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Introduction: Obesity affects approximately 39% of adults worldwide. While gut

microbiota has been linked to obesity, most research has focused on static

taxonomic composition rather than the dynamic interactions between

microbial taxa.

Methods:We applied BEEM-Static, a generalized Lotka-Volterra model, to cross-

sectional 16S rRNA gut microbiome data from six public datasets, comprising

2,435 profiles from lean and obese individuals.

Results: A total of 57 significant microbial interactions were identified in obese

individuals (79% negative), compared to 37 in lean individuals (92% negative). For

example, Bacteroidetes showed a stronger inhibitory effect on Firmicutes in

obese individuals (−0.41) than in lean ones (−0.26). Firmicutes and Proteobacteria

exhibited consistently higher carrying capacities in obese populations.

Discussion: These findings suggest that microbial interaction networks—not just

taxonomic abundance—play a key role in obesity-related dysbiosis. Our

approach enables the inference of microbiota dynamics from a single time

point, paving the way for tailored dietary interventions, which we refer to

as Optibiomics.
KEYWORDS

gut microbiota, obesity, microbial interactions, personalized nutrition, GLV method,
dietary interventions, microbiome dynamics
1 Introduction

Obesity currently affects nearly 40% of adults worldwide, totaling around 1.9 billion

people (World Health Organization, 2015). It represents a global public health challenge

because it is known to adversely affect mental health and to increase the risk of death due to

related diseases including diabetes, cardiac disease, stroke, and some forms of cancer (Jung,

1997; Stein and Colditz, 2004; James et al., 2001). Growing evidence suggests that gut
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microbiota significantly contributes to the negative health impacts

of obesity through various mechanisms, including neurotransmitter

production, digestion, and the regulation of satiety (Walters et al.,

2014; Maruvada et al., 2017; John and Mullin, 2016; Tseng and Wu,

2019; Castaner et al., 2018; Sekirov et al., 2010). Alterations in gut

microbiota composition, which are influenced by dietary factors,

play a very important role in the development of obesity and its

associated ailments (Alou et al., 2016).

Currently, our understanding of the gut microbiome’s function

in health and disease is based primarily on correlations between

disease status and the taxonomic composition of microbiota.

Despite extensive research, other role of microbial interactions in

human diseases remains limited. Relatively little is known about the

role of interactions among microbes in human diseases (Chen et al.,

2020). Given the wide range of host–microbe interactions linked to

health, dysbiosis, polymicrobial infections, and single-agent

infections, understanding interactions among microbes is critical

to predicting dynamics of the microbiota. Developing such a

mechanistic understanding and how it relates to human health

promises to aid in the development of therapeutic methods to

prevent dysbiosis and obesity, ultimately enabling the selection of

precise dietary interventions to promote beneficial shifts in the

gut microbiota.

It has been suggested that changes in the relative abundances of

Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria occur

in response to obesity (Walters et al., 2014; Maruvada et al., 2017;

John and Mullin, 2016; Tseng and Wu, 2019; Castaner et al., 2018).

Although the taxonomic names Bacteroidetes and Firmicutes were

changed recently to Bacteroidota and Firmicutes A & B, respectively

among others, in this manuscript we have preferred to use the

original names for the sake of consistency and clarity (Oren and

Garrity, 2021). Actinobacteria has been found to play an important

role in the pathophysiology of metabolic disorders, most notably

obesity, so we would expect relative abundance for this group to be

higher in obese people (Tseng and Wu, 2019; Castaner et al., 2018).

Recent research suggests that Actinobacteria can have both positive

and negative effects on health, depending on the host’s metabolic

condition (Tseng and Wu, 2019; Castaner et al., 2018). These

bacteria can enhance gut health in lean individuals through

fermentation processes, while in obese individuals, certain strains

may lead to inflammation and dysbiosis. The Firmicutes-to-

Bacteroidetes abundance ratio is frequently mentioned as a

biomarker that tends to be higher in obese individuals (John and

Mullin, 2016; Tseng and Wu, 2019; Castaner et al., 2018).

Inflammation in the large bowel occurs in response to dysbiosis,

which is often characterized by an overgrowth of facultative

anaerobic Proteobacteria (Winter and Bäumler, 2014), thus the

relative abundance of Proteobacteria is also expected to increase

with obesity (Walters et al., 2014; Maruvada et al., 2017; John and

Mullin, 2016; Tseng and Wu, 2019; Castaner et al., 2018). In

summary, these findings suggest a decline in the abundance of

Bacteroidetes relative to other phyla in response to obesity. Given

that dietary patterns have been shown to significantly impact the

distribution of these bacteria, understanding how various diets

affect microbial dynamics is crucial for developing tailored
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nutritional approaches aimed at restoring the normal balance of

microorganisms within the gut (Zeevi et al., 2015). However, these

expectations are challenged by a 2014 meta-analysis (Walters et al.,

2014), which found no consistent relationships between obesity and

microbiome composition across five databases analyzed using

uniform methods. Their conclusions highlighted the need to

consider alternative statistical approaches of assessing

relationships of microbiota to obesity that go beyond assessing

differences in taxonomic composition using traditional

statistical approaches.

Alternative statistical approaches that are motivated by

dynamic mathematical models afford new opportunities to infer

processes from patterns in microbiota data (Sender et al., 2016) and

may yield insights into how the microbiome affects human health

and disease (Kumar et al., 2019). Dynamical models are typically

parameterized using longitudinal data that are collected using

experiments that assay microbiota in one or more subjects at

multiple time points (Maruvada et al., 2017). These experiments

differ from cross-sectional research studies, which involve collecting

data from many subjects at a single point in time to seek general

patterns while maintaining a reasonable false discovery rate

(Maruvada et al., 2017). Given the relative scarcity of longitudinal

studies and data, using ecological models based on generalized

Lotka-Volterra models (GLVMs), such as BEEM-Static, allow for a

dynamic insight to be obtained from cross-sectional data (Metz

et al., 1995; Hofbauer and Sigmund, 1998; Li et al., 2021) [16-18].

This capability is particularly crucial given the challenges in

collecting longitudinal data, as it allows for meaningful insights

and predictions to be derived from a single time point, making

the approach more practical and scalable in clinical and

research settings.

BEEM-Static was used to extract directed bacterial interactions

from cross-sectional microbiome profiling data (Li et al., 2021).

BEEM-Static is an R package that uses the generalized Lotka-

Volterra (GLVM) model to infer microbial interactions from

cross-sectional microbiome profiling data. The GLVM equations

are first-order nonlinear differential equations that predict changes

in population abundance through time based on fitted parameters

for growth rates, carrying capacities, and interspecific interactions

among taxa comprising the microbial community (Li et al., 2016;

Kumar et al., 2019). BEEM-Static is an extension of the recently

proposed BEEM algorithm, which works with longitudinal

microbiome sequencing data (Li et al., 2019). Of particular

relevance is that even though the GLVM parameters apply to the

dynamics of absolute abundance, BEEM-Static facilitates estimation

of the GLVM parameters from relative (i.e. proportional)

abundance data, making it suitable for microbiome datasets. This

approach is particularly valuable in understanding how specific

dietary components modulate the gut microbiota’s structure and

function, offering insights that could lead to the development of AI-

driven dietary recommendations tailored to individual microbiome

profiles (David et al., 2014). BEEM-Static was chosen for this

analysis due to its ability to infer ecological interactions from

cross-sectional data, which are more readily available and easier

to obtain than longitudinal datasets. While this approach offers a
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practical and scalable method for analyzing microbiome dynamics,

it does not capture temporal changes, highlighting the need for

complementary longitudinal studies to fully understand

microbiome behavior over time.

For this study, we separately applied the BEEM-Static algorithm

to microbiome data collected from lean and obese individuals and

then assessed whether the inferred carrying capacities and inter-

specific interactions exhibited significant differences. Interactions

among organisms are varied (Malcolm, 1966), essential to the

maintenance of community structure, and can be classified as

being either positive or negative depending on whether a

numerical increase in the abundance of one species population

results in an increase or decrease in a co-occurring species (Jones

et al., 1997). Analysis revealed that Actinobacteria exhibited varying

interaction patterns between lean and obese populations (Walters

et al., 2014). Specifically, while some strains were positively

correlated with beneficial metabolic functions in lean individuals,

they were associated with negative interactions in obese individuals,

potentially contributing to metabolic disorders (Tseng and Wu,

2019). We hypothesize that established differences in the intestinal

environments of lean versus obese people (e.g. availability of

substrates, pH, reduction potential) will affect the carrying

capacities of particular taxa and the interactions among taxa.
2 Material and methods

2.1 Datasets

This analysis was conducted using 6 publicly available human gut

microbiome datasets, each of which contains counts of operational

taxonomic units (OTUs) derived from 16s rRNA gene sequences for

both lean and obese people (Table 1). Samples were analyzed from a

total of 1148 lean individuals and 1287 obese individuals. The

selection of these datasets was based on their comprehensive

representation of gut microbial profiles across different populations

and the presence of lean and obese individuals in each, making it
Frontiers in Cellular and Infection Microbiology 03
possible to carry out meaningful cross-comparisons. These datasets

were obtained utilizing a variety of sequencing systems, including

Illumina and 454 pyrosequencing. To reduce platform-specific

technical heterogeneity, we aggregated data at the phylum level and

used the same preprocessing strategy (Walters et al., 2014) for all

datasets. This degree of taxonomic precision has been shown to be

robust in cross-platform comparisons (Walters et al., 2014). Inclusion

requirements also required the availability of BMI metadata, a

sufficient sample size, and public accessibility. The six datasets

provide a broad overview of the gut microbiome in lean,

overweight, and obese individuals, encompassing diverse age ranges,

phenotypic categories, and some sex distribution data. Out of the six

datasets, four (American Gut, Ross, HMP, and Goodrich) provided

gender distribution data, revealing a total of 4,165 female and 3,899

male participants across all groups. The remaining two datasets

(Turnbaugh and Gordon) did not include gender distribution,

representing 7.0% of the total samples. In terms of phenotypes, the

datasets include a total of 5,157 samples classified as H (Healthy) and

5,909 samples classified as OB (Obese), summing lean and overweight

individuals into the obese category. Age data were available for most

datasets, covering a broad range from 0 to 93 years, with mean ages

varying between datasets: 25.9 to 61.8 years for healthy individuals

and 28.0 to 61.3 years for obese individuals. Obesity is defined as

abnormal or excessive fat accumulation that presents a risk to health.

An individual is generally considered overweight if they have a body

mass index (BMI) value exceeding 25 kg m-2 and obese if they have a

value exceeding 30 kg m-2. Due to data limitations, for the purposes of

this study, we classified an individual as “lean” if they were identified

as such or had a reported BMI less than or equal to 25 kg m-2, and

“obese” if they were reported as being overweight or obese or had a

reporting BMI exceeding 25 kg m-2. However, it also proves that diet

affects the microbiota and, thus, while this analysis is confined to the

evaluation of microbiota composition and interactions, the differences

in dietary habits among the populations studied might influence the

patterns of microbial dynamics. While we aimed to control for

potential confounding factors such as dietary habits and geographic

differences, we recognize that these factors may still influence our
TABLE 1 Numbers of samples and taxa included in the present meta-analysis.

Dataset Sample size OTUs prior to
data exclusion

Phyla
analyzed

Phyla excluded due to
low prevalence

Total Lean Obese

Gordon (Turnbaugh
et al., 2009)

281 61 220 219 3 3

Goodrich (Goodrich
et al., 2014)

1017 489 528 877 7 8

Ross (Ross et al., 2015) 63 26 37 211 5 5

Turnbaugh (Turnbaugh
et al., 2009)

142 35 107 687 4 4

AG (McDonald et al., 2018) 711 320 210 443 4 5

HMP (Turnbaugh
et al., 2007)

402 217 185 166 4 4
The pre-processed datasets and codes can be found in https://github.com/enmelvan/Chapter4.
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findings. Future research should strive for more balanced sample sizes

and include detailed dietary assessments. Dietary components such as

fiber, lipids, and proteins have been proven to have a significant effect

on gut microbiota composition. High-fiber diets promote the growth

of beneficial bacteria such as Bacteroidetes and Firmicutes, which have

been associated with improved metabolic health (Zeevi et al., 2015).

Saturated fat-rich meals, on the other hand, may promote pathogenic

bacteria, contributing to dysbiosis and obesity (Castaner et al., 2018).

Clinical studies have demonstrated that dietary interventions can lead

to measurable changes in microbiota composition, reinforcing the

notion that diet is a critical factor in shaping microbial dynamics

(Walters et al., 2014; Tseng and Wu, 2019).

Counts in each database were aggregated from the OTU level to

the phylum level in R Studio Version 1.4.1717 using the R package

phyloseq (McMurdie and Holmes, 2013). The model was built at all

taxonomic levels for each individual database, with the phylum level

showing the highest coefficient of determination (R²). Given this,

the phylum level was chosen as the baseline for analysis, offering a

balance between identifying microbial interactions and maintaining

model performance and interpretability. Taxa within phyla appear

to show differential responses to obesity status, but we focused on

the phylum level to facilitate comparisons. Phyla were only included

in the analysis if they were found in at least 33% of the samples for

that database (Table 1), which is somewhat more stringent than the

often-used criterion of 25% prevalence (Li et al., 2021). Using the

25% criterion would have resulted in the inclusion of 1 additional

phylum (Verrucomicrobia) in the analysis of HMP dataset, and of 1

additional phylum (Proteobacteria) in the analysis of the Gordon

dataset. Because we had a limited number of samples and BEEM-

static had been tested on over 4,000 microbiome data points, we

decided to use 37% prevalence as a criterion. The same OTUs are

still significant at 25% and 33% prevalence, and because they are the

most abundant overall, any pruning variant in between these

criteria would result in the same outcome. BEEM-static detected

microbiomes that were not in equilibrium and automatically

deleted them from further investigation.
2.2 Statistical analysis

BEEM-Static takes as input an OTU table of counts comprised

of samples (in columns) and taxa (in rows). While BEEM-Static can

provide useful insights by inferring ecological interactions from

cross-sectional data, it is essential to acknowledge its limitations.

The gut ecosystem is extraordinarily dynamic and responds to

various environmental pressures, making it susceptible to complex

microbial interactions that can change over time. Although our goal

was to identify ‘key players’ that distinguish between obese and lean

populations, we recognize that BEEM-Static cannot fully capture

the temporal dynamics inherent in microbiome changes,

particularly in response to dietary interventions aimed at

preventing or treating obesity. Longitudinal studies using

dynamical models are better suited for understanding these

complexities because they can track changes over time and

provide insights into how interventions impact microbiome
Frontiers in Cellular and Infection Microbiology 04
dynamics. For instance, our previous work demonstrated the

importance of longitudinal analysis in understanding urinary

microbiota dynamics (Ceprnja et al., 2021). However, such

models require substantial collection of data and may be more

susceptible to individual response variability. As a result, while our

approach offers a practical method of analyzing cross-sectional

data, it should be viewed as complementary to longitudinal

studies rather than a replacement.

For each dataset, samples for lean and obese individuals were

separately analyzed using BEEM-Static at the phylum level with the

aim of first inferring the bacterial interaction within the community

for each population (Méndez-Salazar et al., 2018), and then

comparing the estimated carrying capacities and interaction

coefficients between microbiota of lean and obese people.

Estimated carrying capacities for the lean and obese datasets

were compared using pooled two-sample t-tests. Interaction

coefficients that were identified as significant in both datasets

were also compared in this way. The interaction strengths

estimated by BEEM-Static represent the effect of one microbial

phylum on another. A negative number indicates a competitive or

inhibitory interaction, in which a rise in one phylum’s abundance

suppresses the other. A positive score, on the other hand, indicates

mutualistic or cooperative relationships, in which a rise in one

phylum’s abundance benefits the other. Values close to zero, such as

-0.1 or +0.1, indicate weak or negligible interactions, but values

between -0.2 and -0.5, or +0.2 to +0.5, are considered moderate

interactions. Values less than -0.5 or greater than +0.5 indicate

significant interactions, with values approaching -1 or +1 indicating

highly significant relationships. For instance, an interaction

strength of -0.2 between Firmicutes and Bacteroidetes suggests

moderate competition, whereas a value of -0.7 would signify a

stronger competitive interaction. These thresholds provide a clearer

framework for interpreting the significance and impact of

interaction strengths within the gut microbiome. BEEM-Static

also yields a coefficient of determination (R2) for each phylum

that provides an indication of how well the model performed in

predicted the sample relative abundances. The BEEM-Static

package was downloaded from GitHub (Li et al., 2021), built in

RStudio (version 1.4.1717), and compiled on a Windows 10

machine running R-4.0.2 (code available on https://github.com/

enmelvan/Chapter4) . To promote t ransparency and

reproducibility, all datasets and analysis codes used in this study

are publicly available on GitHub.
3 Results

3.1 Taxa analyzed

The total number of phyla retained for analysis ranged from 4 to

7 depending on the database, including Actinobacteria,

Bacteroidetes, Firmicutes, Lentisphaerae, Proteobacteria and

Verrucomicrobia (Table 2). These phyla were selected due to their

known relevance in obesity-related gut microbiota research and

their consistent presence across datasets.
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3.2 Overall model fit

A total of 12 BEEM-Static analyses were performed, including

one lean-population analysis and one obese-population analysis, for

each of the 6 datasets. For each analysis, BEEM-Static yielded a set

of estimates for carrying capacities and interaction coefficients that

together can be used to predict the relative abundances of each

phylum in each sample. Phylum-level coefficients of determination

between the observed and predicted relative abundances

consistently yielded R2 values greater than or equal to 0.55

(Supplementary Table 1), indicating that the fitted models

provided robust descriptions of the data. The consistent R² values

of ≥0.55 across datasets confirm the robustness of the BEEM-Static

model in accurately predicting phylum-level relative abundances,

underscoring its utility in analyzing gut microbiota dynamics in

lean and obese individuals.
3.3 Carrying capacities

Estimated carrying capacities (Supplementary Table 2) differed

significantly between the lean and obese datasets for most phyla in

at least 4 of the 6 datasets (Table 3), with Firmicutes and

Bacteroidetes generally having the highest values, as expected

given their generally greater abundances. Interpretation of these

differences are, however, challenging because the BEEM-Static

algorithm estimated these parameters by setting the median total

abundance estimate to an arbitrary default value of 1000, making

these estimates sensitive to the average taxon richness of samples.

The challenge in interpreting these differences arises from the

arbitrary setting of the median total abundance estimate, which

may affect the sensitivity of the carrying capacity estimates to

variations in sample richness. We therefore will not discuss these

results any further.
3.4 Interactions summary

Among the 6 datasets, 57 significant interactions were identified

for obese populations, 79% of which were negative, while only 37

significant interactions were identified for lean populations, 92% of

which were negative (Supplementary Table 3; see https://

github.com/enmelvan/Chapter4 for the complete set of significant
TABLE 3 Significantly different carrying capacity of phyla in lean and
obese individuals.

Phyla # Lean Obese

Firmicutes 5 389.66 475.02

Proteobacteria 5 5.14 42.09

Actinobacteria 5 16.34 38.12

Bacteroidetes 4 229.38 265.92
Only significant carrying capacities that appear in at least three databases are shown. The #
column represents the number of datasets where the carrying capacity was significantly
different, and the average BEEM coefficients for lean and obese populations were calculated.
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interactions and statistical comparisons among coefficients). Two

interactions were identified as significant only in the lean-data

analyses, whereas 5 interactions were identified as only significant

in the obese-data analyses. All of the interaction coefficients that

were identified as significant, and of the same sign, in 3 or more

databases were negative (Table 4), suggesting that the microbiota is

predominantly structured by amensal and competitive interactions,

at least at the phylum level. Negative effects of Firmicutes on the

abundance Bacteroidetes, and Bacteroidetes on Firmicutes, were the

most commonly observed interactions. The predominance of

negative interactions in obese microbiotas suggests a competitive

and possibly dysbiotic microbial environment, which could be a

target for therapeutic interventions aimed at restoring a

healthier balance.

The interaction coefficients identified as being significant by

BEEM-Static can be represented as directed-network graphs

(Supplementary Figure 1). These network graphs are crucial for

visualizing and interpreting the complex interactions within the

microbiota, providing a clear representation of the differences

between lean and obese individuals. Using analyses of HMP data

as an example (Figure 1), the BEEM-Static analyses indicate that

increases in Actinobacteria abundance have a strong positive effect

on Bacteroidetes abundance among lean people (denoted by a thick

blue arrow in Figure 1), but a weak negative effect on Bacteroidetes

abundance among obese people (denoted by a thin red arrow).

All notable differences in microbial interactions within lean and

obese individuals can be found in Table 5, and all significant

i n t e r a c t i on s c an be f ound in h t t p s : / / g i t hub . c om/

enmelvan/Chapter4.
4 Discussion

4.1 Bacteroidetes and firmicutes

Five or more of the 6 datasets showed a significant negative

effect of Firmicutes on Bacteroidetes, as well as a significant negative

effect of Bacteroidetes on Firmicutes (Table 4), indicating that the

two taxa are in competition with one another. Three of the 6

datasets yielded Bacteroidetes effects on Firmicutes that differed

significantly between the lean and obese analyses. The average
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negative interaction strength from Bacteroidetes to Firmicutes in

obese people was -0.4, compared to -0.26 in lean people.

In the lean population, there were just two significantly distinct

interactions: the previously described Firmicutes to Bacteroidetes

interaction and, not surprisingly, the Bacteroidetes to Firmicutes

interaction. The observed competition between Bacteroidetes and

Firmicutes suggests that dietary interventions targeting these phyla

could be critical in managing obesity. It is important to note,

however, that the predictive value of the Firmicutes-to-

Bacteroidetes (F/B) ratio for obesity remains controversial. Several

recent studies have reported inconsistent or non-significant

associations between this ratio and obesity status. For instance, a

2023 study found no significant differences in the F/B ratio between

obese and lean individuals, questioning its utility as a universal

biomarker for obesity (Zhang et al., 2023). Similarly, a 2022 review

highlighted that variations in diet, geography, and methodological

approaches contribute to the heterogeneity of findings, and

emphasized the need for more refined methods to assess

microbiome composition and function (Cheng et al., 2022). Our

findings support this perspective by shifting the focus from static

abundance ratios to dynamic interaction patterns, which may offer

more robust insights into dysbiosis and host-microbiome

relationships. For example, high-fiber diets are known to favor

Bacteroidetes, potentially offering a strategy to modulate this

balance in favor of a healthy microbiome.
4.2 Actinobacteria

Another interaction that occurs in both lean and obese people is

the negative interaction between Actinobacteria and Firmicutes,

with the average strength of the interaction being much stronger in

lean people than obese people (-1.4, versus -0.13, Table 4), which is

consistent with the previous finding of higher Actinobacteria

abundance in obese people’s gut microbiome (John and Mullin,

2016; Tseng and Wu, 2019; Castaner et al., 2018). Actinobacteria

exhibited a negative interaction with Bacteroidetes in the lean

population, with an interaction strength of -0.72; however, this

interaction did not significantly differ between the lean and obese

groups, which contradicts established findings in the literature

(Turnbaugh et al., 2009; Clarke et al., 2012).
TABLE 4 Interaction coefficients that were identified as significant, and of the same sign, in at least 3 of the 6 datasets.

Lean populations Obese populations

Origin Target # Average Interaction Strength Origin Target # Average Interaction Strength

Firmicutes Bacteroidetes 6 -0.257 Firmicutes Bacteroidetes 5 -0.264

Bacteroidetes Firmicutes 5 -0.256 Bacteroidetes Firmicutes 5 -0.41

Actinobacteria Firmicutes 3 -1.401 Actinobacteria Firmicutes 4 -0.134

Actinobacteria Bacteroidetes 3 -0.723 Proteobacteria Firmicutes 4 -1.151

Actinobacteria Proteobacteria 3 -0.23

Firmicutes Proteobacteria 3 -0.123
The # column corresponds to the number of datasets used to calculate the averages.
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Given the strong interaction between Actinobacteria and other

phyla, dietary components known to promote Actinobacteria, such

as prebiotics, could be leveraged to influence these microbial

dynamics positively. Our findings confirm the dual nature of

Actinobacteria’s impact, wherein their abundance and interactions

can shift from beneficial to detrimental based on the host’s

metabolic state, emphasizing the importance of precision in

microbiota-targeted interventions. Personalized dietary strategies

based on microbiome profiling could mitigate the negative effects of

Actinobacteria in obese individuals, such as promoting strains that

enhance metabolic health, and simultaneously leveraging their

beneficial potential in lean individuals through tailored prebiotic

or probiotic formulations.

Our study has shown that the Actinobacteria and Proteobacteria

interactions both with each other and with other phyla are both

characteristic and significant within obese individuals, and both

phyla appear as the network hub. This is also in accordance with the

current literature, as both the Proteobacteria and Actinobacteria

phyla are more prevalent in obese people (Castaner et al., 2018;

Méndez-Salazar et al., 2018

The negative interaction from Actinobacteria to Proteobacteria

was significantly different for the lean and obese populations,
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confirming a hypothesis of this meta-analysis. The interaction

strength of Proteobacteria to Actinobacteria also differed

significantly between the lean and obese populations.

The carrying capacity of Actinobacteria is also significantly

higher in obese populations than lean populations in 5 datasets,

and the strength of the coefficient was twice as large in the obese

population, which is in line with the current research of

Actinobacteria and obesity. The relative differences between

groups are still relevant despite BEEM-Static’s arbitrary total

abundance baseline (set at 1000). All carrying capacities are

proportionately rescaled by the model, thus comparisons between

groups within the same taxon have biological significance even

when absolute values cannot be interpreted in isolation. For

instance, persistently higher carrying capacities for Firmicutes and

Proteobacteria in obese people across several datasets imply that

these phyla might have a larger ecological niche in microbiomes

linked to obesity, possibly as a result of changes in nutrient

availability or microbial shifts brought on by inflammation. We

acknowledge that differences in sample sizes across datasets may

influence the estimation of carrying capacities. Although BEEM-

Static is designed to be robust to varying sample numbers, smaller

datasets may yield less stable estimates. Ideally, achieving reliable
FIGURE 1

Microbial interaction network based on microbiome profiling of 217 lean and 185 obese fecal samples from lean patients in HMP data. A network
graph indicating microbial interactions from GLVM model learned by BEEM-Static. Positive interactions are represented by blue, and negative
relations are represented by red graph edges. Node sizes are proportional to the log-transformed mean relative abundance of the corresponding
phylum, and edge thicknesses are proportional to the interaction strength. Taxonomic annotations at the phylum level are used to mark nodes.
TABLE 5 Significantly distinct interactions in lean and obese individuals.

Origin Target # Average interaction strength Origin Target # Average interaction strength

Firmicutes Bacteroidetes 3 -0.305 Firmicutes Bacteroidetes 3 -0.368

Bacteroidetes Firmicutes 3 -0.3167 Firmicutes Proteobacteria 3 -0.123

Actinobacteria Proteobacteria 3 -0.23

Proteobacteria Firmicutes 3 -1.015
Only interactions that appear in at least three databases are shown. The # column denotes the number of datasets in which the relationship appeared, and the interaction strength is the average of
those interactions’ BEEM coefficients.
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and generalizable conclusions at the level of individual datasets

would require large, homogeneous cohorts—potentially exceeding

10,000 samples per study. However, due to practical constraints, our

study relied on existing publicly available data. Therefore, while

trends observed consistently across multiple datasets increase our

confidence in the results, findings at the level of individual datasets

should be interpreted with caution.

The contrasting roles of Actinobacteria underscore the need for

personalized dietary interventions (Castaner et al., 2018). Tailoring

nutrition based on individual microbiome profiles could mitigate

the adverse effects associated with certain Actinobacteria in obese

individuals while promoting beneficial strains in lean individuals
4.3 Proteobacteria

Interestingly, Firmicutes and Actinobacteria displayed negative

interaction with the Proteobacteria phylum only in the obese data,

consistent with recent evidence indicating that inflammatory host

response promotes Proteobacteria growth (Shin et al., 2015). A

negative interaction from Proteobacteria to Firmicutes was also

observed only in the obese individuals.

The Firmicutes to Proteobacteria negative interaction and

Proteobacteria to Firmicutes negative interaction are significantly

different interactions among the obese populations, with the latter

being much greater in absolute magnitude than the former (average

of -1 compared to -0.12).

The prominence of Proteobacteria in obese individuals suggests

that diets aimed at reducing inflammation, such as those rich in

polyphenols, could help suppress this phylum’s overgrowth and

improve gut health.
4.4 Single database significant differences

Some significant interactions found in only one database are

also worthy of note. In the HMP database, Bacteroidetes had a

positive interaction with Actinobacteria in lean individuals, while in

obese individuals, this interaction was negative. In the American

Gut database, Actinobacteria had a negative interaction with

Firmicutes in lean and obese individuals. In the Goodrich

database, Verrucomicrobia and Lentisphaerae were also identified

as having significant interactions that ranged from negative (obese

population) to positive (lean population).

These findings underscore the importance of considering

geographic and dietary differences when developing personalized

nutrition strategies. For instance, dietary interventions effective in

Western populations may need to be adjusted for Eastern diets to

achieve similar microbiome modulation.

Also, only one interaction with Lentisphaerae was identified in

the lean population, an unassigned bacterium, and this taxon had a

positive effect on it. In obese individuals, a total of 10 different

interactions were identified with Verrucomicrobia and

Lentisphaerae. There is still not much research on these two

phyla, except one on Chinese children and adolescents with
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obesity, which found that Verrucomicrobia and Lentisphaerae

were both significantly lower in obese group than those in the

control group (Hou et al., 2017). It should be noted that all the

databases used in this meta-analysis involved people from Western

countries, which have a very different diet than the Chinese

population. Assessing potential differences between eastern and

western countries is a topic worthy of further investigation due to

geographically dietary differences.

Most of the interactions identified were negative (96%) and all

the extracted interactions can be found in https://github.com/

enmelvan/Chapter4. While most ecological interaction networks

consist of positive and negative interactions in approximately the

same ratio, results here indicate that interactions in the gut

microbiome were mostly negative. While most ecological

interaction networks include a balance of positive and negative

relationships, our results indicate that gut microbiome interactions,

particularly in obese individuals, are predominantly negative. This

may be partially explained by the fact that the number of gut

bacteria is relatively constrained, such that an increase in one

taxon’s abundance often influence a decrease in another’s. Beyond

this, such patterns may reflect a disrupted microbial ecosystem,

marked by reduced diversity and intensified competition. In obese

individuals, dominant taxa can suppress others more aggressively,

leading to competitive exclusion and instability. Diet likely plays a

role as well: low-fiber, high-fat diets, which are more common in

obesity, reduce ecological niches and shared resources, potentially

amplifying these antagonistic interactions (Shin et al., 2015;

Castaner et al., 2018).

As noted in the Introduction, the largest meta-analysis of

human microbiome links to obesity was conducted in 2014 by

Walters et al, who identified few consistent relationships between

obesity and species composition. In particular, the Firmicutes:

Bacteroidetes ratio yielded no consistent patterns. This is why it is

critical to investigate the dynamics of microbial communities.

Quantifying interactions among taxa would help us better

understand the ecology of the gut microbiome and better predict

how perturbations will affect it. Removing a taxon that engages in

mutualistic interactions, for example, may reduce the number of

other taxa that rely on it for survival. Given their importance in

understanding community ecology, there is a significant amount of

interest in developing techniques to infer taxa interactions from

metagenomic data.

One of the most serious restrictions of the presented meta-

analysis is that network modeling could not be done on a merged

dataset composed of all six different databases. Initially, we

attempted to merge these datasets and applied XGBoost to

identify patterns, but this approach did not yield meaningful

results, as no clear pattern related to BMI was observed (Chen

and Guestrin, 2016) (see Supplementary Data for XGBoost results).

Consequently, we analyzed each database individually because

cluster analyses performed on the combined dataset revealed no

pattern related to BMI (see Supplementary Data; Table 2). Instead,

data clustered strongly by study, with no consistent BMI pattern

after controlling for study, consistent with prior work (Walters

et al., 2014). These findings suggest that per-study effects are much
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larger than biological effects differentiating lean from obese people.

Differences between studies are typically caused by technical and/or

clinical factors. This finding emphasizes the need to control for

factors inducing heterogeneity among studies because a taxonomic

signature will need to be consistent across populations in order to be

useful in a clinical setting. Even though inferring interactions at this

taxonomic level is challenging due to the significant levels of

heterogeneity among phyla in terms of metabolic and other

features of microorganisms, the findings presented here

demonstrate its utility. While BEEM-Static was chosen for its

ability to infer ecological interactions from cross-sectional data,

we acknowledge that alternative methods such as SPIEC-EASI,

CoNet, and machine learning classifiers (e.g., random forest)

could offer complementary insights. These models differ in their

assumptions, with some focusing on co-occurrence networks and

others on predictive power. In contrast, BEEM-Static provides an

ecological modeling framework grounded in generalized Lotka-

Volterra dynamics, enabling estimation of both interaction

strengths and carrying capacities. Future research should consider

benchmarking BEEM-Static against these approaches on

harmonized datasets to assess performance and interpretability.

In our research, we did data pruning in order to keep only taxa

that appeared in at least one-third of samples, it is important to

mention that the low-abundant species also deserve attention. The

precise investigation of low-abundant species is a difficult task since

low-abundance bacterial species’ exact quantities are notoriously

difficult to determine and use to draw conclusions about underlying

mutualistic relationships (Jousset et al., 2017; dos Santos, 2012).
5 Conclusion

The industry is moving toward personalized nutrition based on

gut bacteria, a new and rapidly evolving field in intestinal microbiota

research. Recent medical advancements have demonstrated that

human reactions to dietary stimuli are influenced by specific and

quantifiable host and microbiome characteristics, rather than a one-

size-fits-all diet (Kumar et al., 2019; Li et al., 2019; Malcolm, 1966;

Jones et al., 1997). This study underscores the importance of

understanding microbial interactions to tailor dietary interventions

that can effectively modulate the gut microbiota toward a healthier

composition, helping to meet nutritional needs and combat

malnutrition and obesity.

Modulating the gut microbiota to better utilize available food

and improve nutritional status—such as extracting more energy,

minerals, or vitamins—is essential to overcoming today’s challenge

of obesity. Through 16S rRNA gene analysis of the gut microbiota,

we can gain insights into the diversity and abundance of

microbiome components, as well as extract valuable information

about pro-inflammatory bacteria, butyric acid-producing bacteria,

and bacteria associated with protein and fat consumption.

Importantly, this approach allows for the extraction of

meaningful insights from a single time point, making it a

practical and scalable tool for personalized nutrition and gut

microbiota modulation. By using this as a foundation, and by
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employing models like the BEEM model and the interactions

ident ified in this study, we can make targeted food

recommendations that shift the microbiota towards that of a

lean population.

We name this dietary gut-brain axis intervention approach

‘Optibiomics’, representing a novel, AI-driven strategy to optimize

gut health and combat obesity. Future research should explore the

application of Optibiomics in diverse populations and its potential

to address other microbiome-related conditions. While Optibiomics

represents a promising approach based on our findings, we

acknowledge that it currently lacks experimental or clinical

validation. Future studies are essential to substantiate these claims

through rigorous testing of personalized dietary interventions.
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