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Šošić, Šitum and Terzić. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 10 March 2025

DOI 10.3389/fcimb.2025.1479795
Urinary microbiota changes
among NMIBC patients during
BCG therapy: comparing BCG
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The gold standard for treating high-risk non-muscle-invasive bladder cancer

involves the transurethral removal of cancerous tissue followed by BCG

immunotherapy. So far, there is no reliable biomarker for predicting BCG

efficacy and identifying patients who will or will not respond to BCG treatment.

Emerging evidence suggests that urinary microbiotamay play a crucial role in BCG

efficacy. This study aimed to explore (i) changes in urinarymicrobiota during the six

induction cycles of BCG and (ii) its potential predictive role in determining the

outcome of BCG treatment. To this end, catheterized urine samples were

collected before each of the six BCG doses and bacterial composition was

analyzed using 16S rRNA gene sequencing. Patient inclusion criteria were male

gender, no previous history of urothelial cancer, no other malignancies, no active

infection, and no antibiotic usage for at least 20 days before the first BCG dose. We

observed a significant decrease in biodiversity, measured by the Shannon Index,

during the first week of therapy in 10 out of 12 patients (p=0.021). Additionally,

differences in microbiota composition before the start of BCG therapy were noted

between responders and non-responders to BCG therapy. Non-responders

exhibited a 12 times higher abundance of genus Aureispira (p<0.001), and, at the

species level, a 27-fold lower abundance of Negativicoccus succinivorans

(p<0.001). Throughout the treatment, the abundance of the genus Aureispira

decreased, showing an eightfold reduction by the end of therapy among non-

responders (p<0.001). Our findings suggest that urinary microbiota plays an active

role before and during the course of BCG therapy. However, this is a preliminary

study, and further research involving larger patient cohorts is needed.
KEYWORDS

urinary microbiome, non-muscle invasive bladder cancer, BCG, response to
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1 Introduction

According to the latest GLOBOCAN data, bladder cancer is the

10th most common cancer globally, with an estimated 549,000 new

cases and 200,000 deaths yearly. Incidence among men is four times

higher, ranking it the sixth most common cancer and the ninth

leading cause of cancer death among men (Sung et al., 2021). In the

USA, the 5-year average survival of bladder cancer patients is 77%,

dropping to only 5% in those with metastatic disease (Saginala

et al., 2020).

Bladder cancer is usually presented with hematuria whereas

diagnosis is confirmed with a combination of cystoscopy and tumor

biopsy. Non-muscle-invasive bladder cancer (NMIBC) accounts for

75% of bladder cancer pathology. The gold standard of care for

high-risk NMIBC is a combination of transurethral resection of

cancerous tissue (TURBT) with Bacillus Calmette–Guerin (BCG)

adjuvant immunotherapy. Even though this therapy has a relatively

high success rate, complete response is achieved in 55%-65% of

papillary tumors and 75% of carcinoma in situ (CIS). However,

around 40% will develop a recurrence despite initially responding to

therapy (Lamm et al., 1991; Lamm, 1992; Lamm et al., 2000). This

reveals a need to develop a biomarker that can stratify responders to

BCG immunotherapy from non-responders. A significant portion

of patients with NMIBC that do not respond to the standard

therapy will progress to muscle-invasive bladder cancer (MIBC)

and have a worse prognosis than patients with bladder cancers that

were invasive at the time of diagnosis (Pietzak et al., 2019).

The discovery of the wide community of bacteria in urine

samples, previously deemed sterile by traditional cultivation

techniques, called “urinary microbiota” or “urobiota,” introduced

a new research opportunity to understand bladder cancer

pathogenesis and its response to therapy. A complex community

of microorganisms that reside in the urinary bladder is thought to

be responsible, through interaction with host immune cells and

urothelial cells, for creating a microenvironment that could

potentially promote or inhibit tumor development as well as

modulate therapeutic outcomes.

Hence, our objective is to investigate alterations in the urobiota

during BCG immunotherapy cycles. This exploration aims to

provide a deeper understanding of the urobiota changes linked to

a favorable response to the therapy, while also shedding light on the

protective mechanisms underlying BCG immunotherapy in non-

muscle-invasive bladder cancer.
2 Materials and methods

2.1 Patient recruitment

This study was approved by the Board of Ethical Committee of

Clinical Hospital Center Split (2181-147-01/06/M.S.-20-4). All

patients have signed a written informed consent. A total of 12

male patients who underwent TURBT and were treated with

adjuvant BCG immunotherapy for high-risk NMIBC were

included in this study. Inclusion criteria for patient selection were
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male gender, no previous history of urothelial cancer, no other site

malignancies, no active infection, and no antibiotic usage for 20

days prior to the first BCG dose application and during BCG cycles.

Immunomodulating conditions such as autoimmune diseases and

diabetes were considered as exclusion criteria since they can

modulate urobiota composition (Shaheen et al., 2022). Also, all

patients were preoperatively treated with the same prophylaxis

(norfloxacin). The median follow-up for the whole cohort is 38.5

months. The recurrence was diagnosed with a mean follow-up of 14

months. One patient’s follow-up was limited to 10 months due to a

death unrelated to bladder cancer and was excluded from the

analysis of response-to-therapy groups, but remained included in

all other analyses (labeled Limited FU). The diagram of patient

selection with the exclusion process is presented in Figure 1A,

whereas Table 1 shows the patient’s demographics and relevant

clinical data.
2.2 Urine collection

Urine samples were obtained with aseptic bladder catheterization

before each of the six induction BCG doses. Therefore, the first

sample (timepoint T0) represents the patient’s urinary microbiota

prior to BCG instillation, whereas all other samples (timepoints T1-

T5) represent the urobiota composition during the course of the BCG

induction therapy (shown in Figure 1B). Urine samples were stored

in a sterile container and were transported to the Laboratory for

Cancer Research at the University of Split, School of Medicine, within

4 h for further processing.
2.3 DNA isolation and 16S rRNA
gene sequencing

Approximately 30 to 50 mL of collected urine was centrifuged

for 10 min at 7,500 g. The supernatant was discarded, and pellets

were resuspended in 100 µL of molecular-grade water and stored at

−20°C. Alternatively, whole urine samples were frozen at −80°C,

and centrifugation was performed after thawing.

DNA isolation was performed using urine pellets as described

previously (Bučević Popović et al., 2018). We used a DNA PowerSoil

Kit (Qiagen, Germany) according to the manufacturer’s protocol.

Extracted DNA was eluted in 20 µL of water and stored at −20°C.

DNA concentrations were determined by NanoDrop (Thermo

Fisher, USA) and Qubit fluorometric assay (Thermo Fisher, USA)

and ranged from too low for detection to 500 ng/µL. To check for

DNA contamination during DNA extraction and sample collection,

we performed negative controls using DNA-free molecular-grade

water that was passed through the sterilized catheter, followed by the

sameDNA extraction procedure. Negative controls did not give DNA

bands in the PCR reactions.

The PCR reaction was performed using the universal primers

515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3 ′ ) that ampl i fy the
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hypervariable region 4 (V4) of the bacterial 16S ribosomal gene

(Caporaso et al., 2011; Caporaso et al., 2012). The second PCR step

was performed to add Illumina adapters and sample indices. The

same amount of PCR products from each sample was pooled; the

mix was purified and then size selected using Agencourt AMPure

XP-PCR magnetic beads (Beckman Coulter, USA).

Sequencing was performed using a paired-end 2 bp × 250 bp

sequencing reagent cartridge, according to manufacturer’s protocol

instructions (Illumina, USA). The library was quantified with Qubit

and real-time PCR and checked with a bioanalyzer for size

distribution detection. PCR and sequencing were performed at

Novogene Company (Novogene Co., China).
2.4 Bioinformatic analysis

Paired-end reads were assigned to samples according to their

unique indices and truncated by cutting off the barcode and primer

sequences. Demultiplexed reads were imported into the Qiime2

platform (McKinney, 2010; McDonald et al., 2012; Bolyen et al.,

2019). Trimmed reads were denoised using the DADA2 (2023.5.0)

package using standard parameters (Callahan et al., 2016). This

included filtering out of low-quality, PhiX, and chimera reads and

finally generation of amplicon sequence variants (ASVs). Next, we

used a classifier based on the SILVA database (v.138) to assign

taxonomy to the sequences in the ASV table (Pruesse et al., 2007;
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Quast et al., 2013; Yilmaz et al., 2014). Naïve Bayes pretrained

classifier Silva 138 99% OTUs using the 515F/806R region of

sequences from Qiime2 were used for this purpose (Bokulich

et al., 2018; Robeson et al., 2021).

Microbiome composition was investigated using species relative

abundance and alpha and beta diversity indices (Pielou, 1966;

Vázquez-Baeza et al., 2013; Weiss et al., 2017). Phylogenetic

analysis was performed using MAFFT multiple-sequence

alignment and FastTree phylogenetic tree building (Price et al.,

2010; Katoh and Standley, 2013).

Data analysis in R using RStudio was performed using packages

mia and vegan for microbiome analysis (Oksanen et al., 2012; Ernst

et al., 2024). To make graphical representations, package ggplot2

was used (Wickham, 2016). Differential abundance testing was

performed in R version 4.2.2 using the ANCOMBC-2 and Linda

packages on phylum, family, and genus taxonomic levels (Lin and

Peddada, 2020; Zhou et al., 2022). Paired-sample differential

abundance was performed using the ALDEx2 package in R

(Gloor et al., 2016; Wickham et al., 2019). Alpha diversity

(Shannon index, species richness) and beta diversity (Bray–

Curtis) indices were calculated using a rarefied table with the

same number of reads for all samples (Gloor et al., 2016,241).

This depth was chosen according to lowest read number per sample

in order to keep all samples in the analysis. From rarefaction curves

of alpha diversity measures, this depth was estimated as satisfactory

(Supplementary Figure 1).
FIGURE 1

(A) Funnel plot of all patients with NMIBC recruited for the study and the exclusion criteria used for the selection of the final cohort. (B) Figure
scheme of the sample collection of catheterized urine prior to each of the six induction BCG instillations.
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A total of 5,596,063 reads were obtained from 72 urine samples

(mean frequency of reads per sample: 77,723, range: 30,241-101,073).

Sequences were assigned to 42,212 amplicon sequence variants or

ASVs (mean frequency of reads per ASV: 132.57, range: 1-870,084).
2.5 Statistical analysis

We performed data analysis using MedCalc statistical software

(version 23.0.6 MedCalc Software Ltd., Ostend, Belgium).

The distribution of Shannon’s Biodiversity Index (SI) as well as

ASV at different time points was summarized with the median and

range due to the limited sample size, and the associated 95%

confidence intervals for these changes were also reported.

To test for significant differences in both Shannon’s Index and

ASV across different time points, we used the Friedman test, with

the Wilcoxon test for paired samples applied as post hoc analysis.

The signed rank sum test was additionally used to determine

whether the median of changes relative to baseline differed from

zero. The association between weekly change in SI and the initial

biodiversity level of an individual was investigated using simple

linear regression. The two-sided significance level was set at 0.05.
3 Results

3.1 Bacterial composition

The relative abundance of the most abundant genera and phyla of

bacteria recorded in all patients at all timepoints is shown in Figure 2A.
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Enterococcus sp. (17.6%), Serratia (7.1%), Pseudomonas (4.9%), and

Escherichia–Shigella (2.8%) were overall the most prevalent genera

(Figures 2A–C). Firmicutes (49.1%) and Proteobacteria (28.7%) were

overall the most prevalent phyla, followed by Actinobacteriota (10.4%)

and Bacteriodota (6.3%) (Figure 2D).

When looking at the relative composition in urinary microbiota

before the BCG therapy (timepoint T0), the most prevalent genera

for all patients were Enterococcus sp. (11.35%), Lactobacillus sp.

(7.83%), Serratia sp. (5.64%), and Escherichia–Shigella sp.

(4.14%) (Figure 2B).

There were differences in most abundant taxa in the two response-

to-therapy groups when looking at all timepoints. Enterococcus

(14.7%), Serratia (9.8%), and Lactobacillus (6.3%) were the most

prevalent genera in the responder group (Figure 2C). In the non-

responder group, most prevalent genera were Lactobacillus (10.3%),

Peptoniphilus (7.0%), and Pseudomonas (5.0%). The most prevalent

phyla (Figure 2E) were similar in both response-to-therapy groups, the

most abundant being Firmicutes in the responder group (46.7%) and in

the non-responder group (42.2%), followed by Proteobacteria

(responder—30.9%, non-responder—29.8%) and Actinobacteriota

(responder—10.9%, non-responder—11.9%).

Before the first BCG administration (timepoint T0), the most

prevalent genera in responders were Enterococcus (13.9%), Serratia

(7.8%), and Lactobacillus (7.6%), whereas in non-responders,

Lactobacillus (8.7%), Escherichia–Shigella (6.2%), and Clostridium

(5.2%) (Figure 2D). Most abundant phyla before the first BCG

administration were similar in both response groups: Firmicutes (R

—49,2%, NR—42.2%), Proteobacteria (R—29,9%, NR—28.3%),

Actinobacteriota (R—9.4%, NR—8.8%), and Bacteroidota (R—

5.7%, NR—12.1%) (Figure 2E).

In the last timepoint (T5—before the last induction BCG dose), the

three most abundant genera were the same as in T0 for BCG

responders: Serratia (15.8%), Enterococcus (14.8%), and Lactobacillus

(5.4%), whereas for non-responders, the three most abundant genera

changed to Enhydrobacter (6.9%), Lactobacillus (6.5%), and

Pseudomonas (5.4%) (Figure 2D). The most abundant phyla in the

last timepoint were Firmicutes (R—43.7%, NR—32.6%),

Proteobacteria (R—36.9%, NR—40.5%), Actinobacteriota (R—9.2%,

NR—9.8%), and Bacteroidota (R—4.8%, NR—6.1%) (Figure 2E).
3.2 Bacterial diversity measures

The baseline Shannon’s Biodiversity Index (SI) for most

respondents (50%) was between 7.5 and 8.5 (median SI 8.0, range

6.2-9.6) (Figure 3A). We observed a significant change in

biodiversity, as measured by the SI, across the six therapy time

points (Friedman test, p=0.037). Specifically, there was a notable

decrease in the SI compared with the baseline level after the first and

third weeks of therapy (p ≤ 0.041), whereas during the other therapy

weeks (weeks 2, 4, and 5), the SI showed no significant deviation

from the baseline (Figures 3A, B). In the initial week of therapy,

following the application of BCG, a decrease in biodiversity was

noted in 10 out of 12 patients (signed rank sum test, p=0.021), with

a median SI decrease of 1.3 (95% CI 0.2, 2.9).
TABLE 1 Patients’ clinical characteristics.

Number of patients 12

Gender Male 12

Female 0

Age (median) 72

Smoking status
Yes 4 (42%)

No 7 (58%)

T stage

TaLG (8%)

CIS 3 (25%)

T1HG 5 (42%)

T1HG + CIS 3 (25%)

Antibiotics <20 days prior to BCG
Yes 0

No 12 (100%)

Follow-up (months) 38.5

Recurrence (high-grade)
Yes 3 (25%)

No 9 (75%)

History of high-grade UC
Yes 0

No 12 (100%)
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Regarding the species, more precisely ASVs, richness of the

bacterial community, we also observed significant changes in the

number of observed features relative to the baseline value at the 0.1

significance level (Friedman test, p=0.081). The number of bacterial

community features was notably lower only during the first week of
Frontiers in Cellular and Infection Microbiology 05
therapy (p=0.005), returning to levels comparable with baseline

thereafter (Figures 3C, D).

When assessing weekly biodiversity changes (between successive

therapy doses), we made an interesting observation. In the second

week of treatment (T2), nearly three-quarters of patients (8 out of 12
FIGURE 2

(A, B) Relative abundance of bacterial genera in all patients individually (A) and grouped (B) in six different timepoints before and during the BCG
induction therapy. (C) Relative abundance of bacterial genera in patients grouped by response to therapy and shown at six different timepoints in the
BCG induction therapy. (D, E) Relative abundance of bacterial phyla in all patients (D) and patients grouped by response to therapy (E) and shown at
six different timepoints in the BCG induction therapy. (T0-T5—therapy timepoints, R—responders to therapy, NR—non-responders to therapy, LFU—
patient with limited 10-month follow-up of no cancer recurrence).
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subjects) exhibited an increase in SI compared with their SI levels in

the first week of therapy (T1) (Figure 3E). However, the median

increase did not reach statistical significance (signed rank sum test,

p=0.176). In the subsequent weeks of therapy, microbial biodiversity

in response to therapy was not so pronounced as we did not observe
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significance in the direction of weekly changes in terms of growth or

decline (signed rank test, p≥0.204), nor did we find a significant

correlation between weekly changes and the initial state of

biodiversity of each individual (R2 ≤ 13%, p-value for regression

coefficient ≥0.244).
FIGURE 3

(A) Biodiversity as measured with Shannon Index in different timepoints. Each line represents alpha diversity volatility throughout six timepoints for
one patient. Thick black line represents mean values. (B) Difference in Shannon Index from baseline value (week 0) in later timepoints. (C) Number of
observed bacterial features (measure of species richness) in different timepoints. (D) Difference in observed bacterial features from baseline value
(week 0) in later timepoints. (E) Difference in Shannon entropy from a previous week. Rectangles in (A, C) were added to highlight where significant
changes in biodiversity measures were found.
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3.3 Response to therapy and bacterial
diversity measures

When considering alpha diversity variance attributed to

response-to-therapy status, responders had non-significantly

lower mean Shannon diversity before the first BCG instillation,

(median(R) = 7.40, median (NR) = 8.55, p-value = 0.29, Wilcoxon

test with Holm adjustment, Supplementary Figure 2A). Species

richness was similar in responders and non-responders in the first

time point (median (R)= 1582.5, median (NR) = 1674.5, p-value =

1, Wilcoxon test with Holm adjustment, Supplementary Figure 2B).

Overall microbial community dissimilarity, calculated as Bray–

Curtis dissimilarity, did not show any differentiation based on

response status (p-value 1, Permanova test, stratified per patient,

number of permutations 9999, Supplementary Figure 3A); however,

when comparing only the urobiome community before the start of

the therapy (T0), the differentiation was significant at level 0.1 (p-

value 0.0539, Permanova test, number of permutations 9999)

(Supplementary Figure 3B), whereas in the last timepoint (T5),
Frontiers in Cellular and Infection Microbiology 07
no significant clustering was detected (p-value 0.1856, Permanova

test, number of permutations 9999, Supplementary Figure 3C).
3.4 Differential abundance testing

Differential abundance analysis revealed that before the onset of

the BCG treatment, non-responders had 12 times higher abundance

of genus Aureispira compared with ones that did respond to

treatment (p < 0,001) (Figure 4A). On a species level,

Negativicoccus succinicivorans showed 27 times lower abundance

among non-responders (p < 0,001) (Figure 4A). At the end of the

BCG treatment (Figure 4B), genera and species related to the

phylum Pirellulaceae had three (p < 0,001) times higher

abundance in the non-responder’s group, along with species the

Parabacteroides johnsonii, showing the highest increase in

abundance (p < 0,001), almost three times.

In patients that responded to the BCG treatment, the only

difference during the course of treatment was observed at the final
FIGURE 4

Differential abundance analysis (ANCOMBC2) of urine samples between patients grouped by response to therapy: (A) before the onset of the therapy
(T0) at genus and species levels and (B) at the end of the therapy (T5) at genus and species levels. The values shown in the figure are expressed as
the logarithm base 2 of the fold change value (Log2FC). The results are represented as either positive or negative, depending on whether there is an
increase or decrease in the abundance, respectively. LFC—logarithm base 2 of the fold change value.
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stage of therapy, showing an increase in abundance of almost two

times in several species (p < 0,001, ANCOMBC2) compared with a

starting point, but all of them were uncultured (Figure 5).

In a group of patients that did not respond to therapy, Linda

analysis revealed a significant decline in the abundance of phylum

Nanoarchaeota, up to 60 times (p = 0,025) after the first

administration of the BCG treatment and an additional decline to

135 times by the end of the therapy (p = 0.005) (Supplementary

Figure 4). Figure 6 shows the dynamics of abundance changes on a

genus and species levels throughout the course of the therapy in the

non-responder group (ANCOMBC2 analysis). Genus Nitrosospira

had 10 times higher abundance at the end of the BCG treatment

compared with the starting point (p < 0.001). Furthermore, genus

Aureispira, except for being more abundant in non-responders
Frontiers in Cellular and Infection Microbiology 08
before the onset of the therapy, also showed a decreasing trend in

abundance throughout the treatment period among non-

responders. At the end of the BCG therapy, genus Aureispira was

eight times less abundant (p < 0.001) compared with the values

before the onset of the treatment.

Furthermore, we did pair sample testing on samples from the

same patient to detect differences in taxon abundance between two

therapy timepoints (T0 vs. T1, T1 vs. T2, and T0 vs. T5) at levels of

species, genus, family, and phylum, but no taxons were detected to

be significantly changed.

Regarding BCG bacterial detection, we were not able to

determine up to species-level sequences belonging to the genus

Mycobacterium. This genus represented 0.18% sequences in both

responders and non-responders before the first instillation (T0). In
FIGURE 5

Differential abundance analysis of urine samples between therapy timepoints in patients who responded to therapy (responders) on species level
(ANCOMBC2 analysis). The values shown in the figure are expressed as the logarithm base 2 of the fold change value (Log2FC). The results are
represented as either positive or negative, depending on whether there is an increase or decrease in the abundance, respectively, relative to the
starting point before the onset of the therapy (T0). LogFC—logarithm base 2 of the fold change value.
FIGURE 6

Differential abundance analysis of urine samples between therapy timepoints in patients who did not respond to therapy (non-responders) on (A)
genus and (B) species levels (ANCOMBC2 analysis). The values shown in the figure are expressed as the logarithm base 2 of the fold change value
(Log2FC). The results are represented as either positive or negative, depending on whether there is an increase or decrease in the abundance,
respectively, relative to the starting point before the onset of the therapy (T0). LogFC—logarithm base 2 of the fold change value.
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the last timepoint, its relative abundance in responders was higher,

0.33%, whereas in non-responders it was somewhat lower at 0.14%

(Supplementary Figure 5).
4 Discussion

In our study, we found differences in urinary microbiota

composition between responders and non-responders, as well as a

decrease in microbial biodiversity in both patient groups following

the administration of BCG. Although BCG immunotherapy is a

well-established therapy for NMIBC, it is unknown how it impacts

the bladder microbiome and how urinary microbiota modulates the

BCG’s efficacy (Herr and Morales, 2008). Thus, this research aimed

to describe microbiota composition before BCG therapy, and

possibly find microbial predictors of the patient’s positive

response to BCG. Additionally, we wanted to gain insight into the

dynamics of microbiota change through the course of BCG therapy

and to get additional insight into the mechanism of BCG

antitumorigenic action (Redelman-Sidi et al., 2014). This is the

first study that follows urinary microbiota changes during the full

induction course of BCG treatment.

The most prevalent genera among responders before the start of

BCG therapy (T0 time point) were Enterococcus, Serratia, and

Lactobacillus , whereas in non-responders Lactobacillus ,

Escherichia–Shigella, and Clostridia prevailed. Despite differences

in prevalence, no statistical significance was found, similar to the

lack of difference between NMIBC and control individuals

described previously (Heidrich et al., 2024). However, Knorr et al.

reported differences among genera between responder and non-

responder patients (Knorr et al., 2024). When all bacteria were

analyzed at a genus level, Aureispira, a Gram-negative aerobic

genus, was found to be more abundant among our non-responder

group (Yuasa et al., 2023). This genus was not previously reported

to be part of the urinary microbiota; however, its family,

Saprospiraceae, has been previously linked to the urinary

microbiota of women with interstitial cystitis (Siddiqui et al., 2012).

Similarly to Aureispira, an uncultured species in the family of

aerobic, Gram-positive Thermomonosporaceae family was also

found to be more abundant in non-responders. On the contrary,

species Negativicoccus succinicivorans was found to be 27 times

more abundant among the patients that responded to the BCG

therapy. Negativicoccus succinicivorans is a little-known Gram-

negative anaerobic bacterium, isolated from clinical specimens

(Marchandin et al., 2010). It has also been reported to be part of

the healthy male and female urinary microbiome and less abundant

in the urine of patients with type 2 diabetes compared with healthy

controls (Calvigioni et al., 2024). Since there is currently limited

research on the microbes distinguishing responders from non-

responders, their significance in BCG therapy remains largely

speculative. Nonetheless, if these distinctions persist in

subsequent studies, these microbes could serve as biomarkers to

predict responsiveness to BCG therapy. Identifying such

biomarkers could spare patients who would not benefit from the

treatment, offering a more targeted approach.
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We observed biodiversity changes throughout the course of

BCG therapy. The most significant was the reduction of biodiversity

after the initial dose of BCG observed among responders and non-

responders. A somewhat similar decrease in bacterial richness was

noted previously (James et al., 2023), indicating an active role of

BCG competing for space, nutrients or releasing molecules affecting

other community members. This initial drop in diversity is mostly

diminished during the continuation of therapy. However, at the end

of the urine collection, 5 weeks from the first dose of BCG, urobiota

composition slightly changed. For example, family Pirellulaceae,

species Parabacteroides Johnsonii, Luteimonas sp., and some

uncultured bacteria were more prevalent among non-responders.

In conclusion, our study offers preliminary insights into urinary

microbiota changes during BCG therapy and its relation to the

response of this treatment. Differences in abundances in taxa

Aureispira and Negativicoccus succinicivorans suggest a difference in

urobiota composition of responders and non-responders. The found

decrease in biodiversity richness following the start of BCG, as well as

differences in taxon abundance in the final time point suggest an

active interplay between instilled BCG and the local urobiota and

active role of urinary microbiota in BCG effectiveness. However,

further investigations involving a larger, well-stratified patient

population are warranted to validate these findings conclusively.
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