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Significant changes in gut microbial composition are associated with chronic

liver disease. Using preclinical models, it has been demonstrated that ethanol/

alcohol-induced liver disease is transmissible through fecal microbiota

transplantation (FMT). So, the survival rate of people with severe alcoholic

hepatitis got better, which suggests that changes in the makeup and function

of gut microbiota play a role in metabolic liver disease. The leaky intestinal barrier

plays a major role in influencing metabolic-related liver disease development

through the gut microbiota. As a result, viable bacteria and microbial products

can be transported to the liver, causing inflammation, contributing to hepatocyte

death, and causing the fibrotic response. As metabolic-related liver disease starts

and gets worse, gut dysbiosis is linked to changes in the immune system, the bile

acid composition, and the metabolic function of the microbiota in the gut.

Metabolic-related liver disease, as well as its self-perpetuation, will be

demonstrated using data from preclinical and human studies. Further, we

summarize how untargeted treatment approaches affect the gut microbiota in

metabolic-related liver disease, including dietary changes, probiotics, antibiotics,

and FMT. It discusses how targeted therapies can improve liver disease in various

areas. These approaches may improve metabolic-related liver disease

treatment options.
KEYWORDS

microbiome, metabolomics, metabolic alterations, liver diseases, metabolites,
hepatology, gastroenterology
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Introduction

The gut microbiome influences liver function both directly and

indirectly. Gut products reach the liver directly through the portal vein,

which transports blood from the intestines. The composition and

function of gut bacteria influence metabolites approaching the liver by

affecting carbohydrate, protein, lipid, and bile acid metabolism

(Caporaso et al., 2010; Oliphant and Allen-Vercoe, 2019; Visconti

et al., 2019). Through the portal vein, bacteria, viruses, and fungi in the

intestine affect immune cells and molecules that travel to the liver. Gut-

liver connections are bidirectional (Madatali Abuwani et al., 2021) and

the duodenum receives bile from the liver via bile ducts. Through

detergent properties, antimicrobial peptide induction, and immune

regulation, bile influences bacterial composition and function

(Huttenhower et al., 2012; Wang et al., 2021).

Microbiome therapeutics in liver disease may also target metabolic

and immune pathways shared between the gut microbiome and the

liver (Gupta et al., 2022b). By entering the intestine through the biliary

tree, the liver produces primary bile acids that are deconjugated by

intestinal bacteria and further transformed (Qu et al., 2024; Wiefels

et al., 2024). The composition of the intestinal bile acid pool, which is

largely dictated by the microbiota, affects various aspects of intestinal

barrier function, including the mucosal layer, immunological

modulation, and tight junction protein integrity (Raimondi et al.,

2008; Pavlidis et al., 2015). Short-chain fatty acids (SCFAs: acetic

acid, propionic acid, and butyric acid) are products of carbohydrate

fermentation and are an important energy source for colonic

enterocytes (Wu et al., 2024). Both bile acids and SCFAs, which are

products of bacterial metabolism, are important in the regulation of

intestinal barrier function and therefore affect the substrates arriving in

the liver via the portal circulation (Zeng et al., 2024).

Many molecules cross the intestinal barrier and enter the liver.

This is one of many factors that allow pathogens to reach the liver,

stimulate macrophages, and stimulate macrophages (Acuna and

Olive, 2024). The Klebsiella pneumoniae and Lactobacilli play a

significant role in liver metabolisms. Ammonia is a product of

intestinal bacteria that reaches the liver, stimulates the pancreas,

and can promote pancreatic growth. The bacterial microbiome of

Klebsiella pneumoniae Lactobacilli plays a significant role in various

liver diseases (Li et al., 2021; Meijnikman et al., 2022). Ammonia is a

by-product of intestinal bacteria and may occur.

Several molecules have been implicated in liver disease once

they have crossed the gut barrier. The lipopolysaccharide endotoxin

is one of several pathogen-associated molecular patterns that can

reach the liver, activate macrophages, and promote hepatic fibrosis.

Human and animal studies have increasingly demonstrated

endogenous alcohol production by microbiota (Cope et al., 2000;

Zhu et al., 2013; Yuan et al., 2019).
Metabolomics platforms in various
liver diseases

Biological samples can be analyzed using a variety of analytical

platforms, including nuclear magnetic resonance (NMR) and mass

spectrometry (MS), the latter coupled to either liquid or gas
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chromatography (GC-MS). NMR offers high reproducibility and

requires less sample preparation than MS techniques, as it is a non-

destructive analytical platform (Jaber et al., 2023; Lacalle-Bergeron et al.,

2023; Luo et al., 2023; Pekkala, 2023). Using MS, metabolite

discrimination and coverage are improved because of its selectivity

and sensitivity. It is possible to separate metabolites in a complex

matrix before detection, increasing the sensitivity and the sensitivity of

detection when combined with a separation technique (Raja et al., 2021).

Clinical studies use LC-MSmore often than GC-MS because the sample

is non-volatile. An individual platform cannot detect, identify, and

quantify metabolites completely. Each analytical platform has its own

advantages, as well as sensitivity, selectivity, and reliability (Emwas, 2015;

Ganesan et al., 2023). A comprehensive metabolite analysis can be

achieved by using a combination of NMR and MS, coupled to both

liquid and gas chromatography (LC-MS/GC-MS) (Wang et al., 2023;

Wang et al., 2023). Combining NMR and MS allows non-destructive

analysis ofmetabolites while also improving the selectivity and sensitivity

of analyses of complex matrix metabolites (Zeki Ö et al., 2020; Ganesan

et al., 2022). By utilizing both analytical platforms, a more

comprehensive understanding of the metabolite profile can be

achieved, ensuring more accurate identification, detection, and

quantification. Using NMR in metabolite analysis offers high

reproducibility and requires less sample preparation, making it a non-

destructive analytical platform. On the other hand, MS provides

improved metabolite discrimination and coverage due to its selectivity

and sensitivity. By combining both NMR and MS, a comprehensive

metabolite analysis can be achieved, ensuring more accurate

identification, detection, and quantification metabolites in (Figure 1)

(Madatali Abuwani et al., 2021; Ye et al., 2023; Yu et al., 2023; Yu

et al., 2024).
Gut microbiome and liver diseases

There has been a well-characterized gut microbiome associated with

alcohol-related liver disease as well as other chronic liver diseases,

showing a reduction in Bacteroides and Lactobacillus species and an

increase in Proteobacteria and Fusobacteria (Zhu et al., 2023). A decrease

in the Lachnospiraceae and Ruminococcaceae families was observed in

cirrhosis, while significant increases in the Enterobacteriaceae,

Alcaligenaceae, and Fusobacteriaceae families are noted. The increase

in Enterobacteriaceae, Alcaligenaceae, and Fusobacteriaceae families in

cirrhosis could be due to the disruption of gut microbiota caused by liver

damage (Zheng et al., 2023). This disruption can lead to an overgrowth

of harmful bacteria from these families, which can contribute to further

inflammation and disease progression in cirrhosis. Bacterial microbiota

can change with the progression and stage of liver disease, which can

lead to further inflammation and disease progression in cirrhosis

(Ribeiro et al., 2024). As cirrhosis progresses, harmful bacteria from

these families can overgrow. Recent studies have also described fungal

dysbiosis. Independent of the stage of liver disease, patients with alcohol

use disorder have a decrease in fungal diversity and an increase in

Candida species. Identifying the influence of gut microbiota on liver

disease progression as well as the influence of progressive liver disease on

gut microbiota would be worthwhile (Table 1) (Tu et al., 2023;

Wang et al., 2024).
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Prebiotics-based microbial diversity
and human health

Health benefits are conferred by prebiotics, which are substrates

exclusively used by host microorganisms (Gibson et al., 2017).

Hematological stains are a common complication of decompensated
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cirrhosis, and lactulose is the primary prebiotic for treating it (Bloom

and Tapper, 2023). A prebiotic is a substrate used exclusively by host

microorganisms that confers health benefits (Gibson et al., 2017).

Lactulose is the primary prebiotic for treating HE, a common

complication of decompensated cirrhosis (Bloom and Tapper, 2023).

In most cases, colonic bacteria ferment lactulose into SCFAs. There are
TABLE 1 Alterations of gut metabolites in liver diseases.

S. No Sample
type

Species Pathology Main findings Techniques used References

1. Blood
sample

Human Acute-on-chronic liver
failure (ACLF)

ACLF is strongly linked to an assortment
of 38 metabolites, including kynurenic
acid, pentose phosphates, and D-
glucuronic acid.

Liquid
chromatography–mass
spectrometry (LC-MS)

Moreau et al., 2020

2. Fecal
sample

Human Clostridioides difficile
infection (CDI)

Bile acid content and leucine digestion
resulted in a preliminary metabolomic
framework capable of distinguishing
clinical CDI from asymptomatic C.
difficile colonization.

Gas chromatography–
mass spectrometry
(GC-MS).

Robinson et al., 2019

3. Serum Human Hepatocellular
carcinoma (HCC)

Gut metabolic abnormalities in various
liver disorders are linked to pathways for
energy metabolism, macromolecular
synthesis, and redox balance to protect
tumour cells from oxidative stress.

Gas chromatography–
time of flight–mass
spectrometry
(GC-TOFMS)

Gao et al., 2015

4. Plasma Human Liver cirrhotic patients LTE4 and 12-HHT, both generated from
arachidonic acid, created a minimum
plasma fingerprint for ACLF.

Liquid
chromatography–mass
spectrometry (LC-MS)

López-Vicario
et al., 2020

5. Fecal and
serum
sample

Human Non-alcoholic fatty liver
disease (NAFLD)

The possibility of using gut microbiota for
early clinical warning of
NAFLD development.

Metagenomics Leung et al., 2022

6. Fecal
sample

Human Colorectal Cancer The fecal metabolic profiles of healthy
controls can be differentiated from those
of CRC patients, even at an early stage
(stage I/II), indicating the potential utility
of NMR-based fecal metabolomics
fingerprinting as predictors of earlier
diagnosis in CRC patients.

Nuclear magnetic
resonance (NMR)

Lin et al., 2016

7. Plasma Human Metabolism-associated
fatty liver
disease (MAFLD)

Choline supplementation can help to
alleviate and even prevent hepatic steatosis
caused by parenteral feeding.

Computed
tomography (CT)

Buchman et al., 1995

8. Urine Human Acute-on-chronic liver
failure (ACLF)

Higher Kynurenine Pathway (KP) activity
predicted death in patients with ACLF.

Liquid
chromatography–mass
spectrometry (LC-MS)

Clària et al., 2019

9. Fecal
Sample

Human Hepatic steatosis Metabolic profiles indicated favorable
relationships for aromatic and branched
chain amino acids and glycoprotein acetyls
with steatosis and R. Gnavus group,
although these metabolites were inversely
linked with alpha diversity
and Coprococcus.

Metagenomics Alferink et al., 2021

10. Fecal
sample

Human Non-alcoholic fatty liver
disease (NAFLD)

In NAFLD, the gut microbiome makeup
differs, with higher fecal SCFA levels and a
greater number of SCFA-producing
bacteria. These changes are linked to
immunological characteristics of
disease development.

High-performance
liquid
chromatography
(HPLC)

Rau et al., 2018

11. Fecal
sample

Human Crohn’s disease (CD) Identifying CD metabolites that could
serve as diagnostic biomarkers and/or
monitoring tools, as well as insight into
possible targets for disease therapy
and prevention.

High-resolution
mass spectra

Jansson et al., 2009
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multiple benefits to fermenting lactulose. SCFAs are produced by

fermentation of lactulose, which provides nutrients to the intestinal

epithelium and reduces gut translocation (Moratalla et al., 2017). A

decrease in ammonia production from certain bacteria is attributed to

SCFAs, which cause acidification of colonic contents (Sanders et al.,

2019). By fermenting lactulose, bacteria can grow more rapidly,

pushing other bacteria out of the ecological niche, such as bacteria-

producing lipopolysaccharides (Vince and Burridge, 1980; Wang et al.,

2019). Ammonia is a substrate used by probiotic taxa as a result of

lactulose fermentation (Agostini et al., 1972; Weber, 1979; Vince et al.,

1990). Ammonia may translocate across the intestinal epithelium into

the colon lumen, be trapped as an ammonium ion, and be expelled in

stool due to acidification of colonic contents.

Prebiotics impact gut-derived liver diseases by promoting the

growth of beneficial bacteria in the gut. These beneficial bacteria

produce metabolites that maintain a healthy gut lining and reduce

inflammation, reducing the risk of liver diseases. Additionally,

prebiotics stimulate the release of anti-inflammatory molecules and

digestive enzymes, which further contribute to preventing and

managing liver diseases. Prebiotics stimulate the release of anti-

inflammatory molecules such as SCFAs, such as butyrate and

acetate. Butyrate in particular has been shown to have potent anti-

inflammatory effects, inhibiting the production of pro-inflammatory

cytokines and promoting the growth of anti-inflammatory immune

cells. These anti-inflammatory molecules help to calm and reduce

chronic inflammation, which can be a contributing factor to liver

diseases. However, it is important to note that while prebiotics can be

beneficial in managing and preventing liver diseases, they are not a

magical cure. In some cases, prebiotics may not significantly alter the

course of the disease, and individuals may require other interventions

or treatments in conjunction with prebiotics. Additionally, prebiotics

can interact with other medications or medical conditions, so it is

important to consult with a healthcare professional before starting a

prebiotic regimen. Prebiotics stimulate the release of anti-

inflammatory molecules and digestive enzymes, which further

contribute to preventing and managing liver diseases. Specifically,

prebiotics promote the growth of beneficial bacteria in the gut, which

produce metabolites that maintain a healthy gut lining and

reduce inflammation.

Prebiotics are a type of dietary fiber that feeds the beneficial

bacteria in the gut. These bacteria play a crucial role in maintaining

a balanced gut microbiome and overall health. By promoting a

healthy gut microbiome, prebiotics can potentially reduce the risk

of gut-derived metabolic liver diseases, such as non-alcoholic fatty

liver disease (NAFLD) and cirrhosis (Ince Palamutoglu et al., 2024).

Probiotics are defined as preparations or products containing

viable, defined microorganisms in sufficient numbers, which alter

the microflora of a host compartment by implantation or

colonization, and by doing so exert positive health effects on the

host (Summer et al., 2024; Teker et al., 2024). Emerging

mechanisms probiotics have shown the potential to improve liver

function through various mechanisms. Firstly, they can enhance

bile acid metabolism, reducing its toxic metabolite levels and

protecting the hepatocytes from damage. Secondly, probiotics can

stimulate the production of short-chain fatty acids (SCFAs) through
Frontiers in Cellular and Infection Microbiology 04
gut bacterial fermentation, which has shown hepatoprotective

properties (Yoon et al., 2023; Zhang et al., 2023). Lastly,

probiotics can modulate the gut microbiota, reducing the growth

of harmful bacteria and improving the balance between beneficial

and harmful bacteria, ultimately promoting liver health. Probiotics

can enhance bile acid metabolism by promoting the growth of

specific gut bacteria that can convert bile acids into less toxic forms

(Cao et al., 2023). This conversion helps to reduce the risk of liver

damage caused by toxic bile acid metabolites. Additionally,

probiotics can lower cholesterol levels, which further contributes

to improved bile acid metabolism and liver health. SCFAs such as

butyric acid, are produced through the fermentation of dietary fiber

by gut bacteria. These fatty acids have hepatoprotective properties

and can reduce inflammation, oxidative stress, and insulin

resistance in the liver. They can also enhance the regeneration of

hepatocytes and improve the overall functioning and health of the

liver (Zhang et al., 2023; Zhang et al., 2023).

Gut bacteria play a crucial role in the production of SCFAs. When

dietary fiber is fermented by gut bacteria, it produces short-chain fatty

acids, such as butyric acid. These fatty acids then have a range of

beneficial health effects, including protecting the liver from damage and

improving its functioning. SCFAs particularly butyric acid, protect the

liver through multiple mechanisms. They reduce inflammation by

suppressing the cytokines that cause liver inflammation (Ansari et al.,

2023; Gao et al., 2023). Additionally, they reduce oxidative stress by

neutralizing free radicals and inhibiting lipid peroxidation. They also

improve insulin sensitivity, reducing the risk of insulin resistance-

related liver diseases. The hepatoprotective properties of SCFAs make

them potential candidates for the treatment of liver diseases (Giridhar

et al., 2024). They have shown potential in reducing inflammation,

oxidative stress, and insulin resistance in the liver, leading to improved

hepatocyte regeneration and overall liver health. By targeting these

mechanisms, SCFAs may hold promise in the development of novel

treatments for liver diseases (Guo and Lv, 2023; He et al., 2023; Hojsak

and Kolacek, 2024). Many inflammatory and metabolic disorders have

been associated with probiotics.

Some potential applications of probiotics in treating specific

medical conditions include:
1. Gastroesophageal Reflux Disease (GERD): Probiotics have

been shown to reduce the frequency of GERD symptoms

and improve quality of life.

2. Inflammatory Bowel Disease (IBD): Probiotics have been

demonstrated to have some beneficial effects on symptoms

of Crohn’s disease and ulcerative colitis, the two main

forms of IBD.

3. Diarrhea: Probiotics are commonly used to treat and

prevent diarrhea caused by a variety of factors, including

antibiotics and viral infections.

4. An irritable bowel syndrome (IBS): Probiotics have shown

promise in reducing symptoms and improving the quality

of life for individuals suffering from IBS.

5. Skin Conditions: Certain probiotics have been used to

promote skin health and reduce symptoms of conditions

such as eczema and acne.
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It is important to note that while there is evidence to suggest the

potential benefits of these applications of probiotics, more research

is needed to understand their efficacy and long-term outcomes fully.

SCFAs and secondary bile acids are postbiotic products, which

are bioactive products of bacteria. In other gastrointestinal

conditions, postbiotics have been studied (Golob et al., 2019), but

they don’t always produce consistent or uniform positive results

(Mortensen and Clausen, 1996; Roda et al., 2007; Abbasi et al.,

2022). As of now, there are no clinical trials on SCFAs

supplementation in humans. SCFAs supplementation in humans

could potentially offer several benefits. It can help improve gut

health by promoting a healthy balance of gut bacteria, reducing

inflammation, and enhancing intestinal barrier function.

Additionally, SCFAs have metabolic benefits, such as reducing

insulin resistance, improving weight management, and potentially
Frontiers in Cellular and Infection Microbiology 05
reducing the risk of chronic diseases like obesity and diabetes (Hsu

and Schnabl, 2023). In Table 2, we have depicted the therapeutic

interventions due to the ingestion of prebiotics in various

liver diseases.
Antibiotics-based microbial diversity
and human health

An infant’s gut microbial colonization and resistive profile are

influenced by perinatal and peripartum antibiotic use (Zou et al.,

2018; Wong et al., 2020). To understand the potential impact of

antibiotic administration on offspring during pregnancy, scientists

examined the temporal effects of cefoperazone when administered

during the peripartum period on the microbiota of both maternal
TABLE 2 Dietary supplements as therapeutics for liver diseases.

S. No Disease Sample Dietary
Intervention

Duration of
Therapy

Quantity of
Intervention

Findings Reference

1. Alcoholic
Hepatitis

Fecal sample Lacticaseibacillus
rhamnosus and
Lactobacillus
helveticus

Seven Days 120 mg/day The ingestion of L. rhamnosus
R0011 and L. helveticus R0052
may restore the gut microbiota in
alcoholic hepatitis patients and
ameliorate the gut-liver axis.

Gupta et al., 2022a

2. Alcoholic
Hepatitis

Stool culture Lactobacillus
subtilis/
Streptococcus
faecium

Seven Days 1500 mg/day Immediate abstinence is the most
effective treatment for alcoholic
hepatitis. Furthermore, 7 days of
oral supplementation with cultured
L. subtilis/S. faecium was found to
restore gut flora and ameliorate
LPS in individuals with
alcoholic hepatitis.

Han et al., 2015

3. Lactose
Intolerance
& Diarrhoea

Fecal sample Bifidobacterium
animalis subsp.
animalis IM386

Six Weeks The consumption of the dietary
supplements reduced the outcome
of diarrhea significantly among the
study participants.

Rosǩar et al., 2017

4. Lactose
Intolerance

Fecal sample Lactobacillus
acidophilus

Four Weeks 10 billion (1 X
1010) CFU
per dose

Lactobacillus acidophilus is safe to
eat and improves abdominal
symptom scores as compared to
placebo in terms of diarrhoea,
cramps, and vomiting following an
acute lactose challenge.

Pakdaman
et al., 2016

5. Alcohol
induced
Liver injury

Mouse Model
–

Fecal sample

Prebiotic - Pectin Few Week This dietary supplement improved
the alcoholic liver disease by
targeting the intestinal microbiota
involves the AhR pathway

Wrzosek
et al., 2021

6. Non-
alcoholic
fatty
liver disease

Mouse model
–

Blood sample

Fructose 12 Weeks 30% fructose LGG treatment raises hepatic
FGF21 expression and serum
ADPN concentration, which
reduces ChREBP activation via
dihydrosphingosine-1-phosphate-
mediated PP2A deactivation, and
thereby reverses fructose-
induced NAFLD.

Zhao et al., 2019

7. Pouchitis Human –

Fecal sample
Lactobacilli + three
strains of
bifidobacteria +
one strain
of Streptococcus
salivarius.

12 Months 300 billion
bacteria/g

The once-daily high-dose probiotic
composition is helpful in keeping
antibiotic-induced remission in
patients with recurrent or
refractory pouchitis for at least a

Mimura
et al., 2004

(Continued)
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and offspring in an interleukin-10 (IL‐10) ‐ deficient murine model

of colitis (Miyoshi et al., 2017).

Cefoperazone-exposed dams had offspring with altered gut

microbe communities who were more susceptible to spontaneous

and chemically induced colitis (Miyoshi et al., 2017). Similar results

were demonstrated by Schulfer et al., who inoculated germ‐free

pregnant mice with an antibiotic‐altered microbial community.

According to Schulfer et al., 2018 decreased IL-10 proliferates in

the offspring after the altered microbial community is transmitted

(Schulfer et al., 2018).

There has been some evidence that maternal antibiotic intake

during pregnancy alters the composition of the microbial

community (Azad et a l . , 2013; Coker et a l . , 2020) .

Fluoroquinolones (norfloxacin and ciprofloxacin), third-

generation cephalosporins (G3) (ceftriaxone and cefotaxime),

and trimethoprim-sulfamethoxazole (SXT) are recommended for

preventing infections in patients with cirrhosis or liver failure.

Spontaneous Bacterial Peritonitis (SBP) is a common bacterial

infection in patients with cirrhosis. SBP in cirrhosis patients can be

caused by the rupture of bacteria-containing ascite pockets or the

spread of bacteria from the digestive tract (Puri, 2023; Petruzziello

et al., 2024). Risk factors for SBP in cirrhosis patients include

advanced cirrhosis, a history of gastrointestinal bleeding, portal

hypertension, and the use of gastrointestinal prophylaxis. As well

as bacterial overgrowth in small intestines, intestinal permeability

increases, and intestinal motility decreases in patients with liver

disease. Examples of preventive measures for SBP in patients with
Frontiers in Cellular and Infection Microbiology 06
cirrhosis include regular monitoring of liver function, proper

hygiene and sanitation practices, vaccination against bacterial

infections, and antibiotic prophylaxis when necessary (Giridhar

et al., 2024). Additionally, maintaining a healthy diet, avoiding

alcohol, and managing underlying liver disease can help reduce the

risk of SBP. The study conducted by Prado et al. (Prado et al., 2022)

also examined whether patients with cirrhosis, who resistant

bacteria had earlier colonized, were at greater risk of re-infection

by the same strain in the future (Aziz et al., 2022). Increased

intestinal permeability, commonly observed in liver disease, allows

bacteria to translocate from the intestines to the peritoneal cavity,

leading to SBP. The impaired intestinal motility further facilitates

the spread of bacteria, making patients more susceptible to

infections. Therefore, addressing intestinal permeability and

motility is crucial in preventing and managing SBP in patients

with cirrhosis. Increased intestinal permeability in cirrhosis

patients can lead to bacterial translocation, where the harmful

bacteria from the digestive tract enter the peritoneal cavity and

cause spontaneous bacterial peritonitis (SBP). This increases the

risk of bacterial infections and can lead to serious complications

and even death in cirrhosis patients. Additionally, increased

intestinal permeability can contribute to developing systemic

infections, as harmful bacteria can spread throughout

the bloodstream.

Infections caused by spontaneous processes, such as SBP, occur

in about 36% of patients with liver cirrhosis (Tay et al., 2021).

Third-generation cephalosporins are often used empirically to treat
TABLE 2 Continued

S. No Disease Sample Dietary
Intervention

Duration of
Therapy

Quantity of
Intervention

Findings Reference

year and it is related with a great
quality of life.

8. Severe
alcohol-
associated
hepatitis
(mAH)

Lactobacillus
rhamnosus GG

6 Months LGG orally
once/day

The treatment with LGG resulted
in a moderate, but substantial,
reduction in MELD at 1 month
(primary endpoint) as well as a
significant drop in the AST : ALT
ratio, a biomarker of AH severity.

Vatsalya
et al., 2023

9. Alcoholic
liver disease

Rat model -
Blood and
Liver tissue

Lactobacillus
bulgaricus and
Streptococcus
thermophilus

6 Weeks 108 cfu/mL The protective effect against ALD
may be attributed to alterations in
the gut flora following probiotic-
fermented milk consumption.

He et al., 2022

10. Non-
alcoholic
fatty
liver disease

Human
stool samples

Lactobacillus lactis,
Pediococcus
pentosaceus

8 Weeks 109 CFU/g NAFLD development is linked to
metabolic imbalances in SCFAs,
bile acid, and indole compounds.
These metabolites can be used to
precisely identify the disease. L.
lactis and P. pentosaceus improve
NAFLD progression via
influencing gut metagenomics and
metabolism, namely the
tryptophan pathway of the gut-
liver axis.

Yu et al., 2021

11. Non-
alcoholic
fatty
liver disease

Human
fecal sample

Lactobacillus
plantarum +
Bifidobacterium
bifidum
+ polysaccharide

4 weeks 600 mL with
distilled water for
3 hours

This study suggests that the LBM
combination can be employed as a
therapy for alleviating NAFLD by
altering the gut microbiota and
decreasing insulin resistance.

Wang et al., 2019
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SBP, except in cases where multidrug-resistant organism risk

factors apply, where piperacillin/tazobactam is prescribed.
Translational research in various
liver diseases

Specific areas of focus for future translational research in

hepatic diseases could include: 1) developing novel therapeutic

strategies to target liver diseases, such as gene therapy or targeted

drug delivery systems (Rungratanawanich et al., 2023). 2)

Understanding the underlying molecular mechanisms of liver

disease progression and the development of new diagnostic tools

to predict and monitor disease activity. 3) Investigating the role of

gut microbiome in liver diseases and its potential impact on the

development and severity of liver diseases. 4) Exploring the

potential of regenerative medicine approaches, such as stem cell

therapy, for the treatment of liver diseases. Examples of liver

diseases influenced by the gut microbiome include NAFLD and

cirrhosis. Studies have shown that the gut microbiome can

contribute to the development of NAFLD, as it can promote the

accumulation of fat in the liver (Tanaka and Ui, 2010; Taner et al.,

2020). Additionally, the gut microbiome has been implicated in the

pathogenesis of cirrhosis, as it can contribute to inflammation and

impaired liver function. Examples of gene therapy for liver diseases

include the use of viral or non-viral vectors to deliver normal copies

of genes that are mutated in liver diseases, or the use of gene therapy

to silence the expression of genes involved in liver disease
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development (Koziel, 2008; Gottlieb et al., 2019). Targeted drug

delivery systems, on the other hand, can involve the development of

nanoparticles or bioconjugates that specifically target the liver and

deliver therapeutic agents directly to the affected cells. Recent

advancements in stem cell therapy for liver diseases have shown

promising results (Nacif et al., 2018). Researchers have developed

techniques to differentiate stem cells into liver cells, which are then

transplanted into the liver to replace damaged cells (El-Serag, 2007;

Gijbels et al., 2021). This approach has shown potential in the

treatment of various liver diseases, including cirrhosis and

hepatocellular carcinoma. Additionally, advancements in

regenerative medicine have led to the development of

bioengineered livers, using a combination of stem cells and

biomaterials to create functional liver structures (Ma et al., 2023;

Liu et al., 2024; Martini et al., 2024). While further research is

needed to fully understand the therapeutic potential of stem cell

therapy in liver diseases, these advancements offer hope for

potential new treatments. One challenge of targeted drug delivery

systems is ensuring the specificity and accuracy of the delivery

system. The system must be able to target the right location in the

body and avoid delivery to unintended areas, which can be

challenging to achieve (El-Serag, 2007; Gijbels et al., 2021).

Additionally, the stability and release of the therapeutic agent

within the targeted cells can be problematic, as the desired

therapeutic effect may be compromised if the drug is released too

quickly or too slowly. Furthermore, the systemic delivery of targeted

drug delivery systems may be limited by biodistribution and

clearance, as the drug may be eliminated or distributed
FIGURE 1

Schematic overview of metabolomics studies in liver diseases.
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throughout the body before reaching its intended target (Neuman

et al., 2015; Huang et al., 2024; Jamshidi et al., 2023).
Alcohol use disorder and treatment
potential of liver diseases

FMT has shown potential in the treatment of alcohol use

disorder (AUD). FMT involves the transplantation of a healthy

donor’s stool into the recipient’s colon, which can alter the

recipient’s gut microbiota and improve overall gut health. This, in

turn, could potentially regulate alcohol consumption and

withdrawal symptoms, making FMT a valuable tool in the

treatment and management of AUD (Neuman et al., 2015). FMT

alters gut microbiota by introducing a healthy donor’s stool, which

contains a diverse population of microorganisms. These

microorganisms establish a new balance in the recipient’s gut,

impacting digestion, metabolism, and even brain function

(Hwang et al., 2024; Kim et al., 2024). By modifying the gut

microbiota, FMT can regulate alcohol consumption and

withdrawal symptoms, offering a potential treatment option for

AUD (Zafar et al., 2024). Further research should be conducted to

examine the effectiveness of FMT at different stages of AUD, such as

in the acute withdrawal phase, during ongoing recovery, and in

long-term maintenance (McMillan et al., 2024). This would help to

determine the optimal timing and frequency of FMT treatments

and establish its role in the overall treatment plan for individuals

with AUD. Additionally, exploring different delivery methods of

FMT, such as capsules or nasal sprays, could further enhance its

accessibility and effectiveness in addressing AUD. Further research

should be conducted to explore the long-term effects of FMT

treatment for AUD (Kim et al., 2024). This would involve

tracking the sobriety and overall well-being of individuals who

have received FMT treatment for an extended duration, to

understand the sustainability of the treatment’s effects and its

potential for relapse prevention. Additionally, investigating the

effect of FMT on different subgroups within the AUD population,

such as individuals with specific genetic traits or co-occurring

mental health disorders, would provide more insights into the

individualized benefits of FMT (Hu et al., 2023; Hediyal et al., 2024).
Immunity-based microbiome and
metabolome alteration in
liver diseases

Liver diseases can disrupt the immune system, leading to a

weakened response to infections and an increased risk of infection.

Additionally, the immune system can also play a role in the

development and progression of liver diseases, as chronic

inflammation and immune cells can attack the liver and

contribute to liver damage (Won et al., 2021). Specific

mechanisms by which liver diseases disrupt the immune system

include: 1) Immunodeficiency: Liver diseases can lead to impaired

production of immune cells, such as T cells and B cells, leading to a
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weakened response to infections. 2) Inflammation: Chronic

inflammation in liver diseases can recruit immune cells to the

liver, which can result in liver damage and impaired immune

function. 3) Altered cytokine profile: Liver diseases can cause an

imbalance in the production of cytokines, which are signaling

molecules that regulate immune responses, leading to

dysregulation of the immune system. In addition to the role of

chronic inflammation and immune cells in attacking the liver,

specific types of immune cells can also directly contribute to liver

damage (Schneider et al., 9900). For example, natural killer cells

(NKT) and Kupffer, which are both components of the liver’s innate

immune system, can release inflammatory mediators and cytokines

that can lead to liver damage. Furthermore, activation of T cells and

B cells in response to liver antigens can result in autoimmune liver

damage and the progression of liver diseases. NKT cells and Kupffer

cells play crucial roles in the liver’s innate immune system. While

Kupffer cells are responsible for engulfing and removing harmful

substances from the liver, NKT cells can produce cytokines that can

trigger immune responses (Behary et al., 2021). However, in liver

diseases, both cell types can release excessive inflammatory

mediators and cytokines, leading to liver damage and promoting

the progression of liver diseases. The dysregulation of immune

responses in liver diseases can have a profound impact on liver

function. The inflammation caused by immune cells and cytokines

can lead to liver damage and impaired immune function, making

the liver more susceptible to infections. Additionally, the impaired

production of immune cells can result in a weakened response to

infections, further exacerbating the liver disease. Overall, the

dysregulated immune responses contribute to the progression and

severity of liver diseases, highlighting the importance of

maintaining a balanced immune response for optimal liver health

(Ganesan et al., 2022).

The potential consequences of impaired immune cell

production include an increased risk of infections, as the body

has a weakened ability to fight off pathogens. This can result in more

frequent and severe infections, which can further worsen the liver

disease (He et al., 2021). Furthermore, the impaired production of

immune cells can lead to a compromised immune system, making

the individual more susceptible to other types of infections and

cancer. Overall, impaired immune cell production can have severe

implications for both acute and chronic liver diseases (Wang et

al., 2020).
FMT in liver transplantation recipients:
clinical significance

Liver transplantation (LT) is universally acknowledged as the

sole therapeutic choice for patients suffering from end-stage liver

disease, acute liver failure, and HCC (Ancona et al., 2021). In recent

decades, LT has become an established and standard surgical

technique for treating liver disorders (Hübscher, 2011).

Nevertheless, patients undergoing LT are particularly susceptible

to many infections, including Clostridium difficile infection (CDI)

(Becattini et al., 2016), cytomegalovirus (CMV) infection
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(Engelmann et al., 2020), fungal infections, and recurrent hepatitis

B virus (HBV) infection. A prior cohort analysis indicated that

around 19% of deaths that occurred five years after LT were

attributed to diverse sources of infection (Annavajhala et al.,

2019; Ancona et al., 2021). The primary reason for this is the

administration of immunosuppressive medications following liver

transplantation, which weakens the immune system’s ability to

detect and fight off pathogens. This allows the pathogens to avoid

natural immunity and increases the likelihood of infection. In

addition, post-LT infection is also linked to pre-transplant

infection and other risk factors (Abad et al., 2017). Furthermore,

multiple investigations have shown that gut microbiota

composition might undergo considerable alterations following LT

(Bajaj et al., 2017). Therefore, liver transplant recipients must

restore the balance of their gut microbiota by FMT. For example,

Schneider et al. documented a case where FMT was performed on a

liver transplant patient who had severe Clostridioides difficile

infection that was further worsened by acute renal injury (Bajaj

et al., 2017). Moreover, a meta-analysis of 44 trials (Shogbesan et al.,

2018) has provided evidence of the safety of FMT in patients with

weakened immune systems. Thus, FMT could serve as a promising

treatment approach for treating Clostridioides difficile infection

following liver transplantation. As far as we know, there has not

been a clinical trial that has evaluated the suitability of FMT for

treating infectious disorders.
The future of microbiome and
healthy humans

Microbiomes play an important role in the nutrient metabolism

and immune regulation in the human body and can directly affect

the liver. Lactulose, rifampin, and certain antibiotics are currently

being used in liver disease as microbiome-targeted therapeutics.

Translational research in many areas is needed before microbiome-

targeted therapeutics can be used to treat or prevent liver disease.

We should move forward with rigorous randomized clinical trials

for microbiome therapeutics such as FMT, consortium products,

bacteriophages, and genetically engineered probiotics. These

microbiome-targeted therapeutics need further research to better

understand their efficacy, mechanism of action, and optimal

delivery method.

Patients with HE have completed enrolment in a clinical trial

(ClinicalTrials.gov NCT03796598), but results have not yet been

released. A patient’s microbiome composition varies even within

one liver disease. A prespecified microbiome analysis and

stratification, or a post hoc analysis of the interaction between

therapy and baseline microbiome, will be required for the design

of trials and therapy selection to take account of this heterogeneity.

One strategy could be to include microbiome analysis as a

prespecified endpoint in future trials, allowing for a more

comprehensive understanding of the role the microbiome plays in

liver disease and response to therapy. Another strategy could be to

conduct post hoc analyses of the interaction between therapy and
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baseline microbiome, allowing for a more targeted approach to

therapy selection and customization based on individual patient

characteristics. Additionally, utilizing standardized protocols for

microbiome analysis and ensuring robust sample collection and

storage can help minimize heterogeneity and improve the reliability

of findings.
Conclusion

The importance of gut microbiota in host metabolism and

immune functions has been summarized in this review, which

includes immune development, colonization resistance, and cell

signaling. With the help of advanced omics technologies, we are

now beginning to understand how the host and microbiota interact

complexly. As a result of antibiotics, the bacterial community and

the host are disrupted, thereby disrupting the microbial balance.

Overall, these approaches offer a promising new set of biomarkers

for liver disease diagnosis and therapy. Fecal microbiota

transplantation may also have potential as a treatment option for

liver diseases. Further research is needed better to understand the

safety and efficacy of this approach. Ultimately, these approaches

have the potential to revolutionize the way we diagnose and treat

liver diseases. As such, they hold great potential for improving the

lives of patients with liver diseases.
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