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Introduction: The early prediction of sepsis based on machine learning or deep

learning has achieved good results.Most of the methods use structured data

stored in electronic medical records, but the pathological characteristics of

sepsis involve complex interactions between multiple physiological systems

and signaling pathways, resulting in mixed structured data. Some researchers

will introduce unstructured data when also introduce confounders. These

confounders mask the direct causality of sepsis, leading the model to learn

misleading correlations. Finally, it affects the generalization ability, robustness,

and interpretability of the model.

Methods: To address this challenge, we propose an early sepsis prediction

approach based on causal inference which can remove confounding effects

and capture causal relationships. First, we analyze the relationship between each

type of observation, confounder, and label to create a causal structure diagram.

To eliminate the effects of different confounders separately, the methods of

back-door adjustment and instrumental variable are used. Specifically, we learn

the confounder and an instrumental variable based on mutual information from

various observed data and eliminate the influence of the confounder by

optimizing mutual information. We use back-door adjustment to eliminate the

influence of confounders in clinical notes and static indicators on the true

causal effect.

Results: Our method, named CISepsis, was validated on the MIMIC-IV dataset.

Compared to existing state-of-the-art early sepsis prediction models such as

XGBoost, LSTM, and MGP-AttTCN, our method demonstrated a significant

improvement in AUC. Specifically, our model achieved AUC values of 0.921,

0.920, 0.919, 0.923, 0.924, 0.926, and 0.926 at the 6, 5, 4, 3, 2, 1, and 0 time

points, respectively. Furthermore, the effectiveness of our method was

confirmed through ablation experiments.

Discussion: Our method, based on causal inference, effectively removes the

influence of confounding factors, significantly improving the predictive accuracy

of the model. Compared to traditional methods, this adjustment allows for a
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more accurate capture of the true causal effects of sepsis, thereby enhancing the

model's generalizability, robustness, and interpretability. Future research will

explore the impact of specific indicators or treatment interventions on sepsis

using counterfactual adjustments in causal inference, as well as investigate the

potential clinical application of our method.
KEYWORDS

sepsis, MIMIC-IV, causal inference, back-door intervention, instrumental variable
1 Introduction

Sepsis is a severe immune response to infection that can lead to

tissue damage and organ dysfunction. This response can progress to

septic shock, including organ failure and extremely low blood

pressure Leone (2016). Its hallmark is an immune system response

imbalance, with high incidence and mortality rates Inkpen et al.

(2023). Despite significant advances in medical technology and

treatment methods, the diagnosis and treatment of sepsis remain

among the important challenges faced by clinicians. Convincing

evidence suggests that every hour of antibiotic delay significantly

increases the mortality rate associated with sepsis Ferrer et al. (2014).

In the actual treatment process, healthcare professionals such as

doctors, nurses, and pharmacists may experience delays in

communication due to unclear symptoms presented by patients,

potentially leading to delayed treatment for subsequent sepsis Goh

et al. (2021). Therefore, early prediction of sepsis onset to arrange and

implement a sepsis treatment plan is crucial. Timely treatment can

effectively reduce mortality and the occurrence of complications.

The large number of instruments in the ICU can produce highly

granular data, and this high-quality database constitutes a

cornerstone for integrating AI into clinical practice Li et al.

(2024). Currently, some popular early sepsis prediction models

are primarily based on structured data, which is a multivariate time

series. While some models have shown good performance,

traditional prediction models may easily learn false correlations.

These false correlations may point to information unrelated to the

disease but related to the outcome, compromising the model’s

generalization capability and robustness Li et al. (2021). At the

same time, there is missing information in the data set, and a lot of

work has been devoted to solving the problem of missing data

Apalak and Kiasaleh (2022); Wang and Yao (2021); Zabihi et al.

(2019); Singh et al. (2019a). To address this natural deficiency, some

researchers also utilize unstructured data from electronic health

records such as clinical texts and radiological images. A large

number of studies have focused on the impact of a specific metric

on sepsis Gao et al. (2022); Jiang et al. (2024); Yang et al. (2023).

However, the pathological characteristics of sepsis involve complex

interactions between multiple physiological systems and signaling

pathways He et al. (2022). Confounding occurs when the
02
association between a presumed cause X and its observed effect Y

is actually due to a common cause C Sun et al. (2022). This C is the

confounder. There is a confounder in the structured data, and the

introduction of multimodal data introduces another confounder

that masks direct causal relationships from X to Y, leading the

model to learn misleading correlations and unreliable model

generalization. Our motivation is to eliminate the influence of

confounders in the data and learn real causal effects to improve

the performance and generalization ability of the model. Causal

inference is often used to solve the problem of confounding factors

in data. Liu et al. improve reasoning ability by retaining good bias

and mitigating bad bias (Liu et al., 2023). Influenced by the work of

Zhang Chang et al. (2023), Song Song et al. (2024), we propose an

early sepsis prediction model based on Causal Inference, which can

learn the true and effective causal relationship by eliminating the

influence of confounders, and improving the model performance

and robustness. We propose a Feature Extraction Module to model

Instrumental Variables, using auxiliary variables to eliminate the

effect of confounders that are difficult to observe. Instrumental

variables and distractors are learned from clinical indicators. We

propose a Mutual Information Optimization Module to constrain

the Instrumental Variable to ensure that it is an effective IV. We

propose a Causal Learning Module based on Back-door

Adjustment, which cuts off the back-door path to eliminate the

influence of observable confounders in the data and learn the true

causal effect. The prior knowledge is used to define the influence

effect of two independent confounder factors on causal features so

that the model can approximately learn the true causal effect, and

improve the robustness and generalization ability of the model.
2 Materials and method

2.1 Dataset

We used the Medical Information Mart for Intensive Care

(MIMIC-IV) dataset Johnson et al. (2023). MIMIC-IV is a

publicly available database sourced from the electronic health

record of the Beth Israel Deaconess Medical Center. It covers

hospital admissions data from 2008 to 2019. One of the authors
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of this study(DL) has completed the Collaborative Institutional

Training Initiative examination (Certification number: 60594470).
2.2 Data collection

MIMIC-IV contains a total of 53,150 patients, 69,211 hospital

admission records, and 76,540 records of intensive care unit stays

Nie et al. (2023). In the Third International Consensus Definition

for Sepsis and septic shock (Sepsis-3), sepsis is defined as a patient’s

SOFA score ≥ 2 after suspicion of infection Singer et al. (2016). Our

primary focus is on early sepsis prediction among patients admitted

to the ICU, using data collected after ICU admission. The sepsis is

defined as positive samples, while the non-sepsis is considered as

negative samples. Based on this, we extracted all available records of

ICU admissions and further refined the dataset using the following

criteria: (1) Patients who were at least 18 years old at their first

hospital admission. (2) Only one ICU admission per hospital stay.
2.3 Preliminaries

The early prediction of sepsis can be regarded as a classification

task. As the left in Figure 1 shows, the traditional model thinks that

this task has two difficulties, one is how to accurately extract

features X from a lot of data, and the other is how to accurately

predict the disease label Y from the extracted features X. But there is

a confounder e, e is the error term containing the unobserved

potential that affects X and Y. We assume the confounder e is with

zero expectation and finite variance, then the relationship between

X and Y is Y = f(X) + e. For the path from X to Y, if the nodes in the

set e are not descendants of X, and the e will block all back-door

paths between X and Y, then e satisfies the back-door criterion of (X,

Y), and all back-door paths can be cut off by intervening in the set e,

which is the back-door adjustment. Both the front-door adjustment

and the back-door adjustment are ways to eliminate the effects of

confounders by intervening to cut off the back-door path. The

difference is that back-door adjustment can only be used when the

confounder is observable; if the confounder cannot be represented

or is not observable, the front-door adjustment is needed by adding
Frontiers in Cellular and Infection Microbiology 03
an auxiliary variable to the front-door path. A valid Instrumental

Variable (IV) A should satisfy three conditions Bennett et al. (2019);

Hartford et al. (2017); Singh et al. (2019b); Yuan et al. (2022):
1. P(X|A) ≠ P(X), A is related to X.

2. P(Y |A,X,e) = P(Y |X,e), A does not directly affect Y.

3. E(e|A) = E(e), A should be unconfounded.
We introduce the instrumental variable A to eliminate the effect

of the confounder e. In addition, if there is an exogenous variable C

(P(e|C) = P(e)) Yuan et al. (2022), we can use it to make a more

accurate estimation. There are not only unobserved confounder e in

the data but also observed confounder note Z and static indicator B.

They are introduced at the same time as IV is introduced. A can be

regarded as features extracted from observed data, while

descriptions of these features exist in the note. Static indicators

have prior probabilities that affect both A and Y, as the right in

Figure 1. Assuming that these two confounders, e, and C are

independent of each other after the instrumental variables

eliminate the effects of e and C, all back-door paths from X to Y

can be blocked by back-door adjustment, removing the impact of Z

and B. By analyzing the data, we design a causal Directed Acyclic

Graph (DAG) as shown in Figure 1 and eliminate the influence of

confounders through instrumental variables and back-door

adjustment. Our method is named as CISepsis.

In this paper, we propose an early sepsis prediction method

based on causal inference, specifically utilizing the instrumental

variable and back-door adjustment, as shown in Figure 2. Our

method mainly includes the generation of the instrumental variable,

the use of mutual information to optimize the learning of the

instrumental variable, and the use of back-door adjustment to

eliminate the influence of confounders. We present the detailed

implementations of our method in this section.
2.4 Modeling instrumental variable

We designed a feature extraction module to model the

Instrumental Variables, as shown in the blue square in Figure 2.

The instrumental variable A is first generated from the clinically
FIGURE 1

The causal DAG proposed by our method. The gray circles represent the observed values, the yellow circles represent confounders, and the white
circles represent the intermediate variables in the model. The left shows the influence of the confounder e on the true causality X → Y, and the right
shows the causal DAG of our proposed method, where we introduce Instrumental Variables and Back-door Intervention methods to eliminate the
influence of the confounders and learn the true causality.
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observed various types of indicators O. Similar to previous work

Bennett et al. (2019); Hartford et al. (2017); Singh et al. (2019b);

Yuan et al. (2022), assuming E(e|A) = E(e), O is an exogenous

variable, then the instrumental variable A and the confounder C are

also exogenous, satisfying the third condition stated in the previous

chapter. Define the networks that generate A and C as fA(·) and fC
(·). Suppose the size of O is (t,o), where t represents the time

dimension and o represents the number of features. On the one

hand, O through a 1D convolution with input channel t, output

channel 64, kernel size 3, padding 1, transposed and then through a

1D convolution with input channel o, output channel 32, kernel size

3, padding 1. The convolution result is obtained by a BatchNorm

layer and a MaxPooling layer, then the feature map of size (32, 32) is

obtained; On the other hand, O through a 1D convolution with

input channel o, output channel 64, kernel size 3, padding 1 after

transposed, then through another 1D convolution with input

channel t, output channel 32, kernel size 3, padding 1 after

transposed. The convolution result is also passed through a

BatchNorm layer and a MaxPooling layer to obtain the feature

map of size (32, 32). The tensor of (1,64) is obtained after the feature

maps are passed through LeNet, and the encoding result is obtained

after concatenating them together. The generation of A and C uses

the same network, and the final size is both (1, 128). After learning

the instrumental variable A from the observed data O we have:

E½Y A� = E½g(X)j jA� =
Z

g(X)dP½XjA� (1)
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We first estimate g(·) by learning P[X|A]. The causal feature X is

generated by concatenating A and C together through a multilayer

perceptron(MLP).
2.5 Mutual information
optimization learning

For A to be a valid IV, we also need to satisfy the first two

conditions of the previous chapter, making fA(O) related to X and

conditionally independent of Y, in addition, making fC(O) related
to X and Y. This process proceeds through the process of optimizing

mutual information. For example, let fA(O) and X be correlated, we

sample from the distribution of fA(O) and X, improve the

correlation of fA(O) and X by maximizing the mutual

information between them. Based on our proposed causal DAG,

we design the mutual information optimization module in the pink

square in Figure 2, which is divided into the following steps:

Maximize the mutual information offA(O) and X. To maximize

the mutual information, we first study variational distribution q(X|

fA(O)) to approximate P(X|fA(O)). Inspired by previous research

Yuan et al. (2022); Cheng et al. (2020); Oord et al. (2018), we define

the variational distribution and log-likelihood loss with network

parameters qAX as:

logqqAX (XjfA(O)) = −
(X − mqAX )

2

esqAX
− sqAX (2)
FIGURE 2

The overall framework of our proposed method. Firstly, we extract features from the observed data O to obtain the instrumental variable A and the
confounder C, then let A be a valid instrumental variable by optimizing the mutual information. Finally blocked all back-door paths by back-
door adjustment.
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LLLL
AX = −

1
do

d

i=1
logqqAX (xijfA(O)i) (3)

where mqAX and sqAX represent the mean and log variance,

d represents the number of samples. Sampling fA(O)i and xi from fA
(O) and X. Define the variational distribution as q(xi|fA(O)i) for

the positive sample pair, q(xj|fA(O)i) for the negative sample pair,

where i ≠ j. After minimizing Equation 3, we obtain the optimal

distribution of qqAX (XjfA(O)) with parameter qAX. To maximize the

difference between positive and negative sample pairs and improve the

correlation between fA(O) and X, we minimize the following equation:

LAX = − 1
d2 o

d

i=1
o
d

j=1
(logqqAX (xi fA(O)i) − logqqAX (xj

�� ��fA(O)i)) (4)

Minimize the mutual information offA(O) and Y. To minimize the

mutual information, we first study variational distribution q(Y|fA(O)) to
approximate P(Y|fA(O)). Similarly, the network parameters are defined

as qAY. The log-likelihood loss function for q(Y |fA(O)) is given as:

LLLL
AY = −

1
do

d

i=1
logqqAY (yijfA(O)i) (5)

Sampling fA(O)i and yi from fA(O) and Y. Define the

variational distribution as q(yi|fA(O)i) for the positive sample

pair, q(yj|fA(O)i) for the negative sample pair, where i ≠ j. After

minimizing Equation 5, we obtain the optimal distribution of qqAY
(Y jfA(O)) with parameter qAY. To minimize the difference between

positive and negative sample pairs and reduce the correlation

between fA(O) and Y, we minimize the following equation:

LAY = 1
d2 o

d

i=1
o
d

j=1
(logqqAY (yi fA(O)i) − logqqAY (yj

�� ��fA(O)i)) (6)

With these two steps, we satisfy the first two conditions in the

previous chapter such that A becomes a valid IV. Furthermore, we

need to optimize the mutual information between the confounding

C and the other variables.

Maximize the mutual information offC(O) with X and Y. When

generating the instrumental variable A, we used the same network

to generate an exogenous variable C, defined as the confounder in

O, related to X and Y. Similar to the process used to maximize the

mutual information between fA(O) and X, we first study variational
distribution q(X|fC(O)) and q(Y |fC(O)) to approximate P(X|fC
(O)) and P(Y |fC(O)). The log-likelihood loss functions are given as:

LLLL
CX = −

1
do

d

i=1
logqqCX (xijfC(O)i) (7)

LLLL
CY = −

1
do

d

i=1
logqqCY (yijfC(O)i) (8)

To maximize the difference between positive and negative

sample pairs and improve the correlation between fC(O) and X,Y,

we minimize the following equations:

LCX = − 1
d2 o

d

i=1
o
d

j=1
(logqqCX (xi fC(O)i) − logqqCX (xj

�� ��fC(O)i)) (9)
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LCY = − 1
d2 o

d

i=1
o
d

j=1
(logqqCY (yi fC(O)i) − logqqCY (yj

�� ��fC(O)i)) (10)

Minimize the mutual information of fA(O) and fC(O). To
minimize the mutual information, we first study variational

distribution q(fC(O)|fA(O)) to approximate P(fC(O)|fA(O)).
Similarly, the network parameters are defined as qAC. The log-

likelihood loss function for q(fC(O)|fA(O)) is given as:

LLLL
AC = −

1
do

d

i=1
logqqAC (fC(O)ijfA(O)i) (11)

Sampling fA(O)i and fC(O)i from fA(O) and fC(O). Define
the variational distribution as q(fC(O)i|fA(O)i) for the positive

sample pair, q(fC(O)j|fA(O)i) for the negative sample pair, where

i ≠ j. After minimizing Equation 11, we obtain the optimal

distribution of qqAC (fC(O)jfA(O)) with parameter qAC. To

minimize the difference between positive and negative sample

pairs and reduce the correlation between fA(O) and fC(O), we
minimize the following equation:

LAC = 1
d2 o

d

i=1
o
d

j=1
(logqqAC (fC(O)i fA(O)i) − logqqAC (fC(O)j

�� ��fA(O)i))
(12)

In the training process, we first need to minimize Equations 3, 5,

7, 8 and 11 to obtain the best parameter qAX, qAY, qCX, qCY and qAC.
The mutual information is optimized after the best parameters are

obtained by minimizing Equations 4, 6, 9, 10 and 12.

LLLL = LLLL
AX + LLLL

AY + LLLL
CX + LLLL

CY + LLLL
AC (13)

L1 = LAX + LAY + d1(LCX + LCY ) + d2LAC (14)

The best network parameters are obtained by minimizing

Equations 13, 14, where d1 and d2 in Equation 14 are

hyperparameters that can be trained.
2.6 Back-door adjustment

Note Z and static information B can be observed in the patient’s

data. As shown in the ‘Back-door Intervention’ in Figure 2, to learn the

true causal effect of X→ Y, we propose a causal learning module based

on Back-door Adjustment to eliminate the effects of Z and B. Sepsis is

more likely to occur in patients with trauma, chronic diseases, or low

immunity, among which the elderly, pregnant women, and infants are

more susceptible to infection. This leads to a prior probability in B that

affects both A and Y, and a back-door path exists X ← A ← B → Y;

However, the clinical note documents the various aspects of a patient’s

condition, not only related to the result(disease or not) but also related

to various physical indicators of the patient, which also affects A and Y,

there is also a back-door path X←A← Z→ Y. Due to the existence of

back-door paths, the model learns false associations. If the back-door

path is cut off, the effect of the confounder is eliminated and the model

can learn the true causal impact of X → Y. Let W = {Z,B}, in the

absence of intervention, P(Y |X) can be expressed as:
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P(Y jX) =o
W
P(Y jX,W)P(W X)j (15)

Pearl first proposed using the back-door adjustment method to

remove the influence of confounding factors, and the do-operator

realizes the back-door adjustment. Intervening on X, since Z and B

are independent, we have:

P(Y jdo(X)) =o
b

P(Y jX,B = b)P(B = b) +o
z
P(Y jX,Z = z)P(Z = z)

(16)

The final layer of the prediction network for binary classification

is the Softmax layer. After averaging the confounding effects we have

the following:

o
b

P(Y jX,B)P(B) =o
b

½Softmax(fy(X,B))�P(B) = EB½Softmax(fy(X,B))�

         ≈
NWGM

Softmax(EB½fy(X,B)�)
o
z
P(Y jX,Z)P(Z) =o

z
½Softmax(fz(X,Z))�P(Z) = EZ ½Softmax(fz(X,Z))�

         ≈
NWGM

Softmax(EZ ½fz(X,Z)�)
(17)

Direct calculation requires relatively large sampling calculation

cost, so Normalized Weighted Geometric Mean(NWGM) is used to

do approximation in Equation 17, and the expectation is integrated

into the network. In our approach, we assume that:

fy(X,B) = a1X + a2o
B
P(B)M(B)

fy(X,Z) = b1X + b2o
Z

P(Z)⊙
H(Z)XT

n
⊙H(Z)

(18)
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Where a1, a2, b1 and b2 are hyperparameters that can be

learned. P(B) represents the prior probability of each feature in the

static indicators, and M(B) represents the influence effect

corresponding to each feature for X, encoded to the same

dimension as X through a fully connected layer. P(Z) represents

the prior probability of each word, and H(Z) represents the vector

representation of each word. Using only texts from the ICU period,

P(Z) and H(Z) are obtained by GLOVE. H(Z)XT

n represents the

importance of each word for X, n denotes the feature dimension in

which each word is encoded, which coincides with X, ⊙ represents

matrix dot multiplication. Take Equation 18 into Equation 17:

P(Y jdo(X)) = Softmax(EB½fy(X,B)� + EZ ½fz(X,Z)�) (19)

We also need to consider C when using instrumental variables.

Although C represents the confounding factor in the data, it comes

from the clinical observation data, and there is still a lot of

information that can be used as additional information for the final

prediction. In our method, after fully considering the influence effect

of confounders, the modified X and C are concatenated to enter the

final classification model together. The previous process eliminated

the confounding effect, so the classification model consists of only a

few consecutive fully connected layers and activation functions.
3 Result

3.1 Experiment result

The task of early disease prediction is a sample imbalance task,

the number of negative samples (no disease, 0) is much more than
FIGURE 3

Results of comparative experiments several hours before the onset of sepsis. The ordinate of the upper bar chart represents the value of the
indicator AUC, and the abscissa represents the task moment several hours before the onset of sepsis. Below is the specific data table, our method is
better than the comparison methods.
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the number of positive samples (disease, 1). We divide the dataset

into three parts: training set, test set, and validation set, in which the

number of positive and negative samples in the training set is equal,

while the ratio of negative samples to positive samples in the test set

and validation is close to 4:1. We selected the following methods for

comparative experiments:(1)EXtreme Gradient Boosting

(XGBoost), a decision tree-based machine learning algorithm,

suitable for classification and regression problems, has been used

by many researchers for early sepsis prediction (Pettinati et al.

(2020); Hu et al. (2022); Barton et al. (2019). (2) LSTM, a commonly

used time series model, is also used by many researchers for early

sepsis prediction (Fagerström et al. (2019); Kaji et al. (2019).

(3) MGP-AttTCN, a model that combines joint multi-task

Gaussian processes and attention-based deep learning (Rosnati

and Fortuin (2021). CNN-LSTM, a combination of convolutional

neural networks and LSTM aimed at surpassing current sepsis

knowledge limitations (Lauritsen et al. (2020).
Frontiers in Cellular and Infection Microbiology 07
A total of seven tasks were included in the comparison

experiment: early prediction 0 to 6 hours before the onset of sepsis.

The results are shown in Figure 3. The bar graph clearly shows that

our method is better than the comparison test. The performance of

XGBoost is the worst among all models, XGBoost is an ensemble

learning method based on the decision tree. In the decision process of

the tree model, each feature is used independently, which can be

regarded as predicting based on the distribution of data, ignoring the

relationship between the features and losing a lot of information.

Medical data has complex relationships between features, XGBoost

works well with a small number of features, but with a large number

of features, it doesn’t perform as well as neural networks. LSTM

captures the dependencies in the time series and identifies the context

information through the gating mechanism and cell state, but it uses

the vector at each time as a whole, also ignores the relationship

between each feature, and loses spatial information. As the time

interval between the task and the onset of sepsis decreases, all
FIGURE 4

(A) Experimental results and (B) ablation experiment results. The vertical axis represents the metric AUC, the horizontal axis represents the time
between each task and the onset of sepsis.
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methods show better and better performance. Although some deep

learning models have shown good performance, they ignore the

spurious correlations in the data, which is not conducive to the

generalization and robustness of the model. MGP-AttTCN and

CNN-LSTM consider the relationship between features through

convolution. However, as the traditional prediction methods, in the

process of model training, they only want to learn the content related

to the result in the data to improve performance, don’t care whether

this part of the content is real causal features. In order to eliminate the

influence of confounding factors, we use the causal inference method

to eliminate the confounding effect and learn the real causal effect. At

the same time, we designed a special encoding module to fully learn

the temporal information and spatial information in the data, which

has a significant performance improvement compared with the

baseline and improves the generalization ability.
3.2 Ablation experiment

To further confirm the effectiveness of our method, we designed

such ablation experiments: Keep only the part that uses instrumental

variables, and remove the modules that use back-door adjustment.

Keep the part that uses instrumental variables and keep the data Z in

the back-door adjustment; Keep the part that uses instrumental

variables, and keep the data in the back-door adjustment B; Only the

part that uses the back-door adjustment is kept, and the instrumental

variable part only extracts the feature X using our feature extraction

module. The results are shown in Table 1. It can be intuitively found in

Figure 4A that the performance of our method is better than that of the

comparisonmethod. At the same time, if only the instrumental variable

part is retained in our method, a good performance is still obtained,

which indicates that the instrumental variable generated by us

effectively eliminates the confounders in the observed data O and the

influence of the confounders that are difficult to observe in the system.

Although it is slightly worse than several contrast trials, this is because

in this experiment only the observation dataO is used, but not B and Z,

thus a lot of information is lost.

In Figure 4B, the performance comparison of each method in

the ablation experiment is shown. Undoubtedly, the performance of

the complete process is higher than that of the case without any

of the components. In this stepwise experimental result, we find that

the information in the note is higher than that in the static

indicators. In comparison, the information in the observed data is

higher than in the text. If we don’t introduce the instrumental

variable, despite using all the data, there is a substantial drop in

performance, which means that the model learns the falsity in the
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observed data and is affected by confounders in the system that are

difficult to observe.
4 Discussion

We used the SHAP to calculate the importance of features, as

shown in Figure 5, which shows the top twenty variables of

importance. Here, we plot the Shapley value of each feature for

each example. This shows which features are more important and

how much impact they have on the dataset. The red feature makes

the prediction larger, the blue makes the prediction smaller, and the

width of the color region is larger, which means that this feature has

a greater impact on the prediction.

Of the top 20 variables, Glasgow coma scale(GCS), Creatinine,

Fraction inspired oxygen(FiO2), Total Bilirubin, Arterial Blood
FIGURE 5

The top twenty variables ranked by importance using SHAP. The
ordinate represents the name of each variable in descending order
of importance, and the abscissa represents the SHAP value. This plot
shows how important each variable is in predicting the final
diagnosis of sepsis.
TABLE 1 Changing components in our model.

Components(Data used) 4 3 2 1 0

Instrumental Variable (O) Back-door Adjustment (Z) Back-door Adjustment (B) AUC AUC AUC AUC AUC

✓

✓

✓

✓

✓

✓

✓

✓
✓

✓

0.897
0.910
0.902
0.892
0.919

0.899
0.911
0.906
0.891
0.923

0.901
0.916
0.910
0.897
0.924

0.909
0.913
0.911
0.902
0.926

0.910
0.915
0.913
0.905
0.926
frontie
Bold values means all components gives the best performance.
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Pressure mean and Platelet Count(PC) are part of the SOFA score.

In addition, Lactic Acid(LAC) plays a significant role in early

disease identification and treatment guidance Rhee et al. (2021).

Lactic acidosis refers to an elevated concentration of lactic acid in

the bloodstream beyond normal levels, commonly observed in

patients with severe sepsis or septic shock Vandewalle et al.

(2021). The blood lactic acid level exhibits a positive correlation

with sepsis mortality rates Schlapbach et al. (2017). J.R. et al.

Moorman et al. (2006) suggest that continuous heart rate

monitoring is important in the diagnosis of sepsis in infants in

neonatal intensive care units. Early studies indicated that White

blood cell count(WBC) serves as an important reference index for

assessing sepsis. Karon Karon et al. (2017) and Farkas Farkas (2020)

discovered that the sensitivity and specificity of WBC in diagnosing

sepsis were 82.2% and 76.7%. Sepsis and septic shock often manifest

with an elevated RR, which may serve as a compensatory response

to enhance oxygen supply and eliminate excessive carbon dioxide

production. Furthermore, sepsis can induce tissue hypoperfusion

leading to inadequate oxygenation and hypoxemia, thereby

stimulating the respiratory center and ultimately resulting in an

increased Respiratory rate(RR) Rhee et al. (2021).

We employ an Instrumental Variable to eliminate the influence

of unobservable confounders in the data and utilize Back-door

Adjustment to address the impact of observable confounders. By

leveraging causal inference, we identify the causal features directly

associated with the result and eliminate confounding effects, leading

to enhanced performance and generalization capabilities. Promising

results have been achieved in early sepsis prediction, which is

anticipated to assist physicians in making more accurate

judgments before sepsis onset and facilitating timely intervention

measures. Notably, note, a potential confounder affecting both

causal features and results, has been effectively controlled within

our model. However, notes are typically recorded post-event

occurrence in practice, which means that the number of notes

before the onset of the sepsis is small or doesn’t have useful

information. However, the various clinical measures carry most of

the information, and the note is only used as additional information

to improve the performance of the model. The issue of note needs to

be specifically considered for clinical use.
5 Conclusion

We propose an early sepsis prediction model based on causal

inference, which can effectively avoid spurious correlations and

improve model performance and robustness by eliminating the

influence of confounding factors to learn true and effective causal

relationships. We achieve better performance than baselines on a

range of early prediction tasks. The experimental results and

subsequent analysis further confirm the effectiveness of our

approach, while visualizing some variables that contribute higher

to the final prediction. Our study may assist physicians in

diagnosing sepsis more accurately before the onset of the disease.

It is crucial to predict in advance to arrange and implement the

treatment plan for sepsis. Timely treatment can effectively reduce

mortality and complications.
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