

time-reversible (GTR) site model with a fixed rate and a strict

molecular clock of 8.4×10-4 mutations/site/year (https://

nextstrain.org/) was applied. The MCMC chains was executed for

1 billion steps with parameter sampling every 1,000 steps. Trace files

generated by MCMC were evaluated using the Tracer package

(Rambaut et al., 2018), ensuring effective sample sizes (ESS) of

200 or greater. The maximum clade credibility chronogram was

extracted using TreeAnnotator and visualized in Figtree (http://

tree.bio.ed.ac.uk/software/figtree/).
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2.5 Population dynamics

To reflect population dynamics over time, a Bayesian skyline

plot (BSP) (Drummond et al., 2005) was employed using BEAST2

with MCMC algorithms. The BSP was generated for both Omicron-

only and all VOCs of SARS-CoV-2, using a strict molecular clock

with a fixed mutation rate of 8.4×10-4 mutations/site/year. The

MCMC chains was executed for 5 billion iterations, with parameter

sampling occurring every 1,000 steps. The resulting log file was

analyzed in Tracer for quality assurance and BSP extraction,

ensuring ESS values of 200 or greater. The BSP was then

visualized and extracted using Tracer (Rambaut et al., 2018).
2.6 Protein 3D structure analysis

The impact of mutations was visualized by reconstructing the

3D structures of proteins using the SWISS-MODEL server (https://
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swissmodel.expasy.org/). Structural figures were prepared by

loading the resulting models into the AutoDock molecular

graphics system (https://autodock.scripps.edu/), and PyMOL

software (https://www.pymol.org/) focusing on mutations in the

receptor binding domain (RBD) of the Spike protein.
3 Results

3.1 The fifth wave of COVID-19 in Pakistan
and Omicron data

To understand the trends of Omicron data during the fifth wave of

COVID-19 in Pakistan, we analyzed the genomic data based on the

collection date and sample location fromDecember 2021 to April 2022

across the country (Figure 1). The rate of data reporting during this

period reflected a typical epidemic pattern, with cases rising quickly,

plateauing, and then declining (Figure 1A). Heterogeneity and
FIGURE 1

The trends reflected by Omicron data during the fifth wave of COVID-19 in Pakistan. (A) Rate of data reporting. (B) Numbers of genomic sequences.
(C) Distribution of samples across the country. (D) Gender ratio of samples. (E) Age distribution of the samples. (F) Epidemiological data of COVID-19
from October 2021 to May 2022 (source: https://coronavirus.jhu.edu/region/pakistan). Time line: Nove-21, November 2021; Dec-21, December 2021;
Jan-22, January 2022 and so on.
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variability were observed in the frequency and distribution of data

across the country in terms of location, gender, and age groups. Out of

954 total sequences, 877 represented complete genome coverage

(Figure 1B). The majority of samples were from Sindh province

(42%), followed by Punjab (15%), Islamabad (14%), and Khyber

Pakhtunkhwa (13%) (Figure 1C). Gender distribution of the samples

showed 57% male and 40% female, with 3% of samples lacking gender

information (Figure 1D). Age distribution indicated that most

Omicron samples were from the 19-40 years age group, followed by

the 41-60 years age group, with the least number of samples from the

under 1 year age group (Figure 1E). Epidemiological data against the

fifth wave of COVID-19 in Pakistan was sourced from Johns Hopkins

Coronavirus Resource Center (https://coronavirus.jhu.edu/region/

pakistan) and visualized (Figure 1F), which corresponded to the

data reporting trend (Figure 1A).
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3.2 Genetic diversity and
population differentiation

We conducted population genomics analysis to evaluate genetic

diversity and population differentiation in the Omicron variant,

specifically within Pakistani samples. Genetic diversity was quantified

using theta-W and nucleotide diversity (Pi), revealing a low level of

within-population genetic diversity (Pi = 0.00177 ± 0.00048; qW =

0.00270 ± 0.00091). The values of Pi and theta-Wwere not significantly

different, indicating neutrality (Tajima, 1989), which was corroborated

by the neutrality test (Tajima’s D = -1.27149, p > 0.10).

Pairwise Fst values were computed to assess population

structure across different populations (Figure 2A). The analysis

showed that the Omicron variant shared similarities with the Delta

variant and exhibited the most diversity from the Wuhan variant
FIGURE 2

Population structure of different variant of concern (VOCs) of SARS-CoV-2. (A) Heatmap of population differentiation. Pakistani samples of Omicron
(Pk omicron) were compared to different VOCs of SARS-CoV-2. (B) Network profiling of VOCs of SARS-CoV-2. Emergence of various VOCs from
Wuhan1 variant can be seen.
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(Figure 2A). The Alpha, Beta, and Gamma variants showed

minimal differentiation among themselves. A median-joining

network was reconstructed to visualize haplotype distribution and

recapitulate the evolutionary history of SARS-CoV-2 (Figure 2B).

The network effectively depicted the population structure and

traced the evolutionary history from the Wuhan origin to various

VOCs, culminating in Omicron.
3.3 Structural features of the S protein of
SARS-CoV-2 in Pakistani samples of
omicron variant

To analyze the S-protein structural features of Pakistani

Omicron samples, we investigated the spectrum of variations in

the S-protein region. The spike protein sequences from Pakistani

Omicron samples ranged in length from 3804 to 3813 nucleotides

(1267-1270 amino acids). We identified 41 polymorphic sites,

comprising 16 parsimony informative sites and 25 singleton

variable sites, along with 36 InDel sites. We also calculated and

mapped the genetic diversity index Pi in 500-base windows along

the S protein, revealing similar distribution of mutations across the

S protein, except in the RBD region, which exhibited the highest

fluctuation in Pi values (Figure 3A).

We examined the haplotype distribution of the spike protein in

Pakistani Omicron samples (Figure 3B). MUSCLE-based MSA of

amino acid sequences identified 53 amino acid mutations in S

protein. Omicron-specific mutations were observed, including

those in the RBD and RBM. These mutations were mapped along

the S protein region for each of the haplotypes (Figure 3C). To

visualize the mutations in the spike protein, 3-D structural models

were generated (Figure 3D). The trimeric spike protein structure

was simplified by deleting two chains, highlighting the respective

mutations on a monomer.
3.4 Phylogenetic reconstruction

We first refined the dataset to achieve a more resolved, robust,

and precise tree topology, avoiding a bulky and poorly resolved

phylogeny. To this end, we initially employed a maximum-likelihood

algorithm and optimized the phylogenetic reconstructions for an

optimal tree topology. For a more detailed analysis under the

Bayesian framework, the dataset was further refined by selecting a

subset of sequences, removing those that were highly similar and

those not relevant to the introduction of Omicron in Pakistan. This

refinement reduced the dataset size, thereby conserving the extensive

computational time and resources required for Bayesian simulations.

3.4.1 Phylogenetic analysis of Omicron data
from Pakistan

To visualize the clustering patterns of Pakistani Omicron

samples, we implemented a Bayesian framework to estimate a

time-calibrated molecular phylogeny using MCMC algorithms.

The best-fit evolutionary model for this dataset was the K3Pu+F
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model (Supplementary Table 3), as suggested by the ModelFinder

tool. The phylogenetic tree revealed two major clades, C1 and C2

(Figure 4A). The time-resolved phylogeny illuminated the

phylogenetic relationships and divergence of these clades

(Figure 4B). Samples under Clade C1 were mainly from the BA.2

lineage, while those under Clade C2 were mainly from the BA.1

lineage. Clade C1, subdivided into two sub-clades, shared their

MRCA in January 2022. Clade C2, larger and further divided into

various sub-clades, shared their MRCA in December 2021. These

findings suggest that Omicron was introduced into Pakistan from

two different lineages, with Clade C2 spreading into multiple cities.

The estimated clock rate for this dataset was 2.562E-3 mutations/

site/year (95% HPD interval: 8.8067E-4 to 4.1462E-3).

3.4.2 The evolutionary history of the Omicron
variant in Pakistan

To elucidate the evolutionary history of the Omicron variant in

Pakistan, we analyzed Pakistani Omicron samples alongside global

Omicron data. This analysis involved reconstructing a time-calibrated

phylogeny with the MCMC algorithms in a Bayesian framework. The

resultant phylogenetic tree (Figure 4C) revealed five major clades.

Clade 1, consisting ofWuhan samples, formed the base of the tree. The

remaining four clades contained Omicron samples, with the earliest

South African lineage at the base (Figure 4C). The time to the most

recent common ancestor (TMRCA) for all Omicron clades was

estimated to be around July 2020.

Clade C1 of Pakistani Omicron samples shared a TMRCA of

December 2021, originating from a South African lineage isolated in

late December 2021 (Figure 4C). Clade C2 samples were distributed

across various sub-clades, with TMRCAs ranging fromDecember 2021

to January 2022. Our analysis revealed that this clade was introduced

into Pakistan via lineages from Thailand (December 2021), Spain (late

December 2021), and Belgium (early January 2022).

We also observed the spread of Omicron from Pakistan to other

countries. Clade C1 Pakistani samples contributed to the

introduction of Omicron into South Korea and Belgium.

Specifically, samples reported in April 2022 from South Korea

and in late February 2022 from Belgium shared their MRCA with

Pakistani samples from Clade C1 (Figure 4C). Similarly, Omicron

from Clade C2 Pakistani samples was introduced to Switzerland

and France (early January 2022), and to the USA, Australia, and

England (late February 2022).

The estimated evolutionary rate for this dataset was 2.887E-3

mutations/site/year (95% HPD interval: 2.2543E-3 to 3.5517E-3).

The best-fit evolutionary model for this dataset was the HKY+F+I

model (Supplementary Table 3), as suggested by the ModelFinder

tool. The divergence dates calculated in our phylogeny correspond

to the recorded history of SARS-CoV-2, thus validating the

robustness of our analysis.

To get deeper insights into the evolutionary history of Omicron

VOC, we analyzed global Omicron data alongside other VOCs

(Alpha, Beta, Gamma, Delta). The time frame for data collection

was till April 22, 2022. A time-calibrated phylogeny revealed nine

major clades (Figure 4D). Omicron formed a distinct clade, diverging

from early Wuhan lineages in January 2020. Delta also formed a
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separate clade, diverging from Alpha, Beta, and Gamma in May-June

2020. The phylogeny within Omicron samples was fully resolved,

with samples clustering into four major clades. The estimated clock

rate for this dataset was 2.355E-3 mutations/site/year (95% HPD

interval: 1.9124E-3 to 2.8422E-3). The best-fit evolutionary model for

this dataset was the K3Pu+F+I model (Supplementary Table 3), as

suggested by the ModelFinder tool. The divergence dates calculated
Frontiers in Cellular and Infection Microbiology 07
in our phylogeny correspond to the recorded history of SARS-CoV-2,

thus validating the robustness of our analysis.

To analyze the Pakistani samples in the context of the overall

evolutionary history of SARS-CoV-2, we included data from other

coronaviruses (SARS-CoV-1, PANG21, BNL47, BNL45, BN44,

RaTG13). To visualize the evolutionary clustering patterns, we

employed a Bayesian framework to estimate a time-calibrated
FIGURE 3

Structural features of the S protein of SARS-CoV-2 in Pakistani samples of Omicron variant. (A) Mapping of genetic diversity (Pi) along the S protein.
(B) Variations among the 10 haplotypes of spike protein of Omicron in Pakistan. Dots (.) represent the amino acids residue similar to the reference
sequence (GenBank accession number NC_045512). The color annotation: green, RBD (receptor binding domain); yellow, RBM (receptor binding
motif)-region within the RBD; turquoise, mutations in RBM region. (C) Mapping of mutations for different haplotypes of Pakistani samples of
Omicron. The complete sets of mutations for each of the ten haplotypes (h1-h10) are shown along the spike protein region. (D) Spike protein 3-D
Structure and mutations of Pakistani Omicron samples. (i) The trimeric structure of full-length spike protein of Omicron. (ii) Monomer of spike
protein with highlighted mutations. The region with highlighted mutations is shown in enlarged. Color codes: green color indicates the RBD; yellow
color indicates RBM within the RBD; and red color shows the mutations in the RBM.
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molecular phylogeny using MCMC algorithms. The best-fit

evolutionary model for this dataset was the TIM2+F+G4 model

(Supplementary Table 3), as suggested by the ModelFinder tool.

The sequences diverged into nine different clusters, with each of the
Frontiers in Cellular and Infection Microbiology 08
SARS-CoV-2 VOCs differentiating into a distinct cluster

(Figure 4E). The BEAST-MCMC chronogram displayed the

phylogenetic relationships and divergence times among SARS-

CoV-2 and other coronaviruses (Figure 4F). SARS-CoV-1 formed
FIGURE 4

Molecular phylogeny and evolutionary history as revealed by a Bayesian framework during current study. (A) Clustering patterns of Pakistani samples of
Omicron. (B) BEAST-MCMC chronogram showing the phylogenetic relationships and divergence time among the Omicron samples of Pakistan.
Pakistani samples are represented by PK code. The scale bar indicates the time in months before February 15, 2022. C2: BA.1; C1: BA.2. (C) Evolutionary
history of Pakistani Omicron samples as revealed by a time calibrated molecular phylogeny. The BEAST-MCMC chronogram showing the phylogenetic
relationships and divergence time among the Omicron samples of Pakistan and other countries. The scale bar indicates the time in months before April
22, 2022. (D) Evolutionary history of Omicron VOC with other VOCs (Alpha, Beta, Gamma, Delta). The BEAST-MCMC chronogram showing the
phylogenetic relationships and divergence time among the Omicron VOC with other VOCs samples. The scale bar indicates the time in months before
April 22, 2022. (E, F) Putting all data into a greater context. Evolutionary history of SARS-CoV-2 with other coronaviruses (SARS-CoV-1, PANG21, BNL47,
BNL45, BN44, RaTG13) revealed by a time calibrated molecular phylogeny reconstructed in Bayesian framework during current study. (E) Evolutionary
divergence and clustering patterns of the data set. (F) The BEAST-MCMC chronogram showing the phylogenetic relationships and divergence time
among the SARS-CoV-2 with other coronaviruses. The scale bar indicates the time in years before April 2022. Branch values show the Bayesian
posterior probabilities. Node bars in blue color indicate the 95% HPD of node height.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1484637
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Razzaq et al. 10.3389/fcimb.2024.1484637
a distinct clade, sharing its MRCA with other coronaviruses

approximately 154 years ago. RaTG13, closely related to Wuhan

1, shared an MRCA about 23 years ago. The estimated clock rate for

this dataset was 2.378E-3 mutations/site/year (95% HPD interval:

1.9614E-3 to 2.8083E-3). The divergence dates calculated in our

phylogeny correspond with the recorded history of SARS-CoV-2

and literature, thereby validating the robustness of our analysis.
3.5 Population dynamics of SARS-CoV-2:
recapitulating the Omicron outbreak

To elucidate the past population dynamics of SARS-CoV-2,

including the Omicron variant and other VOCs, we reconstructed a

Bayesian skyline plot (BSP) (Figure 5). This analysis is crucial as it

allows us to understand the temporal changes in the effective
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population size, providing insights into how the virus has spread

and evolved over time. The BSP revealed a steady population

growth rate of SARS-CoV-2 before 2021. However, this growth

rate began to decline in mid-2021. A sudden expansion in

population size was observed at the end of 2021, corresponding

to the Omicron outbreak (Figure 5A). Further analysis focusing on

the period from mid-2021 to April 2022 indicated a significant

population expansion starting in November 2021 and continuing to

increase, mirroring the rapid spread of the Omicron variant

(Figure 5B). When analyzing the population dynamics of all

SARS-CoV-2 data, including all major VOCs, similar trends were

observed. There was a notable population expansion beginning in

late 2021, consistent with the emergence and spread of Omicron

(Figures 5C, D). This analysis successfully recapitulates the

Omicron pandemic, demonstrating a clear temporal correlation

between the observed population dynamics and the known
FIGURE 5

Population dynamics of Omicron pandemic. (A) Bayesian skyline plot (BSP) analysis for all Omicron data in the current study. (B) BSP analysis of
Omicron from mid of 2021 to April 2022 is shown enlarged. (C) Overall BSP analysis of all SARS-CoV-2 in the current study. (D) BSP analysis of
SARS-CoV-2 from August 2021 to April 2022 is shown enlarged. The blue line in the middle represents the mean estimate of the effective
population size. Shaded region depicts the top and lower 95% confidence interval estimations. The y-axis shows the effective population size, while
the x-axis shows time in years. (E) Worldwide Epidemiological data of COVID-19 (source: Worldometer, https://www.worldometers.info/coronavirus/
). Red arrow indicates the Omicron outbreak. Shaded area corresponds to time span of BSP analysis.
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epidemiological events (Figure 5E). The emergence of Omicron at

the end of 2021 led to a sharp increase in the effective population

size of the virus, highlighting the variant’s significant impact on the

pandemic’s trajectory.
4 Discussion

In this study we elucidated genomic epidemiology and

evolutionary dynamics of the Omicron variant of SARS-CoV-2

during the fifth wave of COVID-19 in Pakistan through

comprehensive analysis of genetic diversity, population

differentiation, and evolutionary history. The study provides crucial

insights into howOmicron has evolved and spread within the Pakistani

context, contributing to our understanding of its global impact.

The genomic analysis revealed a low level of genetic diversity

within the population, as evidenced by the Pi value of 0.00177 ±

0.00048. This low genetic diversity suggests a recent introduction

and rapid spread of the Omicron variant in Pakistan. The Omicron

variant of SARS-CoV-2 harbors several mutations in its RBD and

other regions, which significantly impact interactions with

therapeutic antibodies and the immune system. All Omicron

specific mutations (Zhao et al., 2022) were observed in our

analysis including those found in RBD and RBM. These

mutations result in the extremely high affinity of the Omicron

RBD for the human ACE2 receptor, with notable changes including

Q493R, T478K, S373P, N501Y, Q498R, S371L, and S375F

(Chatterjee et al., 2023). The presence of naturally hydrophobic

amino acids, such as leucine and phenylalanine, contributes to this

enhanced affinity (Goutam Mukherjee et al., 2022). Some of these

mutations facilitate the formation of salt bridges or hydrogen

bonds, enhancing the binding of the spike protein to hACE2.

However, mutations like K417N and E484A can significantly

reduce polar contacts between Omicron and ACE2, counteracting

some of the improved interactions created by other mutations (Cui

et al., 2022; Han et al., 2022; Yin et al., 2022). A deeper examination

of the crystal structures of the RBD–ACE2 complex of Omicron

reveals a larger interaction surface area with the host compared to

the Delta variant (Han et al., 2022). The RBD, directly involved in

binding with hACE2, harbors ten significant mutations, thereby

altering the affinity of the spike protein for the host receptor

(Kumar et al., 2022). Among these mutations, T478K, Q498R,

N440K, and Q493R are particularly important. These mutations,

by replacing uncharged amino acid residues with positively charged

lysine and arginine, enhance the stability of the RBD–hACE2

complex, thus improving the binding of the RBD to the human

ACE2 receptor (Jung et al., 2022). In addition to these structural

and binding implications, several Omicron mutations exhibit

varying impacts on antibody susceptibility (Chen et al., 2022;

Iketani et al., 2022; Kumar et al., 2023). G339D, a rare core

mutation in the RBD, shows slight resistance to sotrovimab in

laboratory assays. K417N, found in several VOCs including Beta,

Gamma, and Omicron, significantly reduces ACE2 binding and

confers resistance to etesivimab and casirivimab while retaining

susceptibility to other monoclonal antibodies (mAbs). N440K,

prevalent in Omicron, shows resistance to imdevimab and C135
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mAbs targeting the RBD core but remains susceptible to sotrovimab

and convalescent plasma. Conversely, S477N and T478K, common

in Omicron, do not reduce susceptibility to FDA EUA-approved

mAbs, whereas E484A significantly reduces susceptibility to several

mAbs, including C121 and C144 (Jung et al., 2022). Overall, the

mutations in the Omicron variant underscore its adaptive evolution

and the ongoing challenges they pose for therapeutic and vaccine

development efforts. Computational studies suggest that the RBD–

hACE2 complex of Omicron is highly stable due to these mutations,

contributing to its high transmissibility and significant impact on

the global response to the pandemic (Jung et al., 2022).

The evolutionary history of the Omicron variant in Pakistan was

elucidated through a time-calibrated phylogenetic analysis and

Bayesian skyline plot. Our results indicate that Omicron was

introduced into Pakistan via two distinct lineages, clades C1 (BA.2)

and C2 (BA.1), which subsequently spread across the country.

Specifically, C1 shared its most recent common ancestor (MRCA) in

January 2022, originating from a South African lineage isolated in late

December 2021. In contrast, clade C2 shared its MRCA in December

2021 and was introduced through lineages originating from Thailand,

Spain, and Belgium. These findings suggest that the Omicron variant in

Pakistan has multiple origins and entered the country through various

sources. The observed spread of Omicron from Pakistan to other

countries and vice versa underscores the necessity for global

cooperation in controlling viral dissemination and monitoring

emerging variants. The evolutionary history of Omicron, analyzed

alongside other SARS-CoV-2 VOCs, revealed complex phylogenetic

relationships and divergence patterns. The population differentiation

analysis revealed that Omicron exhibited similarities with the Delta

variant, indicating a potential evolutionary linkage. However, it

displayed the most diversity compared to the Wuhan variant.

Phylogenetic analysis highlighted that Omicron is the most divergent

among all VOCs, forming a distinct monophyletic group with an

extremely long branch length, sharing its MRCA with other VOCs

early in 2020. This suggests that Omicron emerged from a lineage

separate from other VOCs, possibly due to its accumulation of

numerous mutations. Several hypotheses have been proposed

regarding the origin of Omicron (Markov et al., 2023). One

hypothesis posits that Omicron may have “cryptically propagated” in

a population with inadequate viral monitoring and sequencing (Du

et al., 2022). Another suggests that Omicron could have developed in a

COVID-19 patient with a long-term infection, such as an

immunocompromised individual, providing a favorable environment

for intra-host viral adaptation (Callaway, 2021). A third hypothesis is

that Omicron might have accumulated mutations in a nonhuman host

before zoonotic transmission to humans (Shan et al., 2021).

The population dynamics analysis of SARS-CoV-2, as revealed

by the BSP, offers a comprehensive view of the virus’s evolutionary

trajectory. The analysis successfully recapitulated the pandemic

trajectory, showing a steady growth rate before 2021, followed by

a decline in mid-2021 and a subsequent sharp population expansion

at the end of 2021 coinciding with the Omicron surge. The BSP

showed a steady population growth rate before 2021, which is

consistent with the initial rapid spread of COVID-19 following its

emergence in late 2019. This rapid spread was a result of the virus’s

high transmissibility and the lack of pre-existing immunity in the
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global population. As mass vaccination campaigns were rolled out

worldwide in early 2021, a decline in the population growth rate of

SARS-CoV-2 was observed starting mid-2021 (Paetzold et al., 2022;

Watson et al., 2022). This decline aligns with the historical record of

the pandemic, where widespread vaccination efforts significantly

reduced transmission rates and curbed the spread of the virus.

However, towards the end of 2021, the BSP revealed a sudden

expansion in the population size of SARS-CoV-2, which

corresponds to the emergence and spread of the Omicron variant

(Karim and Karim, 2021; Tegally et al., 2022; Viana et al., 2022).

This period marked a significant increase in cases globally, despite

high levels of vaccination, due to Omicron ’s enhanced

transmissibility and ability to partially evade immunity conferred

by previous infections and vaccinations. These results successfully

recapitulate the Omicron pandemic, demonstrating a clear

temporal correlation between the observed population dynamics

and the known epidemiological events, thus underscore the

importance of continuous genomic surveillance and population

dynamics studies. Such analyses are crucial for understanding how

new variants emerge and spread, providing valuable insights that

can inform public health strategies and interventions.

While our study provides comprehensive insights into the

genomic epidemiology and evolutionary dynamics of the

Omicron variant in Pakistan, it is essential to acknowledge certain

limitations, such as the potential sampling bias due to unequal

geographic distribution and temporal coverage of the retrieved

samples, which may not fully capture the genetic diversity of the

virus across the entire population. Moreover, the reliance on

publicly available sequences from databases may introduce biases

due to underreporting or variability in data quality and

completeness. Recognizing these limitations helps provide a

balanced view of our findings and underscores the need for

continuous and comprehensive genomic surveillance efforts to

inform effective public health responses.

In conclusion, this study presents a comprehensive examination

of the genetic diversity, genomic epidemiology, and evolutionary

dynamics of the Omicron variant in Pakistan during the fifth wave

of COVID-19. Our findings underscore the complex evolutionary

landscape of Omicron within the Pakistani population, highlighting

the introduction of two distinct lineages—clades C1 (BA.2) and C2

(BA.1)—into the country. Specifically, clade C1 originated from a

South African lineage in January 2022, while clade C2 emerged in

December 2021, introduced via lineages from Thailand, Spain, and

Belgium. These results illustrate the multiple origins of Omicron in

Pakistan and its subsequent spread, both domestically and

internationally. Notably, this study offers valuable insights into

the transnational transmission patterns and adaptive evolution of

Omicron, with important implications for genomic surveillance and

public health strategies in Pakistan.
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