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Decoding mitochondrial DNA
damage and repair associated
with H. pylori infection
Aashirwad Shahi and Dawit Kidane*

Department of Physiology and Biophysics, College of Medicine, Howard University, Washington,
DC, United States
Mitochondrial genomic stability is critical to prevent various human inflammatory

diseases. Bacterial infection significantly increases oxidative stress, driving

mitochondrial genomic instability and initiating inflammatory human disease.

Oxidative DNA base damage is predominantly repaired by base excision repair

(BER) in the nucleus (nBER) as well as in the mitochondria (mtBER). In this review,

we summarize the molecular mechanisms of spontaneous and H. pylori

infection-associated oxidative mtDNA damage, mtDNA replication stress, and

its impact on innate immune signaling. Additionally, we discuss how mutations

located on mitochondria targeting sequence (MTS) of BER genes may contribute

tomtDNA genome instability and innate immune signaling activation. Overall, the

review summarizes evidence to understand the dynamics of mitochondria

genome and the impact of mtBER in innate immune response during H. pylori-

associated pathological outcomes.
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Introduction

Mitochondria are essential organelles responsible for energy production and

maintaining calcium homeostasis, lipid, and amino acid metabolism (Casanova et al.,

2023). The human mitochondria DNA (mtDNA) is present in multiple copies per cell

(Filograna et al., 2021). Targeting mitochondria has emerged as a key strategy for bacteria

to hijack host cell physiology and promote infection (Blanke, 2005; Fielden et al., 2017).

Numerous pathogenic bacteria have evolved strategies to subvert the mitochondrial

functions of host cells to support their own proliferation and dissemination (Galmiche

et al., 2000; Fischer et al., 2004; Stavru et al., 2011). In addition, bacteria can modulate

mitochondrial functions to access nutrients and/or evade the host’s immune system (Spier

et al., 2019). Infection by extracellular pathogens including H. pylori is able to change the

mitochondrial metabolic and oxidative profile of infected cells (Andrieux et al., 2021).

Furthermore, a study has shown that H. pylori infection induces genetic dysfunction in

both nDNA and mtDNA (Hiyama et al., 2003).
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Notably, mtDNA is a hotspot for constant insult from both

exogenous and endogenous stresses (Alexeyev et al., 2013). Cellular

and biochemical evidence suggests that mtDNA is more susceptible

to oxidized DNA damages than nuclear DNA due to its proximity

to the sites of oxidative phosphorylation and lack of protection by

histones (Yakes and Van Houten, 1997; Druzhyna et al., 2008).

Excessive accumulation of mtDNA damages leads to mitochondrial

dysfunction and provokes the pathogenesis of many human

diseases, including neurodegeneration, cancer, and diabetes

(Wallace, 2005; Nakabeppu et al., 2007; Llanos-Gonzalez et al.,

2019). Oxidative DNA damage lesions in mtDNA and/or mtDNA

replication blocks are removed by different types of DNA damage

repair enzymes (LeDoux et al., 1992; Zhao and Sumberaz, 2020).

Most of the repair proteins and/or enzymes are imported from the

nucleus, where they process oxidative mtDNA lesions and promote

repair (Bohr, 2002; de Souza-Pinto et al., 2009; Gredilla, 2010).

However, the loss of these nuclear and mitochondria-encoded

repair proteins significantly impairs repair efficiency in

mitochondria (Lia et al., 2018). Therefore, the role and function

of mitochondrial oxidative DNA damage repair are not expected to

be independent of nuclear BER.

In eukaryotic cells, mtDNAmolecules are organized into several

hundred nucleoids (Legros et al., 2004; Wang and Bogenhagen,

2006; Bogenhagen, 2012; Prachar, 2016), which function as units of

mtDNA propagation for replication, segregation, and gene

expression (Spelbrink, 2010; Ban-Ishihara et al., 2013; Kolesnikov,

2016). Several proteins are involved in maintaining the integrity of

mitochondrial genome replication, including DNA polymerase g
(POLG), TWINKLE (DNA helicase), mitochondrial RNA

polymerase (POLRMT), mitochondrial single-stranded DNA-

binding protein (mtSSB), RNASEH1, DNA ligase III ,

mitochondrial genome maintenance exonuclease1 (MGME1), flap

endonuclease 1 (FEN1), and topoisomerase (Sharma and Sampath,

2019; Fontana and Gahlon, 2020). POLG plays a significant role in

maintaining mtDNA replication integrity and participates in base

excision repair. Moreover, POLG has 3′–5′ exonuclease and 5′-
deoxyribose phosphate (dRP) activities associated with its catalytic

subunit (Kaguni, 2004; Graziewicz et al., 2006). POLG’s polymerase

activity is critical to synthesize DNA, and it also has a weak dRP

lyase function that is complemented by DNA polymerase beta

(POLB) dRP lyase activity (Longley et al., 1998; Sykora et al.,

2017). Furthermore, the primase activity of PrimPol initiates de

novo DNA synthesis using deoxynucleotide while discriminating

against ribonucleotides (Martinez-Jimenez et al., 2018; Diaz-

Talavera et al., 2022). Other DNA repair factors, such as

mitochondrial single-stranded binding protein 1 (SSBP1), protect

the active replicative DNA regions (Guilliam et al., 2015). Based on

several studies, three different models have been proposed for

mtDNA replication (Robberson et al., 1972; McKinney and

Oliveira, 2013). Among these three models, the strand-

displacement model (SDM) is the most accepted model because it

best explains the dynamics of mtDNA replication. According to this

model, replication starts at the oriH site and proceeds

unidirectionally until it reaches the origin of light strand (oriL).

At this point, the synthesis of light strand begins in the opposite
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direction, continuing until the replication of both strands is

complete. Importantly, mutations in the mitochondrial

replisome’s proteins POLG, TFAM, and MGME1 genes are

associated with the accumulation of mtDNA deletions that may

also increase susceptibility for infection-induced chronic-

inflammation-associated disease (Spelbrink et al., 2001; Longley

et al., 2006; Nicholls et al., 2014; Fontana and Gahlon, 2020). In the

next section of this manuscript, we will address key questions such

as (i) how do host cells handle oxidative stress-associated mtDNA

damage via BER in the presence and absence of bacterial infection,

(ii) how do oxidative-stress-induced base lesions or repair

intermediates impact mtDNA replication dynamics, and (iii) does

infection by extracellular bacteria, such as H. pylori, induce

mtDNA-mediated innate immune signaling?
mtDNA damage and BER
in mitochondria

Upon bacterial infection, a major challenge for host cells is the

maintenance of genomic integrity. Pathogenic bacteria can cause

DNA damage in host cells, often resulting in DNA double-strand

breaks (DSBs) (Cancer Genome Atlas Research N, 2014; Song and

Bent, 2014). Numerous studies have reported that H. pylori

infection induces DNA damage and alter the DNA repair

capacity (Dorer et al., 2010; Lieber, 2010; Toller et al., 2011;

Chaturvedi et al., 2014; Koeppel et al., 2015). H. pylori has been

found to cause several types of DNA damage, including single-

strand breaks (SSBs) and DSBs in nuclear genome (Fox and Wang,

2007; Lieber, 2010). High-throughput genomic analyses have shown

that H. pylori causes a specific pattern of DNA damage in the

transcribed and telomere-proximal regions of the genome

(Chaturvedi et al., 2014). Furthermore, H. pylori infection induces

mtDNA damage that includes oxidative damage, adducts

formation, base mismatch, and DNA strand breaks (Babbar et al.,

2020). Given its proximity to ROS-generating electron transport

chain and the absence of histones, mtDNA is more vulnerable to

oxidative DNA damage than nDNA (Maynard et al., 2009).

Oxidative damage to mtDNA can manifest as base modifications,

abasic sites, and various other types of lesions (Cooke et al., 2003).

One of the most studied lesions in mtDNA is 8-oxoguanine (8-

oxoG), which is a mutagenic lesion (Kurosaka et al., 1991).

Mispairing of 8-oxoG with adenine results in a G–C to T–A

transversion during subsequent rounds of replication. Early

studies showed that 8-oxoG lesions are 16 times more frequent in

mtDNA than in nDNA (Richter et al., 1988). In more definitive

studies, Yakes and Van Houten showed that mtDNA damage is

more extensive and persists longer than nDNA damage in human

cells following oxidative stress (Yakes and Van Houten, 1997). In

addition, unrepaired mtDNA base damage intermediates, such as

single-stranded strand breaks (SSBs), arise as a result of the

erroneous or abortive activity of DNA topoisomerase I (Hudson

et al., 2012), contributing to mitochondrial genome instability

(Zhang et al., 2001). In addition, H. pylori infection may also lead

to replication stress in mtDNA that may eventually alter the
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expression and function of mitochondrial genes and transcription

factors that contribute to the accumulation of mtDNA damage

(Chatre et al., 2017). It is also possible that the enhanced oxidative

stress due to H. pylori infection might be a possible cause of unfit

mitochondria for replication in infected host cells. Another

important factor for increased mitochondrial DNA damage is

mtDNA mutations that occur during replication by insertion/

deletion of the wrong nucleotide. Although the POLG has 3′–5′
exonuclease proofreading activity that corrects the mis-

incorporation of the nucleotide, the error rate of mDNA

replication, however, exceeds the repair capacity, potentially

increasing the mutation frequency (Kaguni, 2004). Moreover, H.

pylori induces genomic instability in nuclear CA repeats in mice and

in mtDNA (MaChado et al., 2009).

Although various DNA repair pathways have been documented

including direct reversal, BER, NER, and MMR in cells (Jalal et al.,

2011; Chatterjee and Walker, 2017), the BER pathway is the

predominant pathway for repairing mtDNA damage (Bohr and

Anson, 1999; Druzhyna et al., 2008). Like nDNA, an efficient

mtDNA repair pathway, especially the BER pathway, may play an

important role in repairing oxidative mtDNA damage (Figure 1).

Mitochondria BER (mtBER) proteins are localized in the inner

membrane and co-exist with the TFAM nucleoid structure protein

(Stuart et al., 2005). The first step of mtBER involves DNA base

damage recognition by seven different DNA glycosylases. These

glycosylases contain a mitochondria translocation signaling (MTS)

leader sequence, which facilitates their transport into the

mitochondria. Once inside, these DNA glycosylases remove

damaged mtDNA nucleotide lesions. The second step involves

cleaving the sugar–phosphate backbone of the mtDNA using AP

endonuclease that processes the abasic site (AP). This is followed by

the action of POLG, which re-synthesizes missing DNA patches.

Finally, DNA ligase (LIG3) seals the DNA fragments

(Szczepanowska and Trifunovic, 2015). The alternative

mechanism is that mtDNA repair machinery engages in end

processing using distinct gap-tailoring enzymes, including

aprataxin (Ahel et al., 2006) and TDP1 (Das et al., 2010).

However, if aprataxin proteins are unable to repair the 5′-AMP

group, it can block DNA ligase repair activity and generate SSBs

(Sykora et al., 2011). The mtDNA damage induced by H. pylori

infection may lead to mtDNA single-strand breaks (mtSSBs),

mtDNA double-strand breaks (mtDSBs), and base mismatches

which are potentially processed via different types of repair

machinery (Figure 1). Due to the types of oxidative DNA damage

substrate specificity, the preference of DNA glycosylase may vary,

and it is possible that they might influence each other’s activity

(MaChado et al., 2009). The DNA glycosylases OGG1, UDG1, and

MYH (Ohtsubo et al., 2000) are all associated with the particulate

fraction of the mitochondria as are POLG, DNA ligase III, and a

minor portion of AP endonuclease activity (Stuart et al., 2005). The

mitochondria harbor bifunctional 8-oxoguanine, DNA glycosylase-

1 (OGG1), and monofunctional uracil–DNA glycosylase (UNG1) to

process different mtDNA base lesions (Jacobs and Schar, 2012).

These glycosylases are discussed below.
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DNA glycosylase in mitochondria

Several studies have identified five bifunctional and two

monofunctional DNA glycosylases in the mitochondria (Prakash

and Doublie, 2015). Uracil–DNA glycosylase 1 (UDG1 or uracil-N-

glycosylase1 [UNG1]) (Anderson and Friedberg, 1980) and MUTYH

(MYH), a homolog of the Escherichia coliMutY glycosylase (Ohtsubo

et al., 2000), are classified as monofunctional DNA glycosylases. The

substrate specificities of UNG1 and MUTYH have been recently

reviewed (Svilar et al., 2011). MUTYH is an adenine–DNA

glycosylase that preferentially excise adenine when paired with 8-

oxoG, initiating a round of base excision repair that restores the 8-
FIGURE 1

Oxidative stress induced by H. pylori infection leads to damage in
mitochondrial DNA (mtDNA), which is primarily repaired through the
base excision repair (BER) pathway. The BER pathway operates
through two different mechanisms to maintain the mitochondrial
genome: short-patch BER (SP-BER) removes a single damaged
nucleotide, while long-patch BER (LP-BER) removes between two
and eight damaged nucleotides during the repair process. H. pylori
infection induces genotoxin-mediated mtDNA and increases
oxidative-stress-associated mtDNA damage and mtDNA replication
stress. A single-base damage or single-strand break on mtDNA is
likely processed via BER. mtDNA single-base damage is potentially
recognized and removed by one of the DNA glycosylases (UNG1,
OGG1, MUTHY MTH1, NTHL1 NEIL1, and NEIL2), followed by end
processing via the dRP lyase activity of POLB and gap filling with
POLG inserts in the correct base, and LIGII seals the mtDNA nick.
In long-patch BER, strand displacement DNA synthesis is processed
by POLG and displaces 5′ DNA flap downstream of the repair site,
which must be removed by flap endonuclease (FEN1) and other
partner/DNA2/EXOG involved to process the 5′ end of the DNA.
Once tailoring of the 5′ and 3′ ends of mtDNA is complete, LIGIII
seals the mtDNA nick. Figure created with BioRender.com.
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oxoG:C pair and protects the DNA from mutagenic 8-oxoG lesions

(Michaels et al., 1992). In addition, several studies have shown that

mitochondria can repair alkylation lesions using monofunctional

glycosylase, MPG (Chakravarti et al., 1991; Pirsel and Bohr, 1993;

Ledoux et al., 1998). The UNG1 enzymes cleave substrates from both

single-stranded (ss) DNA and double-stranded (ds) DNA with a

slight preference for ss over ds substrates. Importantly, UNG1 has a

MTS comprising a 30-amino-acid leader sequence at the N-terminal

end of the enzyme that likely facilitates entry into the inner

mitochondrial membrane (Neupert, 1997). Amino acid substitution

(Y147A or N204D) in the catalytic domain of UNG1 switches the

substrate specificity of the enzyme and is able to remove thymine and

uracil from mtDNA (Kavli et al., 1996). Removing mtDNA base

lesions in this manner leaves excess apyrimidinic sites, which are

highly genotoxic to the cells (Glassner et al., 1998; Lindahl andWood,

1999). mtDNA has been shown to accumulate high levels of

mutagenic lesions of 8-hydroxy-2′-deoxyguanosine, which is the

byproduct of guanine hydroxylation (Nakabeppu, 2014). Previous

work has shown that 8-oxodG, the most prominent oxidative DNA

base lesion, is repaired more efficiently in the mitochondria than in

the nucleus (Thorslund et al., 2002). These 8oxoG lesions are

recognized and processed by OGG1 glycosylase (Mandal et al.,

2012) which localizes to both the nucleus and mitochondria

(Klungland et al., 1999; Nishioka et al., 1999; Klungland and

Bjelland, 2007). However, the loss of OGG1 compromises the

metabolic function of mitochondria, indicating an additional role

in maintaining the bioenergetic homeostasis of the cell (Lia et al.,

2018). Notably, other DNA glycosylases such as NTHL1 are found in

both the nucleus and mitochondria and only active with duplex

DNA. NTHL1 is a bifunctional glycosylase involved in the excision of

oxidized DNA bases such as Tg, 5-hydroxycytosine (5-hC), 5-

hydroxyuracil (5-hU), and the ring-opened 2,6-diamino-4-hydroxy-

5-formamidopyrimidine (Fapy) lesions (Prakash and Doublie, 2015).

Previously, we have shown that the single-nucleotide variant of

NTHL1 promotes genomic instability in cells (Galick et al., 2013).

However, the biological significance of this mutant variant in

mitochondria is unclear and requires further investigation.

Additionally, chromatin immunoprecipitation analysis

demonstrated that DNA glycosylases, including NEIL1 and NEIL2,

form a complex with mitochondrial genes MT-CO2 and MT-CO3

(cytochrome c oxidase subunit 2 and 3) and mitochondrion-specific

POLG (Mandal et al., 2012). NEIL2 interacts with PNK to maintain

the mammalian mitochondrial genome (Mandal et al., 2012). NEIL2

shows a unique preference for excising lesions from aDNA bubble. In

contrast, NEIL1 efficiently excises 5-hydroxyuracil, an oxidation

product of cytosine, from the bubble and single-stranded DNA but

does not have strong activity toward 8-oxoguanine in the bubble

(Dou et al., 2003). Furthermore, MTH1 DNA glycosylase, which is

localized in both the mitochondria and nucleus, plays a significant

role in repairing oxidized dATP and ATP, such as 2-OH-dATP and

2-OH-ATP, as well as 8-oxo-dGTP (Bialkowski and Kasprzak, 1998;

Fujikawa et al., 1999; Fujikawa et al., 2001; Nakabeppu et al., 2006).

The function of those nuclear-encoded DNA glycosylases likely

depends on their ability to pass through the mitochondrial

membrane via MTS signals. However, there are single-nucleotide
Frontiers in Cellular and Infection Microbiology 04
polymorphisms (SNPs) on the MTS of these glycosylases that may

impact their function and cause mitochondrion-associated human

diseases (Table 1). Uncovering the biological significance of these

SNPs will likely shed mechanistic insights on the impact of DNA

glycosylase in mitochondrial genome integrity and its

biological outcomes.
APE1 endonuclease

APE1 is a multifunctional protein that plays a central role in the

maintenance of nuclear and mitochondrial genomes. APE1

translocates into the mitochondria in response to oxidative stress

and increases mitochondrial DNA (mtDNA) repair rate and cell

survival (Barchiesi et al., 2020). Protein sequence analysis suggests

that APE1 harbors MTS signal sequence within residues 289–318 in

the C terminus, which is normally masked by the intact N-terminal

structure (Li et al., 2010). Once APE1 is translocated in the

mitochondria, it is able to remove the AP sites and hand over the

reaction to the next repair factors. In contrast, genetic ablation of

APE1 results in the accumulation of damaged mitochondrial

mRNA species, impairment in protein translation, and reduced

expression of mitochondrial encoded proteins, leading to less

efficient mitochondrial respiration (Barchiesi et al., 2020). It is

possible that loss of APE1 may increase the number of AP sites,

potentially driving mtDNA instability. A few studies suggested that

APE1 depletion in cells leads to increased mtDNA copy number

(Barchiesi et al., 2021).
DNA polymerase enzymes

The ability to effectively repair various types of DNA damage is

achieved through multiple, often overlapping, DNA repair

pathways. DNA POLB and POLG are involved in mtDNA repair

process (Copeland, 2010). Once the AP site is processed by APE1,

the gap is filled by POLG with correct nucleotides. The Wilson

study estimated that ~30% of POLB localize to the mitochondria, as

shown through the colocalization studies of TOM20 (Prasad et al.,

2017). Additional high-quality immunogold electron microscopy

(EM) localization studies demonstrated that 20% of POLB localize

to the mitochondrial matrix and 60% to the nucleus (Prasad et al.,

2017). POLG has DNA polymerase activity to fill DNA gaps but

lacks efficient dRP lyase activity to process the 5′dRP groups

(Kaufman and Van Houten, 2017). Bohr’s and Wilson’s groups

identified a robust dRP lyase activity in the mitochondria belonging

to POLB (Sykora et al., 2017). Biochemical characterization

indicates that the 5′dRP lyase activity of DNA polymerase beta

plays a primary role in complementing POLG by removing the 5′
dRP group, thus promoting short-patch-BER in mtDNA. Both

POLB and POLG support gap filling in single nucleotide gaps

(Kaufman and Van Houten, 2017). POLG is known for its high

replication fidelity, which allows it to support both replication and

repair functions in the mitochondria. This high fidelity, however,
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TABLE 1 Variants associated with mutation on mitochondrial targeting sequence (MTS) of base excision repair (BER) genes and its
clinical significance.

Gene MTS
location

Position
changed

Variation Variant id Mutation
description

Clinical significance References

OGG1 8-21 9 p.Arg9Ser rs769947581 Missense,
Benign
(uniprot)

Unknown PMID:29848661

12 p.Gly12Glu rs772520254 Missense,
Benign
(Uniprot)

Unknown MTSviewer

MTH1 1-18 2 pGly2Asp rs144573336 Missense
(Uniprot)

Unknown PMID: 16607562

17 pArg17Gln rs372407158 Somatic,
Missense
(Uniprot)

Unknown MTSviewer

UNG 1-35 11 p.Phe11Ser 947219 Germline,
Missense
(ClinVar)

Hyper IgM syndrome type 5 PMID: 9776759

21 p.Ala21Thr 643750 Germline,
Missense
(ClinVar)

Hyper IgM syndrome type 5 MTSviewer

MUYTH 1-14 1 p.Met1Val 230848 Germline,
Missense,
Pathogenic
(ClinVar)

Familial adenomatous polyposis 2/
Hereditary cancer- predisposing
syndrome/Gastric cancer Familial
adenomatous polyposis 2.

PMID:21235684

12 p.Trp12Ter 483936 Germline,
Nonsense,
pathogenic
(ClinVar)

Familial adenomatous polyposis 2 MTSviewer

NTHL1 1-95 18 p.Thr10Ser 657414 Germline,
Missense, likely
Benign
(ClinVar)

Familial adenomatous polyposis 3/
Hereditary cancer-
predisposing syndrome

PMID:9611236

62 p.Gln54Ter 662775 Germline,
Missense,
pathogenic
(ClinVar)

Familial adenomatous polyposis 3/
Hereditary cancer-
predisposing syndrome

MTSviewer

NEIL1 1-89 68 p.Pro68His rs187873972 Missense
(Uniprot)

Unknown PMID:2575473

24 p.Gly24Cys rs761525934 Missense
(Uniport)

Unknown MTSviewer

NEIL2 No
canonical
MTS

N/A N/A N/A N/A N/A PMID:22130663,
PMID:
25754732
MTSviewer

APEX1 289-318 291 p.L291Vfs*6 rs747329195 Somatic,
Frameshift
(Uniprot)

Unknown PMID:20231292

307 p.Ser307Asn rs1183577581 Missense
(Uniport)

Unknown MTSviewer

POLG 1-25 10 p.Ala10Val 458708 Germline,
Missense,
Benign
(ClinVar)

Progressive sclerosing poliodystrophy PMID 8884268
PMID: 18546365

11 p.Gly11Ser 619334 Germline,
Missense,

Progressive sclerosing poliodystrophy MTSviewer

(Continued)
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may be detrimental in situations that require the polymerase to

bypass a lesion.
DNA ligase

DNA LIG III is a key factor of the BER pathway which is shared

between the mitochondria and the nucleus compartment, where it is

involved in sealing DNA nicks to complete mtDNA repair processes.

LIG3 is the only vertebral mitochondrial DNA ligase identified so far

and is essential for mitochondrial DNA maintenance (Gao et al., 2011;

Simsek et al., 2011). In the mitochondria, LIG3 interacts with tyrosyl-

DNA phosphodiesterase 1 (TDP1), NEIL1/2 glycosylases, and POLG

(Simsek and Jasin, 2011). In vitro work shows that downregulation of

LIG3 in human fibroblastoma cell lines decreased the mtDNA copy

number, reduces respiration, and leads to the accumulation of DNA

SSBs in mtDNA. In contrast, the complete lack of LIG3 in murine cells

leads to the full depletion of mtDNA, underlying the essential role of

LIG3 inmitochondrial genome integrity (Lakshmipathy and Campbell,

2001; Shokolenko et al., 2013). The somatic and germline variants of

LIG3 may contribute to the loss of function and accumulation of

mtDNA damage which likely drives mitochondrion-associated

human pathologies.
Impact of aberrant BER repair on
mitochondrial genomic integrity

Loss of BER results in the accumulation of mutation [(C:G→T

transversions] (Whitaker et al., 2017) or DNA single-strand

(Lindahl, 1993) or double-strand breaks (DSBs)] (Woodbine

et al., 2011; Fridlich et al., 2015), which are principal sources of

genomic instability (Khanna and Jackson, 2001; Caldecott, 2008).

Dysfunctional mtBER leads to the accumulation of mtDNA D-loop
Frontiers in Cellular and Infection Microbiology 06
mutation in gastrointestinal cancer (Wang et al., 2018). DNA-

repair-deficient mitochondria are more susceptible to oxidative

DNA damage agents (Shokolenko et al., 2003). It is possible that

loss or mutation in MTS signaling sequence contributes to the lack

of mtBER in the mitochondrial compartment. Mutations in MTS of

BER genes may prevent the import of the nuclear encoded BER

proteins into the mitochondria, resulting in the loss of their

biological functions in the mitochondria. Germline and somatic

variants of BER genes that harbor MTS mutations likely cause

deficiency in mtBER repair pathways, contributing to

mitochondrial genome instability and human diseases (Table 1).

Germline BER variants with non-synonymous mutations in the

MTS sequence likely increase the risk factor for different

pathophysiological outcomes. Similarly, mutations in BER genes

within tumors may contribute to tumor initiation and progression.

It is important to note that the genetic mutations in MTS, analyzed

using the MTSViewer platform, suggested MTS mutation sites, and

clinical variant scores likely suggest the potential impact of these

mutations on protein structure and function in the mitochondria.
Impact of H. pylori infection on
mitochondrial genome transactions

H. pylori infection causes chronic gastric inflammation (Peek

and Blaser, 2002), and patients with a previous history of H. pylori

infection are at a higher risk to develop gastric cancers (Aoi et al.,

2006). Furthermore infection with H. pylori suppresses stomach

acidity and may result in a more permissive milieu for colonization

with other bacteria (Dicksved et al., 2009). Mitochondrial dynamics

play important roles in bacterial pathogenesis, with multiple

mitochondrial functions mechanistically linked to their

morphology, which is defined by ongoing events of fission and

fusion of the outer and inner membranes (Cogliati et al., 2016). H.
TABLE 1 Continued

Gene MTS
location

Position
changed

Variation Variant id Mutation
description

Clinical significance References

Benign
(ClinVar)

POLB 1-17 8 p.Gln8Arg Rs200636493 Missense,
Benign
(Uniprot)

Unknown PMID:28559431

7 p.Pro7ser Rs1463614564 Missense,
Benign
(Uniprot)

Unknown MTSviewer

LIG3 73-333 224 p.Arg224Trp 782153 Germline,
Missense,
Benign
(ClinVar)

Unknown PMID:10207110

241 p.Ser241Leu 987864 Germline,
Missense,
Benign
(ClinVar)

Unknown MTSviewer
This table summarizes the mutations within the mitochondrial targeting sequence (MTS) of various base excision repair (BER) genes, along with the positions of the amino acid changes,
corresponding variant IDs, and their clinical significance based on databases ClinVar and UniPort as well as software MTSviewer and existing published literature.
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pylori infection dysregulates the delicate balance of mitochondrial

fission and fusion networks (Scott and Youle, 2010). Mitochondrial

fusion allows the mitochondria with normal mtDNA to compensate

for defects in the mitochondria with damaged mtDNA (Nakada

et al., 2001; Ono et al., 2001; Yang and Gao, 2018). These processes

are governed by a complex molecular machinery and finely tuned

by regulatory proteins (Tilokani et al., 2018). H. pylori-induced

mtDNA damage may contribute to trigger this event via genomic

instability such as mutations and deletions in mitochondrial DNA

that yield a heteroplasmic mixture of wild-type and mutant

mitochondrial genomes within one cell (Taylor and Turnbull,

2005). As shown in Figure 2, the mtDNA that harbor extensive

damage likely removed from the cellular system via mitochondria

fission process to minimize the carryover of undesirable genetic

traits to next cell cycle. Furthermore, mitochondrial fission is

needed to create not only new mitochondria, but also contributes

to quality control by enabling the removal of damaged

mitochondria and can facilitate apoptosis during high levels of

cellular stress. Therefore, mitochondrial fission is an important

element to eliminate infected cells and reduce cell-to-cell-spreading,

thus modulating apoptosis and bacterial dissemination (Spier et al.,

2019). In contrast mitochondria harboring different genetic lesions

likely compensate for their defects by relying on the genetic content

from other mitochondria through the fusion process. Damaged and

undamaged mtDNAs yield a heteroplasmic mixture of normal and

mutant mitochondrial genomes within the same cell (Wonnapinij

et al., 2008; Aryaman et al., 2018). The mitochondria fusion

scenario likely maintained if the mutation rate in the

mitochondria remain below ~ 80% per cell, the mitochondria in
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heteroplasmic cells complement one another to compensate their

defects (Yoneda et al., 1994; Nakada et al., 2001). Mitochondrial

Fusion can rescue two mitochondria with mutations in different

genes through cross-complementation to one another, and it can

mitigate the effects of H. pylori infection induced DNA damage by

the exchange of repair proteins and other factors with other

mitochondria. It is also important that mitochondrial fusion can

therefore maximize oxidative capacity in response to toxic stress

and use alternative resource or repair factors to fix the damaged

region of mtDNA.
H. pylori toxin-induced
mitochondria dysfunction

Mitochondria play a central role in the innate immune

response. It is at the center of the inflammatory response in the

case of a viral or bacterial infection or spontaneous cellular damage.

Because of their structural similarity to their bacterial ancestor,

extracellular mitochondria and their components may operate as a

danger signal by means of their interaction with pattern recognition

receptors (PRRs). PRRs are a group of receptors that can specifically

detect molecular patterns found on the surfaces of pathogens,

apoptotic cells and damaged senescent cells. In the case of an

infection by a pathogenic agent, the microorganisms will be

detected by PRR that recognize pathogen-associated molecular

patterns (PAMPs), such as flagellins, lipopolysaccharide,

mannose, nucleic acids and proteins and the danger-associated

molecular motifs (DAMPs) molecules. In addition, the presence of
FIGURE 2

H. pylori-mediated mitochondrial dysfunction and inflammation. Upon infection, H. pylori secretes toxins such as VacA, which interacts with the
mitochondria, leading to the modulation of its function and ultimately promoting pathogenesis. It decreases the mitochondrial membrane potential,
leading to reduced ATP production and an increase in cytochrome c release that triggers autophagy. Additionally, VacA enhances the mtDNA
damage and the generation of ROS. This triggers a series of stress responses, including the upregulation of mitochondrial DNA repair mechanism
factors (e.g., POLG and TFAM) and the activation of the cGAS/STING pathway due to the release of damaged mtDNA and nDNA in the cytosol. Cells
have a mechanism to respond to unrepaired mtDNA damages that includes trans-lesion synthesis, fusion, fission, and mitophagy that degrades
severely damaged mitochondria. The accumulation of ROS and the release of mitochondrial contents also activate the NLRP3 inflammasome,
leading to the processing and release of pro-inflammatory cytokines IL-1b and IL-18. Collectively, these processes contribute to chronic
inflammation and genomic instability, which are key factors in the pathogenesis of H. pylori-related diseases, including gastritis and gastric cancer.
Figure created with BioRender.com.
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the bacterial virulence factors such as type IV secretion system

(T4SS), the bacterial protein CagA and the vacuolating cytotoxin

(VacA) is associated with chronic inflammation and increased risk

of gastric cancer development (Peek and Blaser, 2002). H. pylori

strains are categorized into cagA‐positive and cagA‐negative strains

based on the presence or absence of the cag pathogenicity island

(cagPAI). The cagPAI, is an ~40‐kb DNA segment containing

around 30 genes (open reading frames), which include cagA and

several genes encoding components of a bacterial Type IV secretion

system (T4SS), that delivers CagA into attached gastric epithelial

cells (Covacci and Rappuoli, 2000). Cag A is capable to induce

cytosolic Ca2+ influx, leading to mitochondria ROS production. In

addition, Cag A can upregulate the expression level of spermine

oxidase (SMO), which can convert spermine to spermidine and

simultaneously releases hydrogen peroxide (Chaturvedi et al., 2011;

Cindrilla et al., 2016).

H. pylori is known to target mitochondria through its

vacuolating cytotoxin (VacA), which triggers mitochondria-

dependent apoptosis in mammalian cells (Calore et al., 2010). In

gastric epithelial cells, VacA localizes to endosomal compartments

and reaches the mitochondrial inner membrane where it forms

anion-conductive channels (Calore et al., 2010; Domanska et al.,

2010). VacA reduces mitochondrial membrane potential leading to

decreased ATP production and cytochrome c release (Galmiche and

Rassow, 2010). The pore-forming VacA toxin of the H. pylori,

recruits and activates Drp1 resulting in mitochondrial fission, Bax

activation, MOMP and cytochrome c release (Jain et al., 2011).

VacA is also an efficient inducer of autophagy (Terebiznik et al.,

2009). It is possible that H. pylori deregulate host cell mitochondria

at early and late stage of infection with different dynamics. At the

early stage of infection, H. pylori induce VacA dependent

dysregulation of mitochondria hemostasis, which promotes

transient increase in mitochondrial translocases, mitochondrial

DNA replication maintenance factors such as POLG and TFAM.

In contrast, at late infection stage the mechanism of dysregulation is

VacA independent alteration in mitochondrial replication and

import components, suggesting the involvement of additional H.

pylori activities in mitochondrion-mediated effects (Figure 2).
mtDNA modulates H. pylori infection-
associated inflammation

Mitochondria have been reported as modulators of cellular

antibacterial immunity and inflammatory response (Andrieux

et al., 2021). Abundant lines of research implicate the

mitochondria as a key immune modulator in mouse models and

human materials. Components of mtDNA such as TFAM,

extracellular ATP, and numerous others have the capacity to elicit

strong immune responses and, as such, and are thus considered

mitochondrial damage-associated molecular patterns (DAMPs)

(Galluzzi et al., 2012; West et al., 2015; De Gaetano et al., 2021).

Mitochondrial DNA (mtDNA) encodes essential subunits of the

oxidative phosphorylation system and is also a major damage-
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associated molecular pattern (DAMP) that engages innate immune

sensors when released into the cytoplasm, outside of cells or into the

circulation. As a DAMP, mtDNA not only contributes to anti-viral

resistance but also causes pathogenic inflammation in many disease

contexts. Several studies also report that when mtDNA is

discharged outside the cell, whether intact or damaged, it shows

considerable pro- or anti-inflammatory effects in different models,

thus highlighting the paradoxical interactions between these

organelles and immune cells (Boudreau et al., 2014; Torralba

et al., 2016). Mitochondrial DNA released into the cytosol is

recognized by a DNA sensor cGAS, a cGAMP/STING which

activates a pathway leading to the enhanced expression of type I

interferons (Figure 2). Additionally, mtDNA activates NLRP3

inflammasome, which promotes the activation of pro-

inflammatory cytokines interleukin-1 beta and interleukin-18

(West et al., 2015; Zhong et al., 2018; Swanson et al., 2019). In

the endosome, mtDNA can also bind to Toll-like receptor-9,

triggering a pathway that results in the expression of pro-

inflammatory cytokines (De Gaetano et al., 2021). Stress-induced

release of mtDNA or mtRNA into the cytoplasm can activate a type

I IFN-I response that confers resistance to viral infection (West

et al., 2015; Dhir et al., 2018; Sprenger et al., 2021). Inflammation

caused by infection leads to the production of ROS and subsequent

oxidative DNA damage (Sahan et al., 2018). ROS partially derives

from active immune systems and host cells (Cindrilla et al., 2016).

During infection, the stimulation of phagocytic cells, such as

neutrophils, eosinophils, monocytes, and macrophages, activates

the NADPH oxidase (Nox) pathway, which catalyzes the reduction

of oxygen using NADPH and generates superoxide (Brown and

Griendling, 2009). In infected cells, the production of ROS is further

amplified in the mitochondria via a mechanism involving NLRX1, a

member of the intracellular Nod-like receptor (NLR) family that is

localized in the mitochondria (Abdul-Sater et al., 2010). The

resulting ROS can enter the nucleus and attack the DNA,

generating oxidative DNA damage, such as 8-oxo-G, AP sites,

and single-strand breaks (SSBs) (Kidane et al., 2014). Overall,

further work is needed to uncover whether mtDNA and/or

nuclear DNA damage continuously provides the fuel to

exacerbate H. pylori infection-mediated inflammation.
Future perspective

Mitochondrial DNA integrity is critical to keep cellular

homeostasis and prevent undesirable immune activation.

Spontaneous or exogenous-stress-mediated mtDNA damage

triggers different types of mitochondrial responses including

fission or fusion to restore normal function and physiology. In

addition, mtDNA damage activates DNA repair pathways such as

BER to process the oxidative- or alkylating-agent-induced mtDNA

damage and resolve some of the repair intermediates. Furthermore,

unrepaired mtDNA base damage has an ability to deregulate the

mtDNA replication dynamics leading to replication stress or

blockage. mtDNA damage has been implicated in a variety of
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bacterial pathogens to drive inflammation and disease—for

example, intracellular pathogenic bacteria such as Salmonella

typhimurium induces typhoid-toxin-dependent mtDNA damage,

promotes the release of mtDNA into the cytosol, and triggers the

cGAS-STING pathway (Xu et al., 2022; Chen et al., 2024).

Mycobaterium abscessus and Mycobacterium tuberculosis also

cause mtDNA damage , leading to inflammat ion via

inflammasome activation or cGAS-STING signaling (Wiens and

Ernst, 2016; Kim et al., 2020).H. pylori infection potentially impacts

the mtDNA integrity and transitory alteration of mitochondrial

import translocases and a dramatic upregulation of POLG and

TFAM. Spontaneous as well as chronic infection induces excessive

accumulation of mtDNA damage which leads to the release of

mtDNA into the cytoplasm and activates cGAS/STING-dependent

type I interferon response or activate other additional signaling

pathways to promote inflammation- and infection-associated

pathogenicity. Future risk assessment of patients may look for the

potential link between a mutation in the MTS sequence of BER

genes and the biological consequence of insufficient mt BER repair

factors. In the future, the clinical relevance and the mechanism

underlying the altered mtDNA dynamics with or without H. pylori

infection probably will provide a new insight for cancer risk

assessments and therapeutic planning across different stages of

gastric cancer.
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