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diverse locations
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Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China
Introduction:Obesity, a pressing global health issue, is intricately associated with

distinct gut microbiota profiles. Bariatric surgeries, such as Laparoscopic Sleeve

Gastrectomy (LSG), Sleeve Gastrectomy (SG), and Roux-en-Y Gastric Bypass

(RYGB), induce substantial weight loss and reshape gut microbiota composition

and functionality, yet their comparative impacts remain underexplored.

Methods: This study integrated four published metagenomic datasets,

encompassing 500 samples, and employed a unified bioinformatics workflow

for analysis. We assessed gut microbiota a-diversity, identified species

biomarkers using three differential analysis approaches, and constructed high-

quality Metagenome-Assembled Genomes (MAGs). Comparative genomic,

functional profiling and KEGG pathway analyses were performed, alongside

estimation of microbial growth rates via Peak-to-Trough Ratios (PTRs).

Results: RYGB exhibited the most pronounced enhancement of gut microbiota

a-diversity compared to LSG and SG. Cross-cohort analysis identified 39 species

biomarkers: 27 enriched in the non-obesity group (NonOB_Enrich) and 12 in the

obesity group (OB_Enrich). Among the MAGs, 177 were NonOB_Enrich and 14

were OB_Enrich. NonOB_Enrich MAGs displayed enriched carbohydrate

degradation profiles (e.g., GH105, GH2, GH23, GH43, and GT0 families) and

higher gene diversity in fatty acid biosynthesis and secondary metabolite

pathways, alongside significant enrichment in amino acid metabolism (KEGG

analysis). Post-surgery, Akkermansia muciniphila and Bacteroides uniformis

showed elevated growth rates based on PTRs.

Discussion: These findings underscore RYGB’s superior impact on gut

microbiota diversity and highlight distinct microbial functional adaptations

linked to weight loss, offering insights for targeted therapeutic strategies.
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1 Introduction

The gut microbiota is essential for human health, impacting

metabolism, immune function, and overall well-being (Clemente

et al., 2012). Obesity, a widespread global health concern, is linked

to distinct gut microbiota profiles (Turnbaugh et al., 2006). Bariatric

surgeries, such as Laparoscopic Sleeve Gastrectomy (LSG), Sleeve

Gastrectomy (SG), and Roux-en-Y gastric bypass (RYGB), are

highly effective treatments for severe obesity, resulting in

significant weight loss and metabolic improvements (Zhang et al.,

2009). These procedures also lead to notable changes in the

composition and function of the gut microbiota (Aron-

Wisnewsky et al., 2019; Lee et al., 2019). Additionally, identifying

novel weight loss-related microbes and understanding their

mechanisms of action are crucial for advancing human health

and the development of the health industry (O’Toole et al., 2017).

This study integrates data from multi-cohort data to identify weight

loss-related microbe biomarkers.

Variations in study designs, experimental procedures, and

bioinformatics workflows have contributed to inconsistencies in

research findings. For example, studies have reported conflicting

outcomes regarding the relative abundance of the phylum

Bacteroidetes and the populations of Faecalibacterium and

Bifidobacterium species following bariatric surgery, with some

indicating an increase and others a decrease (Chen et al., 2017;

Fouladi et al., 2021; Furet et al., 2010; Murphy et al., 2017).

Furthermore, some studies investigating the impact of RYGB on

gut microbiota (Palleja et al., 2016) have used the Wilcoxon test to

identify differential species, which may result in unacceptably high

false positive rates (Nearing et al., 2022). In this study, by employing

three differential analysis methods—LEfSe, ANCOM, and edgeR—

we identified consistently significant differential species across

cohorts. This highlights the necessity of integrating multiple

methods for a comprehensive analysis to identify more reliable

species-level biomarkers related to obesity or weight loss.

Additionally, there is currently no comparative study examining

the impact of different surgical methods on gut microbiota diversity.

In this study, we compared the effects of gut microbiota recovery

under different surgical methods using a unified and standardized

bioinformatics analysis workflow.

As the study (Fouladi et al., 2021) analyzing multi-cohort data

to identify replicable post-RYGB gut microbiota and metabolic

pathway shifts (e.g., increased Veillonella/Akkermansia and

decreased Blautia) conducted a meta-analysis mainly based on

existing 16S rRNA research, there is a notable lack of meta-

analyses at the metagenomic level. This study addresses this gap

by utilizing four published metagenomic datasets, encompassing

500 samples related to bariatric surgery, and applying a unified

bioinformatics analysis workflow. Metagenome-Assembled

Genomes (MAGs) construction, a culturing-independent and

reference-free approach, offers a promising strategy for

uncovering microbial diversity and genomic features (Saheb

Kashaf et al., 2022; Zeng et al., 2022). This study aims to address

this gap by using MAGs to conduct a comparative genomic analysis
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of NonOB_Enrich MAGs and OB_Enrich MAGs across diverse

geographical locations to elucidate the potential genetic

mechanisms underlying weight gain or loss.

This study highlights the importance of metagenomic

approaches in understanding the complex interplay between gut

microbiota and obesity, offering potential avenues for optimizing

bariatric surgery and enhancing patient health (Qin et al., 2012). By

elucidating the microbial shifts associated with bariatric surgery,

this research offers valuable insights for developing targeted

probiotic therapies to enhance obesity treatment.
2 Methods

2.1 Datasets in this study

This study comprises four distinct cohorts designed to analyze

the metagenomic profiles of gut microbiota in obese individuals

before and after bariatric surgery across different geographical

locations. The study population undergoing weight loss

interventions excluded individuals with basal metabolic diseases,

cancer, and other related conditions. The samples were derived

from consistent tissue types and uniform sequencing methods were

employed. After screening, a total of four cohorts were included in

the study (Table 1), as detailed below:

Cohort 1 - PRJEB12123 (Liu et al., 2017). This cohort includes

256 fecal samples collected from Beijing, China. The samples

include 105 healthy individuals, 88 obese individuals, and 63

individuals at various stages post-Sleeve Gastrectomy (SG).

Specifically, the post-SG samples are categorized into SG 0M (23

samples), SG 1M (17 samples), and SG 3M (23 samples). This

cohort uses paired-end sequencing with a read length of 100bp.

Cohort 2 - PRJNA597839 (Nie et al., 2020): Comprising 76 fecal

samples from the USA, this cohort focuses on the longitudinal

analysis of patients undergoing laparoscopic Sleeve Gastrectomy

(LSG). It includes 30 healthy individuals and 46 obese individuals

pre- and post-surgery. The samples collected include LSG pre (32

samples) and LSG 6M (14 samples). Sequencing is performed with

paired-end reads of 150bp.

Cohort 3 - PRJEB12947 (Palleja et al., 2016): This cohort

consists of 33 fecal samples collected from Beijing, China,

specifically focusing on patients undergoing Roux-en-Y gastric

bypass (RYGB). This cohort focuses on longitudinal samples from

patients undergoing RYGB, without healthy controls: RYGB pre (13

samples), RYGB 1M (1 sample), RYGB 3M (12 samples), and RYGB

12M (8 samples). Paired-end sequencing with 2x100bp reads is

utilized for this cohort.

Cohort 4 - PRJNA668357 (Fouladi et al., 2021): The final cohort

involves 135 fecal samples from the USA, targeting the analysis of

gut microbiota in patients undergoing RYGB surgery. This cohort

includes 52 obese individuals and post-surgery samples: RYGB pre

(38 samples), RYGB 1M (0 samples), RYGB 3M (27 samples), and

RYGB 12M (18 samples). The sequencing for this cohort is

performed with paired-end reads of 2x150bp.
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2.2 Sequence data acquisition
and preprocessing

Sequence read archive (SRA) files of all samples were

downloaded using prefetch software. Raw sequence data were

subjected to quality control using fastp (https://github.com/

OpenGene/fastp). Human-derived sequences were removed by

aligning the reads to the human genome using Bowtie2 (v2.3.4.3).

Next, these non-human sequences were aligned to a reference

database with Kraken2 (Wood et al., 2019). As a reference

database, we used the Kraken-build utility to download bacterial,

archaeal, viral and fungal libraries including National Centre for

Biotechnology Information (NCBI) taxonomic information as well

as complete genome sequences from RefSeq (Jing et al., 2021;

Nearing et al., 2022; Sola-Leyva et al., 2021). In addition, we also

incorporated the human and protozoa genome into the Kraken2

database to further reduce false-positive microbes introduced by

human-derived or other eukaryotic sequences. Based on the

effective clean data volume from the sequencing of each sample,

we used the RPTM (Reads Per Ten Million) normalization method

to standardize the data at the species level, followed by subsequent

diversity and differential species analyses. Besides, the filtered reads

were then assembled denovo using megahit (https://github.com/

voutcn/megahit). Metagenome-Assembled Genomes (MAGs) were

constructed using metaWRAP (https://github.com/bxlab/

metaWRAP). The bin refinement module in metaWRAP was

employed to optimize MAG quality, followed by dereplication

using dRep (https://github.com/MrOlm/drep,v3.2.2) to remove

redundant MAGs. Taxonomic classification of the MAGs was

performed using the classify-wf module in GTDB-Tk. Genomic

k-mer distances among MAGs were calculated using mash (v2.3,

https://mash.readthedocs.io/en/latest/). A phylogenetic tree was

constructed with the Neighbor-Joining method (nj) using the ape

package in R. The resulting tree was visualized using the Interactive

Tree Of Life (iTOL) web tool. Genes within the MAGs were

predicted by prodigal (v2.6.3) and annotated by aligning them to

the CAZy and KEGG databases using the blastp module of

DIAMOND (https://github.com/bbuchfink/diamond). Functional

genes were identified and their abundances were quantified for

each MAG. CoPTR (v1.1.6) was used to compute peak-to-trough

ratios (PTRs) from MAGs to accurately reflect microbial growth

rates. Gapseq (v1.3.1) was used to predict metabolic processes

(Zimmermann et al., 2021). Prediction of secondary metabolites

in each MAG was performed using antiSMASH (v7.0.1).
2.3 Statistical analysis

The effects of different cohorts, sample locations, and

experimental groups on microbial community composition were

assessed using the PERMANOVA test in the vegan package of R (p-

value < 0.05 was considered significant). Differential abundance

testing to identify differentially abundant species between obese and

healthy individuals (OB-Healthy) and between obese individuals

pre- and post-treatment (OB-Treat) employed three methods:
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edgeR v3.36.0 (FDR < 0.05, FC = 5), ANCOM v2.1 (detection

threshold 0.9), and LEfSe v1.0 (logarithmic LDA score > 2). Core

differential species were identified based on consensus results from

these methods across multiple cohorts, ensuring robust

identification of key species affected by obesity and treatment.

The Kruskal-Wallis test was used to compare PTR differences

between groups. Differential KOs were subjected to KEGG

enrichment analysis using R clusterProfiler. We calculated the

within-sample a-diversity using Shannon and ACE index on

species level to estimate the richness of samples using QIIME

(Caporaso et al., 2010) v1.9.1. Besides, the post-surgery a-
diversity index increased ratio refers to the proportional increase

in a-diversity index after surgery compared to preoperative levels.

Specifically, we calculated this ratio by: (postoperative a-diversity
index - preoperative a-diversity index)/preoperative a-diversity
index for each cohort. Variance partitioning analysis was

performed by varpart function of vegan packages.
3 Result

3.1 Cohort, location, and health factors
significantly affect gut microbiota diversity

Three surgical methods—SG, LSG, and RYGB—all enhanced

the a-diversity index of the gut microbiota, which was consistent

with previous studies (Liu et al., 2017; Paganelli et al., 2019)

(Figures 1A, B; Supplementary Table S1). Additionally, even

within the same group (Healthy or OB) across different cohorts,

significant differences were observed in alpha diversity

(Supplementary Figure S1). To compare the effects of different

surgical methods on gut microbiota diversity, for each cohort, we

computed the ratio of the post-surgical a-diversity index increase

relative to the OB group. The results showed that, in terms of

species richness (ACE index), LSG > RYGB > SG. From the

perspective of both species richness and evenness (Shannon

index), RYGB > LSG > SG (Supplementary Table S2).

Principal Coordinates Analysis (PCoA) and PERMANOVA can

be used to assess the impact of different studies and confounding

factors on microbiota outcomes (Wang et al., 2020). The analysis

revealed that cohort locations and surgical interventions

significantly influence microbial community structure, with the

impacts of obesity and surgical intervention being the most

pronounced (indicated by higher R2 values). Figure 1C shows

significant differences between the four cohorts (PRJEB12123,

PRJEB12947, PRJNA597839, and PRJNA668357), with an

PERMANOVA R2 value of 0.03539 and a p-value of 0.001,

indicating significant grouping by cohort. Figure 1D illustrates the

distribution of microbial communities across various health and

treatment statuses, including healthy individuals and those

undergoing LSG, RYGB, and SG. The analysis yielded a

PERMANOVA R2 value of 0.06557 and a p-value of 0.001,

indicating significant differences among these groups, with the

impact of surgical treatment (a higher R2) being more

pronounced than the influence of cohorts. To further validate the
Frontiers in Cellular and Infection Microbiology 04
robustness of PERMANOVA results, we conducted variance

partitioning analysis (VPA) (Figure 1E), which confirmed that the

dominant effect of Treat is not influenced by the collinearity of

project cohorts or country site, while the PERMANOVA R² of

country site is inflated due to collinearity. Specifically, Treat

exhibited an independent contribution of 6.75% (after excluding

project cohorts and country site), whereas project cohorts

contributed only 0.77% (after excluding country site and Treat),

and country site showed no significant independent contribution

(after excluding project cohorts and Treat), reinforcing that Treat is

the primary variable with significant independent explanatory

power. Overall, these results highlight the significant effects of

cohort and surgical treatment on gut microbiota diversity.
3.2 Comparing differential analysis
methods to identify gut significantly
enriched microbes across cohorts

Due to the significant impact of different cohorts on gut

microbiota, and to uncover significantly enriched microbes for

subsequent MAGs analysis, we compared the results by three

differential analysis methods for each cohort to identify

differential species which enhances the accuracy of differential

species analysis. For LEfSe differential analysis method: using

LDA > 2, 51 differential species were identified between the OB

and Treat groups, and 32 differential species were identified

between the OB and Healthy groups. For ANCOM differential

analysis method: using a detection threshold > 0.9, 32 differential

species were identified between the OB and Treat groups, and 16

differential species were identified between the OB and Healthy

groups. For edgeR differential analysis method: using FDR < 0.05

and fold-change > 5, 542 differential species were identified between

the OB and Treat groups, and 244 differential species were

identified between the OB and Healthy groups. The three

differential analysis methods yielded varying results, with the

number of identified markers ranked from highest to lowest as

follows: edgeR, LEfSe, and ANCOM. However, there was relatively

little overlap between the results of the three methods (Figure 2).

Specifically, the three methods identified only 3 common markers

in the “Healthy vs. OB” group and 7 common markers in the “Treat

vs. OB” group, which is significantly fewer than the unique markers

identified by each method. This highlights the necessity of

integrating different cohorts and multiple differential analysis

methods to comprehensively identify differential species.
3.3 Identified NonOB_Enrich and
OB_Enrich microbes through consistent
presence across cohorts and
multi-methods

Theoretically, potential beneficial microbes are more likely to be

enriched in healthy or treatment groups compared to the OB group,

a strategy also utilized in a published study (Wu et al., 2024). More
frontiersin.org
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cohort data and difference methodological support could help

minimize the likelihood of false-positive markers. In this context,

the more diverse the differential analysis methods and the more

supported cohorts, the more reliable the identified biomarkers will

be. Supplementary Table S3 lists species that are significantly

enriched in the healthy group (16 species in total) and treatment

group (11 species in total), focusing on those with the strongest

support. For instance, Coprobacter fastidiosus and Lachnospira

eligens were identified in two cohorts (PRJEB12123 and

PRJNA597839) and supported by three differential analysis

methods (edgeR, ANCOM, and LEfSe for the former; and

ANCOM and LEfSe for the latter). Other species, such as
Frontiers in Cellular and Infection Microbiology 05
Bacteroides stercorisrooris , Bacteroides timonensis , and

Brotilimocola acetigignens, were identified in two cohorts and

supported by edgeR analysis. In the treatment group, several

species were identified across four cohorts, indicating strong

support for their enrichment post-treatment. For example,

Bifidobacterium dentium, Raoultella planticola, and Streptococcus

mutans were consistently enriched across all four cohorts

(PRJEB12123, PRJNA597839, PRJEB12947, and PRJNA668357),

supported by edgeR analysis. Additionally, species such as

Veillonella atypica and Veillonella parvula were identified in three

cohorts and supported by three differential analysis methods

(edgeR, ANCOM, and LEfSe). Similarly, we also analyzed the
FIGURE 1

Microbial community diversity comparison. (A) shannon index and (B) ace index comparison of different groups for each cohort. (C) PCoA plot
showing significant differences between the four cohorts (PRJEB12123, PRJEB12947, PRJNA597839, and PRJNA668357) (D) PCoA plot presenting
the distribution of microbial communities among OB, health and treat status. The curves represent the trend lines of the diversity index changes for
each surgical method. (E) Venn diagram showing variance partitioning analysis (VPA) for project, site, and treatment factors. Site is grouped by the
geographical variation between samples from China, Denmark and the USA.
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species enriched in OB group (Supplementary Table S4), including

Faecalimonas umbilicata, Fusobacterium varium, Acidaminococcus

provencensis, Alkalihalobacillus bogoriensis, Collinsella tanakaei,

Ellagibacter isourolithinifaciens, Enterococcus casseliflavus,

Fusobacterium ulcerans , Limosi lactobaci l lus mucosae ,

Peptacetobacter hiranonis, Slackia isoflavoniconvertens, and

Turicibacter bilis. Overall, 39 species biomarkers were identified,

including 27 microbes enriched in the NonOB_Enrich group and

12 microbes enriched in the OB_Enrich group. These 39 identified

species biomarkers could serve as potential beneficial or non-

beneficial microbes for future wet-lab functional validation.
3.4 Functional insights from species-
specific biomarker MAGs and differences in
CAZY enzyme families

To elucidate the genomic mechanisms underlying postoperative

species abundance variations, we conducted a MAG construction

analysis. We obtained 7,336 high-quality MAGs (completeness

>90%, contamination <5%). After dRep-based deduplication,

4,201 unique MAGs were retained. We plotted the assembly

completeness and contamination statistics for these MAGs. The

quality statistics of the MAGs (Figure 3A) show that 69.2% of

MAGs exceed 95% completeness, with the majority (57.87%)

having contamination rates below 1%. The phylogenetic tree

(Supplementary Figure S2) illustrates the diversity and

distribution of MAGs across different groups, projects, and phyla.

From the overall structure of the phylogenetic tree, MAGs from

different phyla are classified into distinct branches based on their
Frontiers in Cellular and Infection Microbiology 06
evolutionary relationships. The genomes are distributed across

different research cohorts and groups, demonstrating overall high

genomic diversity. According to Figure 3B, Firmicutes_A has the

highest representation across all categories, particularly in the

PRJEB12123 project and the Healthy group. Bacteroidota and

Actinobacteriota also show significant presence, with notable

counts in both the Healthy and Treat groups across multiple

projects. Other phyla, such as Desulfobacterota_I, Fusobacteriota,

and Verrucomicrobiota, have lower representation but are still

present across different categories, indicating a diverse

genomic composition.

Based on the significantly enriched microbe lists in

Supplementary Tables S3, S4, the number of MAGs identified

through binning for each bacterium was summarized

(Supplementary Table S5; Figure 3C). The analysis identified 185

gut microbiota MAGs (171 MAGs in the NonOB_Enrich group and

14 MAGs in the OB_Enrich group). These MAGs include five core

species in the healthy group: Lachnospira eligens, Bacteroides

uniformis, Coprobacter fastidiosus, Desulfovibrio fairfieldensis, and

Klebsiella michiganensis. In the treatment group, eight core species

were identified: Akkermansia muciniphila, Streptococcus salivarius,

Eisenbergiella tayi, Bifidobacterium dentium, Enterocloster

aldenensis, Enterocloster lavalensis, Streptococcus mutans, and

Klebsiella variicola. Notably, Lachnospira eligens exhibited the

highest number of MAGs in the healthy group, followed by

Bacteroides uniformis and Coprobacter fastidiosus. In the

treatment group, Akkermansia muciniphila had the highest

number of MAGs. Additionally, five core species were identified,

including Faecalimonas umbilicata, Collinsella tanakaei,

Ellagibacter isourolithinifaciens, Peptacetobacter hiranonis, and
FIGURE 2

The Venn diagrams compare species markers identified by different methods (ANCOM, LEfSe, edgeR) for “Healthy vs. OB” (A) and “Treat vs. OB” (B)
groups, highlighting unique and shared markers.
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FIGURE 3

Comprehensive analysis of MAGs quality, distribution, and functional annotations. (A) Distribution of the 4,201 unique MAGs based on completeness
or contamination levels. (B) The heatmap displays the distribution of MAGs across different corhots (PRJEB12123, PRJNA597839, PRJEB12947,
PRJNA668357) and groups (Healthy, OB, Treat), organized by phylum. The color intensity and numerical values indicate the number of MAGs in each
category. (C) Number of high-quality MAGs corresponding to potential species enriched in Healthy, OB and Treat group. (D) Phylogenetic tree of
the MAGs. The rings from inner to outer represent species classifications, enriced-group, phylum and group affiliations (Healthy, Treat, OB). (E)
NMDS analysis based on CAZy enzymes families relative abundance profile of MAGs in the NonOB_Enrich and OB_Enrich group. The clustering
circles represent the 80% confidence ellipse based on s.class function in ade4 (F) Bubble chart showing the distribution of top 50 enzyme genes
from MAGs annotated to CAZy enzyme families for MAGs in the NonOB_Enrich and OB_Enrich group.
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Acidaminococcus provencensis. The phylogenetic tree results

(Figure 3D) show that Bacteroides uniformis, Coprobacter

fastidiosus, and Akkermansia muciniphila in the NonOB_Enrich

group, cluster into one branch, while Collinsella tanakaei and

Ellagibacter isourolithinifaciens in the OB_Enrich group, form a

separate branch. These species may exhibit certain similarities in

their biological functions. We further conducted a literature review

to validate the aforementioned microbes as potential beneficial or

non-beneficial ones (Supplementary Table S6).

A key characteristic of obesity-related microorganisms is their

ability to metabolize carbohydrates, converting specific sugars into

propionic acid, lactic acid, or acetic acid. This metabolic activity

plays a significant role in modulating the host’s response to a

carbohydrate-rich diet, which is particularly relevant in the

context of obesity development (Derrien and van Hylckama

Vlieg, 2015; Le Barz et al., 2015; Schwiertz et al., 2010). NMDS

based on CAZY enzymes count of MAGs (Figure 3E) showed a

significant separation between microbes in the NonOB_Enrich and

OB_Enrich group, indicating distinct carbohydrate degradation and

utilization profiles. The bubble plot (Figure 3F) further shows the

top 50 enzyme families by relative gene abundance across various

species. The analysis reveals that key enzyme families, including

Carbohydrate-Binding Modules (CBM), Carbohydrate Esterases

(CE), Glycoside Hydrolases (GH), GlycosylTransferases (GT), and

Polysaccharide Lyases (PL), have a higher relative proportion of

metabolic enzyme genes detected in MAGs of the NonOB_Enrich

group, such as Bacteroides uniformis, Lachnospira eligens,

Akkermansia muciniphila, and Eisenbergiella tayi, compared to

the MAGs in OB_Enrich group, implying that they have a

stronger ability to metabolize and utilize a variety of

complex carbohydrates.
3.5 Microbes enriched in the
NonOB_Enrich group, show specific
genetic adaptations enhancing essential
metabolic functions for gut health

We compared the shared and unique CAZy enzymes detected

in microbes between the NonOB_Enrich and OB_Enrich group

(Figure 4A; Supplementary Table S7). The results indicate that

microbes in NonOB_Enrich group exhibit a significantly higher

number of CAZy enzyme types compared to the OB_Enrich group

microbes. The top three enzymes are associated with Bacteroides

uniformis, Eisenbergiella tayi, and Coprobacter fastidiosus, while the

bottom three are linked to Ellagibacter isourolithinifaciens,

Peptacetobacter hiranonis, and Acidaminococcus provencensis.

This suggests a greater diversity in the carbohydrate-active

enzyme profiles of microbes in the NonOB_Enrich group.

Additionally, Bacteroides uniformis possesses the highest number

of unique enzymes, followed by a small number of enzyme families

shared among some microbes. The relative proportion of genes

from GH105, GH2, GH23, GH43, and GT0 gene families is

significantly higher in microbes of the NonOB_Enrich group

compared to the microbes in OB_Enrich group (Figure 4B).
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Based on the 74 significantly different KOs (Supplementary

Table S8), these KOs were significantly enriched in four pathways:

“amino acid biosynthesis,” “glycine, serine, and threonine

metabolism,” “phenylalanine, tyrosine, and tryptophan

biosynthesis,” and “galactose metabolism” (Figure 4C). The result

in Figure 4D shows that species enriched in the NonOB_Enrich

group produced more secondary metabolites compared to those in

the OB_Enrich group. Furthermore, the predominant secondary

metabolites produced by different species varied. For instance,

Akkermansia muciniphila produced more terpenes, Bacteroides

uniformis produced more RRE-containing compounds, and

Lachnospira eligens produced more cyclic-lactone autoinducers.

Additionally, the clustering results for the NonOB_Enrich and

OB_Enrich groups displayed a clear separation trend, with the

exception of Bifidobacterium dentium. In healthy human gut

microbiota, secondary metabolite genes, such as those involved in

NRPS, terpenes, and RiPPs, helped maintain microbial diversity

and inhibited excessive pathogen growth. In contrast, in obese

individuals, secondary metabolite gene diversity of MAGs was

reduced, and the metabolite profile was altered, potentially

contributing to chronic low-grade inflammation and

metabolic disorders.
3.6 Comparison of fatty acid biosynthesis
genes and PTR across obesity-associated
and non-obesity-associated MAGs

Microbes that activate the fatty acid biosynthesis pathway can

induce body weight gain (Henneke et al., 2022). We compared the

presence of fatty acid biosynthesis genes across species in the

OB_Enrich and NonOB_Enrich (each species containing at least

three MAGs included in the analysis). The Venn analysis results in

Figure 5A show that more genes were detected in the

NonOB_Enrich group, with seven unique genes, while both

groups shared nine detected genes. This is consistent with a

previous report, where the activity of genes involved in fatty acid

metabolism is relatively low, particularly those related to enzymes in

the tricarboxylic acid (TCA) cycle, with their function being

significantly reduced (Liu et al., 2017). Figure 5B shows that the

MAGs of different species clustered together, indicating a

preference for the fatty acid biosynthesis genes carried by each

species. The beneficial gut bacterium Lachnospira eligens carried the

most diverse set of genes, including fabG, MCH, accB/bccP, fabK,

fabD, accC, fabF, fabZ, accA, and accD. Bacteroides uniformis

carried fabG, fabD, fabF, fabI, IpxC-fabZ, fabH, and ACSL/fadD.

Akkermansia muciniphila carried fabG, fabD, fabF, fabI, IpxC-fabZ,

and fabH. The species enriched in OB_Enrich, Collinsella tanakaei,

carried the fewest genes, only including fabF and fabZ. The result in

Figure 5C further shows a tendency for separation between the

OB_Enrich MAGs and NonOB_Enrich MAGs, indicating a distinct

difference in the detection profiles of fatty acid biosynthesis genes

between the two groups. Overall, NonOB_Enrich MAGs exhibit

higher gene diversity, which may contribute to SCFA production,

promote fatty acid oxidation rather than storage, and reduce lipid
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accumulation, thereby regulating and improving host obesity (Den

Besten et al., 2013; Gurung et al., 2020). This may explain why

obesity is significantly associated with a reduction in SCFA

concentration (Ecklu-Mensah et al., 2023).

We performed a clustering heatmap analysis (Figure 5D) to

compare the average number of key reactions (z-score normalized)

related to the fatty acid biosynthesis pathway, which were predicted

from the genome fasta sequences of species in the obesity-associated

microbiome group (OB_Enrich) and the non-obesity-associated

group (NonOB_Enrich). The analysis revealed that beneficial gut

microbes related to short-chain fatty acid production, such as

Bacteroides uniformis, Akkermansia muciniphila, Streptococcus

salivarius, and Lachnospira eligens, clustered into one subgroup.

This indicates that these four species exhibit more similar fatty acid

biosynthesis pathway reactions, suggesting potential synergistic

effects. However, Coprobacter fastidiosus, Eisenbergiella tayi, and
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Desulfovibrio fairfieldensis , which were enriched in the

NonOB_Enrich group, did not cluster with the other four species

mentioned above, indicating distinct metabolic regulation

mechanism. The enrichment of these three species in

NonOB_Enrich may not directly regulate body weight through

fatty acid biosynthesis, but rather exert their effects through other

mechanisms, such as improving inflammatory responses.

Microbial growth rate, as reflected by PTR, was linked to disease

status and largely independent of relative abundances capturing a

unique biological variation that complements relative abundance

data (Joseph et al., 2022a). Based on PTR analysis (Supplementary

Table S9), we discovered that microbes in the NonOB_Enrich group

and OB_Enrich group mainly clustered into two distinct branches

(Supplementary Figure S3A). The growth rates of the same species

exhibited varying distribution patterns across different dimensions,

such as geographic regions, study cohorts, and participant groups.
FIGURE 4

Statistical and enrichment analysis of functional annotation results MAGs in the NonOB_Enrich and OB_Enrich group. (A) Shared and unique CAZy
enzymes detected in microorganisms. Vertical bars (left): Represent the total number of CAZy enzymes in each microbe individually. Horizontal bars
(above): Show the size of intersections, indicating the number of enzymes shared among microbes or unique to each group. Dots and connecting
lines: Illustrate the specific combinations of sets being compared. (B) Significantly different enzyme families between the NonOB_Enrich group and
the OB_Enrich group. (C) KEGG enrichment analysis based on the significantly different KEGG KOs. (D) Cluster analysis of secondary metabolite
prediction based on MAGs. Normalization of the average number of secondary metabolites detected in each species’ MAG using Z-scores. * indicates
statistical significance at P < 0.05, while ** denotes high statistical significance at P < 0.01.
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Further analysis using differential boxplots revealed that in the

PRJNA668357 cohort, Akkermansia muciniphila (Supplementary

Figure S3B) and Bacteroides uniformis (Supplementary Figure S3C)

had significantly higher PTRs in the RYGB group compared to the

OB group. Considering the longitudinal data across different

postoperative time points, Akkermansia muciniphila showed a

significant increasing trend in PTR from the 1st to the 6th month

after RYGB surgery (Supplementary Figure S3D), although this

trend became non-significant by the 12th month (p-value = 0.075).

For Bacteroides uniformis, there was a significant increase in PTR

from the 1st to the 12th month post-surgery (Supplementary Figure

S3E), with the increase at the 6th month being less pronounced (p

value = 0.18). No statistically significant differences were observed

in the PTRs of other microbes after surgery. This further indicates

that Akkermansia muciniphila and Bacteroides uniformis, play a

more crucial role in improving obesity, with different microbes

playing crucial roles at various stages of recovery.
4 Discussion

Bariatric surgeries, effective for severe obesity, result in

significant changes to gut microbiota, highlighting the importance
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of identifying weight loss-related microbes and understanding their

mechanisms to advance both human health and the health industry.

As the first metagenome-based comprehensive analysis integrating

multiple studies on bariatric surgery and gut microbiota (Figure 6),

this study’s methodology involves 4 cohorts and surgical

interventions (Sleeve Gastrectomy, Laparoscopic Sleeve

Gastrectomy, Roux-en-Y Gastric Bypass) in 3 countries (China,

Denmark, USA) using a standardized bioinformatics analysis

pipeline. Through cross-cohort integration of multiple differential

analysis methods, the study identified significantly enriched

microbial biomarkers, followed by a MAGs-based genomic

comparison to explore their metabolic functions and

contributions to gut health, including KEGG KO comparison,

CAZy enzyme comparison, secondary metabolites, key fatty acid

biosynthesis genes and reactions comparison. This research

provides valuable insights into the discovery of weight loss

microbes and their underlying mechanisms.

SG, LSG, and RYGB are common bariatric procedures used to

treat obesity. However, RYGB is generally considered more effective

in achieving long-term weight loss and remission of metabolic

diseases (Mingrone et al., 2012; Schauer et al., 2017). The results

of this study indicate that RYGB has a superior impact on restoring

gut microbiota a-diversity (shannon index) compared to the other
FIGURE 5

Analysis of fatty acid biosynthesis genes and reactions distribution. (A) Venn diagram showing the distribution of fatty acid biosynthesis genes in the
“NonOB_Enrich” and “OB_Enrich” groups. The numbers indicate the number of unique and shared genes between the two groups. (B) The heatmap
illustrates the presence of various fatty acid biosynthesis genes across different species. Clustering was performed on both rows and columns using
the ward.D2 method, with normalization applied by row (C) Non-metric multidimensional scaling (NMDS) plot showing the distribution of species in
the OB_Enrich and NonOB_Enrich groups. The clustering circles represent the 80% confidence ellipse based on s.class function in ade4. (D) a
clustering heatmap analysis comparing the average number of reactions predicted for each MAG in the fatty acid biosynthesis pathway across
species containing three or more MAGs based on gapseq.
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two procedures, which may contribute to more effective treatment

of obesity. RYGB surgery reduces the size of the stomach and

bypasses a portion of the small intestine, thereby significantly

altering the digestive pathway. As a result, food no longer passes

through the duodenum and proximal jejunum, which changes the

absorption of nutrients and, in turn, impacts the microbial

environment and composition of the gut microbiota.
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Additionally, changes in bile acid metabolism following RYGB

may promote the growth of beneficial bacterial species, thereby

contributing to the restoration of microbial a-diversity (Furet

et al., 2010).

Identifying differentially abundant microbes is a key objective in

microbiome research, with variousmethods often used interchangeably

in the literature (Nearing et al., 2022). However, studies frequently
FIGURE 6

The diagram outlines a gut microbiota study comparison of MAGs in the NonOB_Enrich and OB_Enrich group across different cohorts, including
various obesity and bariatric surgery groups. It begins with sample collection and MAG construction, followed by the exploration of microbial species
and genomic composition. The study identified significantly enriched microbial biomarkers, followed by a MAGs-based genomic comparison to
explore their metabolic functions and contributions to gut health, including KEGG KO comparison, CAZy enzyme comparison, secondary
metabolites, key fatty acid biosynthesis (FABiosynthesis) genes comparison. This research offers valuable insights into the discovery of weight loss
microbes and their underlying mechanisms.
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report inconsistent results regarding the microbial effects of specific

bacteria (D’Elios et al., 2020; Suez et al., 2019), and a method that

performs well in one study may be absent from another (Nearing et al.,

2022). In our study, based on species-level relative abundance, three

methods (edgeR, ANCOM, and LEfSe) identified only 3 shared

markers in the “Healthy vs. OB” group and 7 in the “Treat vs. OB”

group, which is substantially fewer than the number of unique markers

identified by each method. These findings underscore the need for

integrating diverse cohorts and utilizing multiple differential analysis

methods to achieve a more comprehensive identification of

differential species.

A key characteristic of beneficial microorganisms is their ability

to metabolize carbohydrates, converting specific sugars into

propionic, lactic, or acetic acid. Microbes in the NonOB_Enrich

group exhibit a significantly higher number of CAZy enzyme types

compared to the OB_Enrich group, with gene families such as

GH105, GH2, GH23, GH43, and GT0 being significantly more

abundant. This is primarily because beneficial microbes typically

inhabit the host’s gut (e.g., humans), forming a symbiotic

relationship closely tied to the host’s nutritional needs (Lee and

Mazmanian, 2010). Gut beneficial microbes help the host digest

food, break down complex carbohydrates, synthesize essential

amino acids, and maintain gut microecological balance. These

functions require specific metabolic capabilities, such as the

breakdown of carbohydrates by enzymes like alpha-galactosidase

and the synthesis of tryptophan by tryptophan synthase. For

example, Coprobacter fastidiosus expresses a significant number of

glycoside hydrolase (GH)-encoding genes and possesses the highest

diversity of GH families, thereby promoting the host’s ability to

digest an appropriate high-fiber diet (Henneke et al., 2022).

In the analysis of fatty acid biosynthesis, Coprobacter fastidiosus,

Eisenbergiella tayi, andDesulfovibrio fairfieldensis, which were enriched

in the NonOB_Enrich group, did not cluster with the other species. A

possible explanation for this could be related to the unique metabolic

pathways of Coprobacter fastidiosus. Propionate, acetate, and succinate

are generated through the Wood-Werkman cycle and a partial

tricarboxylic acid (TCA) cycle. Genomic analysis of the core

metabolism of C. fastidiosus suggests the presence of a Wood-

Werkman cycle and a partial TCA cycle, which lacks succinyl-CoA

hydrolase, similar to the pathway described for Propionibacterium

freudenreichii. Additionally, C. fastidiosus possesses a respiratory chain

that can be utilized in propionic acid production. Instead of following

the classic fatty acid biosynthesis pathway, acetyl-CoA in C. fastidiosus

is likely synthesized via pyruvate-flavodoxin oxidoreductase (gene

NSB1T_03985) (Chen et al., 2024). In longevity populations, D.

fairfieldensis is more abundant and contributes to the biosynthesis of

menaquinone (vitamin K2), which may help prevent age-related

diseases, such as osteoporosis-induced fractures. E. tayi in the gut

plays a key role through enzymes encoded in its genome, including

1.17.1.8: 4-hydroxy-tetrahydrodipicolinate reductase (EC 1.17.1.8),

4.3.3.7: 4-hydroxy-tetrahydrodipicolinate synthase (EC 4.3.3.7), and

2.7.2.4: Aspartate kinase (EC 2.7.2.4), which are important for

distinguishing the transcriptional states of keystone taxa (Bauchinger

et al., 2024). Moreover, studies on the gut microbiome of longevity

populations have found that E. tayi is more abundant in these groups.
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The bacterial protein N-glycosylation involving E. tayi may play a

significant role in regulating physiological and pathological processes

during aging (Chen et al., 2024). The enrichment of these three species

in the NonOB_Enrich group may not directly influence body weight

through fatty acid biosynthesis, but rather may exert effects via

other mechanisms.

PTRs have the potential to be a valuable tool for investigating

microbiome dynamics (Joseph et al., 2022b). From the perspective of

PTRs based on the constructed MAGs, we found that in the USA

cohort (PRJNA668357), Akkermansia muciniphila and Bacteroides

uniformis exhibited significantly higher PTRs in the RYGB-treated

group compared to the obese (OB) group, suggesting enhanced growth

post-surgery. The longitudinal increase in PTRs for these species across

different postoperative time points further highlights their potential

roles in recovery and weight management. These PTRs increase

emphasize the importance of specific biomarkers, particularly

Akkermansia muciniphila and Bacteroides uniformis. Known for its

ability to improve gut barrier integrity and metabolic health,

Akkermansia muciniphila has been shown to reduce body fat,

enhance insulin sensitivity, and decrease inflammation, making it a

promising candidate for obesity treatment (Xu et al., 2020). Similarly,

Bacteroides uniformismay support weight loss by improving metabolic

functions and modulating gut microbiota, especially in obese

individuals with intestinal dysbiosis. This beneficial effect has been

observed in animal models, demonstrating potential for future

applications in weight management (Gomez Del Pulgar et al., 2020;

Van Hul and Cani, 2023). While PTR analysis provides insights into

microbial replication dynamics, its interpretation should be tempered

by methodological constraints. The accuracy of PTR estimates

inherently depends on the completeness of MAG reconstruction and

sequencing depth, as fragmented assemblies or low-coverage genomes

may introduce biases in peak-to-trough ratio calculations. Therefore,

this approach is primarily applicable for comparative analyses of high-

quality MAGs, while its utility as an absolute measure of metabolic

activity across heterogeneous microbial communities may be limited.

However, this study has three limitations. Firstly, it relies solely on

metagenomic data, lacking comprehensive clinical metrics for deeper

correlation analysis. Secondly, the use of Kraken for species

identification is restricted to known microbial databases, leaving

potential unknown microbes uninvestigated. Thirdly, the study is

limited to metagenomic analysis without integrating multi-omics

data or conducting further validation experiments on the identified

microbe biomarkers.

This study contributes to the understanding of obesity treatment

by identifying microbial species associated with weight loss, through

cross-cohort integration and multi-method analysis. It emphasizes the

importance of gut microbiota restoration and microbial diversity,

offering valuable insights for potential therapeutic applications.
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