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Characterization of the salivary
microbiome in healthy
individuals under fatigue status
Xianhui Peng 1, Na Han1, Yanan Gong1, Lihua He1, Yanli Xu2,
Di Xiao1, Tingting Zhang1, Yujun Qiang1, Xiuwen Li1,
Wen Zhang1*† and Jianzhong Zhang1*†

1National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National
Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and
Prevention, Beijing, China, 2Hebei University of Engineering, Affiliated Hospital, College of Medicine,
Handan, Hebei, China
Background & Aims: Limited understanding exists regarding the characteristics

and biological significance of the salivary microbiome in healthy individuals

experiencing physiological fatigue. This study aimed to delineate the structural

and functional alterations in the salivary microbiome of healthy individuals

undergoing physiological fatigue compared to energetic controls, and to

explore its potential as a biomarker for fatigue status.

Methods: A cohort of 7 healthy individuals experiencing acute physiological

fatigue (induced by prolonged study and confirmed via electroencephalography;

Fatigue group, FTG) and 63 energetic healthy controls (Energetic group, ENG)

were enrolled. Saliva samples were collected, from which microbial DNA was

extracted. The V3–V4 hypervariable region of the 16S rRNA gene was

subsequently sequenced using high-throughput technology. Bioinformatics

analyses encompassed assessment of alpha and beta diversity, identification of

differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-

method cross-validation, construction of microbial co-occurrence networks,

and screening of fatigue-associated biomarker genera via the Boruta-SHAP

algorithm. Microbial community phenotypes and potential functional pathways

were predicted using BugBase and PICRUSt2, respectively.

Results: The FTG group exhibited significantly diminished alpha diversity

(Simpson index, p=0.01071) relative to the ENG group. Beta diversity analysis

demonstrated significant dissimilarities in microbial community structure

between the groups (p<0.05). Taxonomic profiling revealed a significant

enrichment in the relative abundance of potential periodontopathogenic

genera, including Streptococcus and Filifactor, within the FTG group,

concomitantly with a significant depletion of health-associated genera such as

Rothia and Neisseria. A predictive model constructed using the Boruta-SHAP

algorithm, based on 15 key genera, effectively discriminated between fatigue and

non-fatigue states, achieving an area under the receiver operating characteristic

curve (AUC) of 0.948. Phenotypic predictions indicated a significant increase in

the proportion of bacteria harboring Mobile Genetic Elements (MGEs) (p=0.048),

alongside significant reductions in the proportion of aerobic bacteria (p=0.006)

and biofilm-forming capacity (p=0.002) in the FTG group. Functional pathway

analysis (PICRUSt2) revealed an enrichment of pathways such as "Neuroactive
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ligand-receptor interaction" in the FTG group, whereas pathways pertinent to

energy metabolism (e.g., Citrate cycle (TCA cycle), Oxidative phosphorylation)

and amino acid metabolism (e.g., Phenylalanine metabolism, Histidine

metabolism) were significantly enriched in the ENG group.

Conclusion: This study provides novel evidence that physiological fatigue

induces significant structural and functional alterations in the salivary

microbiome of healthy individuals. These perturbations include diminished

microbial diversity, disrupted community architecture, enrichment of potential

opportunistic pathogens, and marked shifts in key metabolic pathways,

particularly those governing neuroactivity and energy metabolism. These

findings suggest that the salivary microbiome may be implicated in the

physiological regulation of fatigue, potentially via an "oral-microbiome-brain

axis," and underscore its potential as a source of non-invasive biomarkers for

assessing fatigue status. Further mechanistic investigations are warranted to

elucidate these interactions.
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1 Introduction

Fatigue is defined as a self-reported functional impairment

symptom characterized by limitations in physical and cognitive

functions, and it typically involves complex mechanisms such as

immune dysfunction, metabolic disorders, and regulation of the

microbiota-gut-brain axis (Raizen et al., 2023). Fatigue can be

classified as physiological and pathological fatigue. Physiological

fatigue, which develops from physical activity, mental exertion,

sleep deprivation, or infections, is relieved by rest and/or sleep.

Pathological fatigue, resulting from conditions such as myalgic

encephalomyelitis/chronic fatigue syndrome (ME/CFS), rheumatic

diseases, multiple sclerosis, Parkinson’s disease, and long COVID

postacute sequelae of SARS-CoV-2 infection (PASC), is only

partially relieved by rest (Raizen et al., 2023). Recently, a

systematic review and meta-analysis of the global prevalence of

fatigue reported an average prevalence of 7.7% for chronic fatigue

(pathological fatigue) and 24.2% for generalized fatigue

(physiological fatigue) (Yoon et al., 2023). Fatigue has a

substantial economic impact on society. For instance, it is

estimated to cost employers over $136 billion annually in the

United States due to the loss of productivity (Ricci et al., 2007).

However, this estimate does not account for additional losses due to

accidents related to fatigued driving (Zhang et al., 2022) and

negative health outcomes associated with fatigue (Knoop et al.,

2021). The impact of fatigue on healthcare is severely

underestimated. Despite the high economic and social costs of

fatigue, the mechanisms and biomarkers of fatigue under different

health conditions remain unclear.
02
Over the past two decades, remarkable advances have been

made in microbiome research (Fremont et al., 2013; Nagy-Szakal

et al., 2017; Guo et al., 2023; Xiong et al., 2023). Several studies have

investigated the relationship between the gut microbiome and

fatigue (Fremont et al., 2013; Nagy-Szakal et al., 2017; Guo et al.,

2023; Xiong et al., 2023). Previous research indicates that the gut

microbiome composition in ME/CFS patients is altered, with a

reduction in biodiversity; however, the precise relationship between

bacterial composition and ME/CFS pathogenesis remains unclear.

Dysbiosis may affect ME/CFS through the microbiota-gut-brain

axis in several potential ways. These include (1) inflammation and

immune activation: Dysbiosis can lead to increased intestinal

permeability, commonly known as “leaky gut,” which allows

bacteria or bacterial metabolites from the gut to enter the

bloodstream. This can trigger immune responses and systemic

inflammation, thereby affecting the brain and contributing to

ME/CFS symptoms (Clapp et al., 2017); (2) neurotransmitter

signaling: The gut microbiome plays a role in producing and

regulating neurotransmitters. Dysbiosis can disrupt the

production and balance of neurotransmitters such as serotonin

(5-HT) and g-aminobutyric acid (GABA), which are crucial for

mood, cognition, and other brain functions. Alterations in

neurotransmitter production and signaling may contribute to

fatigue symptoms in ME/CFS patients (Loebel et al., 2016); (3)

metabolite production: The gut microbiome produces various

metabolites, including short-chain fatty acids (SCFAs), which can

influence brain function and behavior. Dysbiosis may alter the

production and availability of these metabolites, thereby potentially

affecting gut-brain communication and leading to ME/CFS
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symptoms; and (4) activation of the immune-brain axis: Dysbiosis

can activate the immune system, leading to the release of

proinflammatory cytokines and other immune molecules. These

immune molecules can communicate with the brain through

pathways such as the vagus nerve and immune cell transport,

potentially affecting brain function and contributing to ME/CFS

symptoms (Holzer et al., 2017; Arzani et al., 2020).

While research on the microbiota-gut-brain axis has substantially

enhanced our understanding of the interactions between the

microbiota and fatigue, it has predominantly focused on the lower

gastrointestinal tract, often overlooking another crucial environment:

the oral microbiome. The oral cavity is the entry point for all

substances (microorganisms and other substances) into the body

and serves as the starting point of the digestive system. Similar to

research on the gut microbiome, oral microbiome research is shifting

toward a comprehensive understanding of its functions and

interactions with the body (Baker et al., 2024). Recent findings

indicate that the oral microbiome is not only a marker of oral health

issues, such as dental caries and periodontal disease, but also a key

player in systemic conditions, including obesity, diabetes, and

neurological and psychiatric disorders (Wu et al., 2018; Cunha et al.,

2019; Lin et al., 2019; Xue et al., 2020; Yang et al., 2021; Ahrens et al.,

2022). Indeed, similar to the gut microbiome, the oral microbiome

may also engage in complex bidirectional interactions between the

brain and the central nervous system (CNS). The cascading effects of

the oral microbiota andmetabolites escaping into the brain can directly

lead to the development various diseases. For instance, in mice, the oral

pathogen Streptococcus mutans can enter the bloodstream from the

oral cavity and induce cerebral hemorrhage by disrupting the blood-

brain barrier through its collagen-binding activity (Watanabe et al.,

2016). Similarly, Porphyromonas gingivalis, a bacterial species present

in many individuals with poor oral health, may play a pivotal role in

the development and progression of periodontal disease. Notably, P.

gingivalis can enter the bloodstream, colonize the brain, and release

neurotoxic proteases known as gingipains, which are implicated in

Alzheimer’s disease progression (Lassalle et al., 2018). Recent studies

have revealed how the oral microbiome negatively affects neurological

processes and influences cognition and behavior. The analysis of the

oral microbiome metabolic pathways in smokers showed enrichment

of the neurotransmitter-related pathways. These pathways include

tyrosine metabolism and the production of glutamine-glutamate and

glutamatergic synapses. Smoking stimulates neurotransmitter

production through the glutamine and glutamate pathways, thereby

influencing reward circuitry in the brain. Thus, the oral microbiome

can directly affect the reward pathways associated with smoking

behavior and dependence, altering the typical interactions between

the oral microbiome and the brain’s functional connectivity (Lin

et al., 2019).

In light of this research background, to determine the

relationship between the oral microbiome and fatigue, we

performed 16S rRNA high-throughput sequencing to analyze the

oral microbiome composition in a cohort of fatigued healthy

individuals. We further predicted the phenotypes and metabolic
Frontiers in Cellular and Infection Microbiology 03
pathways of the oral microbiome in these fatigued subjects. By

evaluating the effect of fatigue on the oral microbiome, we aimed to

infer the potential implications of these changes for oral health, the

CNS, and overall systemic health.
2 Materials and methods

2.1 Study design, participants, and
assessment procedures

This study employed a prospective observational design, with

the detailed protocol previously described (Xu et al., 2018; Xu et al.,

2020). Seventy healthy university students, aged 18–50 years, were

recruited. Baseline assessments confirmed all participants had

sufficient sleep, exhibited normal awake electroencephalogram

(EEG) patterns (absence of fatigue characteristics), and did not

meet criteria for ME/CFS. Stringent inclusion and exclusion criteria

(adapted from Breithaupt-Groegler et al (Breithaupt-Groegler et al.,

2017), covering chronic fatigue history, recent infections, specific

symptoms, medication use, smoking, and oral health) were

rigorously applied. Ethical approval was obtained from the Ethics

Committee of the Affiliated Hospital of Hebei University of

Engineering (Handan, China; March 12, 2014; Clinical Trial

Registration: ChiCTR-DCD-14005746), and written informed

consent was secured from all participants. Subsequently, all 70

eligible participants underwent a standardized physiological fatigue

induction protocol, involving continuous high-intensity cognitive

tasks (“continuous study work”) in a quiet setting for at least 18

hours (actual range: 18–24 hours), with minimal necessary breaks.

Immediately following the cognitive tasks, comprehensive

subjective and objective fatigue assessments were conducted on all

participants. Subjective fatigue was evaluated using a revised Piper

Fatigue Scale (PFS; based on Piper et al (Piper et al., 1998)), with

item scores from 0-10; the overall average score categorized fatigue

as mild (1-3.3), moderate (3.4-6.7), or severe (6.8-10), serving as a

preliminary reference for grouping. Objective fatigue state was

determined via EEG monitoring (SOLAR-RTA/BFM system),

based on characteristic waveform changes compared to baseline

(significant increase in slow-wave and/or decrease in fast-wave

activity). Upon completion of these assessments, saliva samples

were immediately collected from all 70 participants for subsequent

microbiome analysis.

The final group assignment for the comparative analyses herein

was strictly determined based on the objective EEG assessment

results, although PFS scores provided valuable subjective context.

The Fatigue Group (FTG; n=7) comprised participants whose post-

protocol EEG clearly met the predefined objective fatigue criteria

(typically corresponding with higher PFS scores, e.g., >6.7).

Conversely, the Energetic Group (ENG; n=63) consisted of

participants who, despite completing the same protocol, did not

meet the objective EEG fatigue criteria (typically corresponding

with lower PFS scores, e.g., ≤3.3).
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2.2 Saliva sample collection

Saliva samples were collected from the subjects after 18 h of

continuous study work. The subjects rinsed their mouths three times

with sterile saline. Prior to sample collection, all subjects rinsed their

mouth three times (1 min each time) with 30 mL of distilled water to

remove food debris. After rinsing, each subject sat straight in a seat

for 5 min, with their head tilted slightly forward and their eyes open.

The subjects then chewed to stimulate salivary secretion. Once a

sufficient amount of saliva had accumulated in the lower jaw, they

placed their tongue against the palate and opened their mouth to

allow the saliva to flow naturally into a 2 mL sterile centrifuge tube.

Subsequently, the saliva samples from each participant were collected

and immediately transported to the National Key Laboratory of

Institute of Infectious Diseases Prevention and Control of Chinese

Center for Disease Control and Prevention by a cold-chain shipping

company and stored at -80°C.
2.3 DNA extraction and 16S rRNA gene
sequencing

An aliquot of 500 mL saliva was centrifuged at 13,200 rpm for

10 min. The supernatant was discarded, and the precipitate was

retained. Total saliva microbial DNA was extracted using the

QIAamp® DNA Mini Kit (Qiagen, Germany) following the

manufacturer’s instructions. The quantity and quality of extracted

DNAwere assessed using a NanoDrop 2000 spectrophotometer and

agarose gel electrophoresis, respectively. The extracted DNA was

used as a template for the PCR amplification of bacterial 16S rRNA

genes of the V3–V4 region with specific primers containing

barcodes. The primer sequences were 341F (5′-CCTAYG
GGRBGCASCAG-3 ′ ) and 806R (5 ′-GGACTACNNGG

GGTATCTAAT-3′) (Youngseob et al., 2005). The amplicons

were purified, quantified, and prepared for library construction,

with all amplicons mixed in equal amounts. Library quality was

assessed on the Qubit® 2.0 fluorometer (Thermo Scientific) and the

Agilent Bioanalyzer 2100 system. The library was sequenced on an

Illumina HiSeq 2000 platform (250 bp paired-end reads) at

Novogene Bioinformatics Technology. (Beijing, China).
2.4 Sequencing data processing and
bioinformatics analysis

Raw sequencing reads were processed using the USEARCH

pipeline (v11.0.667) for amplicon sequence analysis (Edgar, 2010).

Key processing steps included demultiplexing reads based on

barcodes and performing quality filtering. Subsequently, the

UNOISE3 algorithm was employed for sequence denoising,

merging of paired-end reads and generation of non-chimeric

Amplicon Sequence Variants (ASVs) (Edgar, 2016a). The

UCHIME process inherently includes chimera detection and

removal (Edgar, 2016b). Taxonomic assignment of the resulting

representative ASV sequences was performed using the RDP
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Classifier (v2.13) against a relevant reference database (Cole

et al., 2014).

Alpha diversity indices (Shannon, Simpson, Chao1, and ACE)

were calculated to assess within-sample microbial diversity after

rarefying each sample to a depth of 10,000 reads. To evaluate beta

diversity (between-sample community structure differences), the

robust Aitchison distance, which is suitable for compositional

microbiome data, was calculated using the vegan package (v2.6-

6.1) in R (v4.2.3) (Clarke, 1993) (Oksanen, 2024). Non-metric

Multidimensional Scaling (NMDS) ordination based on the

Aitchison distance matrix was used to visualize community

structures, and the Wilcoxon rank-sum test was applied to assess

significant differences between groups in the NMDS ordination

space. Additionally, Permutational Multivariate Analysis of

Variance (PERMANOVA) and Multi-Response Permutation

Procedures (MRPP) were conducted to formally test for

significant differences in overall community composition between

groups. For PERMANOVA and MRPP analysis, the function of the

vegan package for R was used. Linear Discriminant Analysis Effect

Size (LEfSe) (v1.1.2) was utilized to identify statistically significant

differentially abundant taxa between groups, applying a Linear

Discriminant Analysis (LDA) score threshold of > 3.0 (Segata

et al., 2011). To ensure the robustness of the identified differential

taxa, the results were cross-validated using multiple alternative

methods, including ALDEx2 (Gloor, 2015), ANCOM-II (Mandal

et al., 2015), MaAsLin3 (Nickols et al., 2024), PROC-GLM (Sunwoo

et al., 2020) and ZicoSeq (Yang and Chen, 2023).

Microbial co-occurrence networks were constructed using the R

package ggClusterNet (v0.1.0). Network edges were determined

based on SparCC correlations (|r| > 0.3, p < 0.05) between taxa

(Wen et al., 2022). The functional potential of the microbial

communities was predicted by inferring KEGG Orthology (KO)

profiles from ASV data using PICRUSt2 (v1.7.2) (Douglas et al.,

2020). Differential abundance analysis of predicted functional

pathways between groups was performed using the LinDA

method implemented within the ggpicrust2 package (v1.7.2),

which also facilitated visualization (Yang et al., 2023).

Furthermore, key phenotypic traits of the microbial communities,

such as Gram staining properties, oxygen tolerance, and biofilm

formation capacity, were inferred using BugBase (https://

github.com/knights-lab/BugBase) (Ward et al., 2017).

To identify potential taxonomic biomarkers associated with

fatigue status, a feature selection approach using the Boruta

algorithm (implemented with LightGBM) was employed

(Lundberg and Lee , 2017). SHAP (SHapley Addit ive

exPlanations) analysis was subsequently applied to interpret the

contribution of the selected features to the model, thereby

enhancing model interpretability (Kursa and Rudnicki, 2010).
2.5 Statistical analysis

Baseline demographic characteristics were compared between

the Fatigue Group (FTG) and the Energetic Group (ENG).

Specifically, continuous variables (e.g., age) were compared
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between groups using PROC GLM (implemented via the sasLM

package v0.10.3 in R v4.2.3). Post hoc analysis using Tukey’s

Honestly Significant Difference (HSD) test was performed if

required for multiple comparisons. Categorical variables (e.g.,

gender distribution) were compared using the Wilcoxon rank-

sum test (or Chi-squared test, as appropriate for the data).

Statistical methods for group comparisons related to

bioinformatics analyses (e.g., comparisons of alpha diversity

indices, PERMANOVA/MRPP tests for beta diversity, differential

abundance analysis of taxa and functions) are detailed within their

respective descriptions in Section 1.4.

All statistical tests were two-sided where applicable. A p-value <

0.05 was considered statistically significant. Significance levels in the

results are denoted as *p < 0.05, **p < 0.01, and ***p < 0.001.
3 Results

3.1 Overview of the study cohort and
sequencing data

A total of 70 healthy individuals aged 18–50 years were enrolled

according to strict inclusion and exclusion criteria (Figure 1),

including 7 individuals experiencing fatigue (FTG) and 63

individuals in an energized state (ENG). No significant differences

in gender or age were observed between the two groups

(Supplementary Table S1). Saliva samples were systematically

collected from all participants and subjected to 16S rRNA

amplicon sequencing on the Illumina HiSeq 2000 platform.

Following rigorous data preprocessing and quality control

procedures—including splicing, filtering, and chimera removal—

4,164,405 valid sequences were obtained in total, with each sample

yielding an average of 59,492 ± 5,101 sequences. The average read

length of the valid sequences was 425 base pairs. Subsequent

taxonomic assignment revealed 1,204 ASVs, providing a

comprehensive overview of the microbial profiles in these samples.
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3.2 Intra-variations in salivary microbial
diversity between the FTG and ENG groups

To validate sequencing depth adequacy for microbial diversity

assessment, rarefaction curves were initially constructed to confirm

data saturation (Supplementary Figure S1). Comparative analysis of

a-diversity indices revealed a significant reduction in overall

microbial diversity within the FTG group compared to controls

(Supplementary Table S2). Regarding indices predominantly

reflecting species richness, elevated values were observed in the

FTG group for both ACE (439.22 ± 59.84, p = 0.1868, Figure 2A)

and Chao1 (438.67 ± 61.66, p = 0.7858, Figure 2B) estimators.

Interestingly, while the Simpson index (0.80 ± 0.08, p = 0.01071,

Figure 2C) and Shannon index (2.85 ± 0.40, p = 0.1152, Figure 2D)

integrate both species richness and evenness, only the Simpson

index demonstrated statistically significant intergroup differences.

This discrepancy suggests potential dominance of specific microbial

taxa in community structure of the FTG group.
3.3 Inter-variations in salivary microbial
diversity between the FTG and ENG groups

To evaluate the similarity of salivary microbial communities, b-
diversity analysis at the amplicon sequence variant (ASV) level was

performed on 16S rRNA amplicon sequencing data using the vegan

package (v2.6.4). A Robust Aitchison distance matrix, optimized for

compositional data analysis, was constructed to characterize

microbial community structures. Non-metric multidimensional

scaling (NMDS) was employed to visualize inter-group differences

between FTG and ENG cohorts (Figure 3A). While NMDS plot

demonstrated partial overlap between groups, suggesting subtle

overall differences in salivary microbiota, statistically significant

distinctions were confirmed through Wilcoxon rank-sum test

(Figure 3B, p=5.29E-3), ANOSIM (permutations=999, p=0.029),

and MRPP (permutations=9999, p=0.0419).
FIGURE 1

Schematic overview of the study workflow. Healthy volunteers (n=70) were recruited and assessed (including EEG), leading to categorization
(energized=63, fatigue=7). Saliva samples underwent 16S rRNA gene sequencing. Bioinformatics analysis characterized the saliva microbiota to
identify structural differences, fatigue-related features, and biomarkers, which were correlated with microbiota composition, predicted functions, and
phenotypes. Key phases included Recruitment, Sampling and Sequencing, and Bioinformatics Analysis and Statistics.
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3.4 Taxonomic differences in the salivary
microbiome of the FTG and ENG groups

To elucidate compositional differences in the salivary

microbiota between energized (ENG) and fatigued (FTG)

individuals at the phylum and genus levels, a systematic

comparative analysis was conducted. First, Venn diagrams were

employed to quantitatively assess shared and unique microbial

taxonomic units between the groups (Figures 4A, B). Phylum-

level analysis (Figure 4A) identified 14 phyla in total, with 12

shared by both groups . Two phyla (Chloroflexi and

Elusimicrobia) were unique to the ENG group, resulting in a high

shared proportion (85.71%) and indicating substantial similarity in

core phylum composition. Genus-level analysis (Figure 4B),

however, revealed that among the 157 identified genera, only 111

were shared. The ENG group harbored significantly more unique

genera (n=45) compared to the FTG group (n=1), with the shared
Frontiers in Cellular and Infection Microbiology 06
proportion decreasing to 70.70%. This highlights increased inter-

group divergence and greater microbial uniqueness within the ENG

cohort at the genus level.

Second, Circos plots were utilized to visualize the relative

abundance and inter-group associations of major taxa (Figures 4C,

D). The phylum-level Circos plot (Figure 4C) displayed the top 10

most abundant phyla (cumulatively >99.9% relative abundance),

confirming Firmicutes, Proteobacteria, Bacteroidetes, and

Actinobacteria as the primary dominant phyla in both groups. The

genus-level Circos plot (Figure 4D) focused on the top 15 most

abundant genera (each >1% relative abundance, collectively >60%

total relative abundance), clearly illustrating significant inter-group

differentiation: Streptococcus exhibited markedly higher relative

abundance in the FTG group, whereas Rothia and Neisseria were

notably enriched in the ENG group. Furthermore, abundance

differences for other major genera, including Gemella ,

Granulicatella, and Prevotella, were also depicted.
FIGURE 2

Comparison of a-diversity indices of the oral microbiota between the FTG and ENG groups. (A) ACE index. (B) Chao1 index. (C) Shannon index. (D)
Simpson index. Statistical comparisons were performed using the PROC GLM test, with significance levels denoted as follows: P < 0.05 (*) and P >
0.05 (ns).
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FIGURE 4

Comparison of salivary microbial community composition between ENG and FTG groups. (A, B) Venn diagrams assessing the number of shared and
unique taxa at the phylum (A) and genus (B) levels. Numbers are counts; percentages indicate shared proportion. (C, D) Circos plots illustrating
relative abundance and inter-group associations of major taxa at the top 10 phylum (C) and top 15 genus (D) levels in ENG (left) and FTG (right)
groups. Outer arc length corresponds to relative abundance; inner ribbon width reflects association strength.
FIGURE 3

Comparison of b-diversity indices of the oral microbiota between the FTG and ENG groups. (A) Non-metric multidimensional scaling (NMDS)
ordination derived from robust Aitchison dissimilarity distances for oral microbiota community (stress value = 0.099, k = 2). Colored ellipses indicate
95% confidence intervals for each group. (B) The boxplot illustrates the distribution of robust Aitchison distances for pairwise comparisons between
samples from the FTG and ENG groups. Individual data points represent specific pairwise comparisons, with asterisks (**) denoting statistically
significant differences between groups as determined by Wilcoxon rank-sum test (p < 0.01).
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3.5 Oral microbiome network in healthy
individuals in fatigue state

To elucidate the interactions within the oral microbiome, we

identified interactive networks within the groups (Figures 5A, B) and

delineated differences in microbiome interactions between the FTG

and ENG groups (Figure 5C). We found interactive networks within

the oral microbiome of the ENG group (Figure 4A). This was

confirmed by multiple network topological indices, whose values

were greater than zero in the saliva samples of the ENG group,

including the number of clusters (No. Clusters), number of edges

(Num. Edges), number of positive edges (Num. Pos. Edges), number

of negative edges (Num. Neg. Edges), number of vertices, diameter,

average path length, and centralization betweenness (Supplementary

Table S3); this finding indicated the existence of a complex network

of microbiota in the ENG group (Figure 5A). The interacting

microbiota within the networks of the ENG group was

predominantly distributed across 6 phyla and 13 genera. These

genera, ranked in descending order of interaction frequency, were
Frontiers in Cellular and Infection Microbiology 08
as follows: Prevotella (40/112, 35.71%), Streptococcus (26/112,

23.21%), Lancefieldella (11/112, 9.82%), Leptotrichia (7/112, 6.25%),

Porphyromonas (6/112, 5.36%), Lachnoanaerobaculum (5/112,

4.46%), Veillonella (5/112, 4.46%), Eubacterium (4/112, 3.57%),

Saccharibacteria_genera_incertae_sedis (2/112, 1.79%), Unassigned

(2/112, 1.79%), Aggregatibacter (1/112, 0.89%), Granulicatella (1/

112, 0.89%), Neisseria (1/112, 0.89%), and Schaalia (1/112, 0.89%).

Concurrently, we observed an increase in the network

topological complexity in the FTG group, as indicated by metrics

such as Num. Edges, Num. Pos. Edges, Num. Neg. Edges, number of

vertices, and diameter (Figures 5B, C; Supplementary Table S3). The

dashed line plot (Figure 5C) indicates a significant increase in both

the number of edges and vertices in the network topology of the

FTG group. The numbers of both positively and negatively

correlated edges were significantly higher in the FTG group than

in the ENG group. However, the FTG group showed a decrease in

network topological indices such as connectance (edge density) and

mean clustering coefficient (average CC), which suggested a

reduction in network cohesiveness in this group.
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FIGURE 5

Salivary microbial network of the ENG and FTG groups. (A) Visualization of the salivary microbial network in the ENG group. (B) Visualization of the
salivary microbial network in the FTG group. (C) Changes in network topology, including number of clusters (No. Clusters), number of edges (Num.
Edges), average path length, and diameter between the two groups.
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Specifically, the FTG group network included interacting species

from 11 phyla and 33 genera. The top 15 species based on interaction

frequency were Streptococcus (123/710, 17.32%), Neisseria (54/710,

7.61%), Rothia (47/710, 6.62%), Schaalia (46/710, 6.48%), Prevotella

(38/710, 5.35%), Veillonella (33/710, 4.65%), Leptotrichia (32/710,

4.51%), Porphyromonas (30/710, 4.23%), Gemella (28/710, 3.94%),

Eubacterium (26/710, 3.66%), Oribacterium (26/710, 3.66%),

Stomatobaculum (26/710, 3.66%), Lautropia (20/710, 2.82%),

Granulicatella (19/710, 2.68%), and Haemophilus (18/710, 2.56%).

These findings revealed that under fatigue conditions, the number of

interacting species and the frequency of their interactions in the FTG

group network significantly increased, along with a notable increase

in both cooperative and competitive interactions among the species.

However, despite the increased complexity of the network, its overall

density decreased.
3.6 Identification and validation of salivary
microbiota biomarkers for fatigue status

To elucidate the distinctive salivary microbiome profiles

associated with the fatigue state (FTG), we initially employed

Linear Discriminant Analysis Effect Size (LEfSe) to compare

microbial taxa with significantly different abundances between the

FTG and ENG groups. The resulting cladogram illustrates the

differentially abundant taxa hierarchically from phylum to genus

level. Nineteen taxa were identified with significant differential

abundance (LDA score > 2, P < 0.05) between the groups

(Figure 6A). Specifically, the FTG group exhibited significant

enrichment of Firmicutes(phylum), Bacilli(class),Streptococcaceae

(family), Peptostreptococcaceae(family),Streptococcus (genus),

Filifactor (genus),and Peptostreptococcaceae incertae sedis

(unclassified genus). Conversely, the ENG group demonstrated

significantly higher abundances of Actinobacteria (phylum),

Actinobacteria (class), Micrococcales (order), Micrococcaceae

(family),Proteobacteria(phylum),Betaproteobacteria(class),

Neisseriales(order),Neisseriaceae(family), Rothia (genus), Neisseria

(genus), Megasphaera (genus),and Flavobacteriaceae_Unassigned

(unclassified genus).

To investigate the predictive utility of the salivary microbiome in

discriminating individual fatigue status, this study constructed a

machine learning model based on genus-level taxonomy. The

model employed the Boruta algorithm for feature selection and

integrated SHAP (SHapley Additive exPlanations) analysis for

model interpretation and key feature identification, with its

performance and robustness ultimately assessed via cross-

validation. The model’s predictive efficacy, evaluated using the

Receiver Operating Characteristic (ROC) curve (Figure 6B), yielded

an Area Under the Curve (AUC) of 0.948 (95% CI: 0.919 - 0.974),

demonstrating excellent and statistically significant discriminatory

power in effectively differentiating between fatigued and non-fatigued

(energized) individuals. Furthermore, assessment of model stability

through resampling techniques revealed robust performance across

key metrics (Supplementary Figure S2), exhibiting high consistency

particularly for Specificity (mean ~0.95), Negative Predictive Value
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(mean ~0.94), and AUC (mean ~0.95). Accuracy (mean ~0.90) and

Positive Predictive Value (mean ~0.84) also showed good

performance. Although Sensitivity (mean ~0.75) and F1 Score

(mean ~0.79) were comparatively lower with slightly wider

distributions, suggesting potential room for improvement in

identifying fatigued (positive) samples, the Matthews Correlation

Coefficient (MCC, mean ~0.71), as a balanced metric, nonetheless

confirmed the model’s reasonably good overall predictive capability.

To gain deeper insights into the model’s decision-making

mechanisms, SHAP analysis was utilized to visualize the

contributions of the top 15 feature genera (Figure 6B). The SHAP

summary plot (comprising a beeswarm plot and a bar plot) clearly

elucidated: (1) feature importance ranking based on mean absolute

SHAP values; (2) the directionality of the effect of feature abundance

(color: yellow=high, purple=low) on predictive contribution (sign of

SHAP value); and (3) the pattern of the relationship between feature

abundance and predictive impact (distribution of points). For

instance, Rothia, the most important feature, showed that higher

abundance was associated with a reduced prediction of fatigue

(predominantly negative SHAP values), and its relatively

symmetrical SHAP value distribution suggested an approximately

linear relationship between its abundance and fatigue status risk. In

summary, this study successfully developed and validated a high-

performance classifier based on the salivary microbiome, capable of

reliably discriminating between different fatigue statuses

(AUC=0.948). The model demonstrated robust performance, and

SHAP analysis elucidated the specific impact patterns of key

microbial taxa (e.g., Rothia) and their abundances on predictions,

enhancing model interpretability. These findings indicate that the

identified key salivary microbial taxa hold potential value as non-

invasive biomarkers for clinical fatigue risk assessment.

To robustly validate the bacterial genera significantly associated

with fatigue, we employed a cross-validation strategy using seven

distinct differential abundance analysis methods: LEfSe, ALDEx2,

ANCOM-II, ZicoSeq, MaAsLin3, PROC-GLM, and our previously

described fatigue-associated Boruta-SHAP algorithm model.

Comparative visualization via Venn diagrams and a heatmap

facilitated the assessment of consensus in genus-level taxa

identification across these methodologies (Figure 6C). The Venn

diagram illustrates the overlap of genera detected by each method,

highlighting methodological concordance. The heatmap depicts the

distribution patterns (e.g., detection status or statistical significance/

effect size) of the consensus genera across the analytical approaches,

enabling a visual comparison of their performance. Thirteen genera

exhibited consistent detection by at least two methods. Notably,

Rothia and Filifactor were concurrently identified by six

methodologies, followed by Neisseria and Streptococcus, detected

by five approaches. Peptostreptococcaceae incertae sedis

demonstrated consensus across three methods. Eight additional

genera (Megasphaera, Mycoplasma, Pyramidobacter, Treponema,

Necropsobacter , Pseudoramibacter , Alloprevotel la , and

Flavobacteriaceae_Unassigned) showed agreement between two

independent analytical frameworks. This comprehensive multi-

method validation strategy substantially strengthens the reliability

of these microbial signatures as fatigue-associated biomarkers.
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Furthermore, to visually compare the abundance distributions

of potential microbial biomarkers within saliva samples from the

ENG and FTG groups, boxplots were generated (Figure 7). These

plots illustrate the relative abundances (Y-axis, log10 scale) of major
Frontiers in Cellular and Infection Microbiology 10
microbial taxa at the phylum (left panel) and genus (right panel)

levels between the two groups. At the phylum level, Firmicutes and

Proteobacteria were identified as the most dominant phyla in both

groups. Compared to the FTG group, the ENG group showed
FIGURE 6

Biomarker taxa of the salivary microbiota in the FTG and ENG groups. (A) Intergroup microbial community markers of the oral microbiota in the ENG
and FTG groups based on the LEfSe analysis. (B) SHAP summary plots according to the Boruta-SHAP algorithm. Bar plot showing global SHAP values
for feature importance, and beeswarm plot for the local SHAP values, showing the contribution of each genus to the fatigue predictions of the
model. Features in both bar plot and beeswarm plot were ranked by mean absolute SHAP value, hence their rankings are identical. In the SHAP
beeswarm plot, each point represents an individual in the training data. The x-axis corresponds to the SHAP value, with vertical jitter indicating a high
density of points. The color scale indicates the relative magnitude of each feature with yellow indicating high values of the feature and purple the
opposite; ROC curve obtained for the 15 feature genera from the model based on the Boruta-SHAP algorithm. (C) Venn diagram and heatmap
visualizations comparing genus-level taxa detected by seven differential analysis methods. The Venn diagram illustrates the overlap of genus-level
taxa detected by each method. The heatmap displays the distribution patterns of the detected genus-level species across different methods,
allowing for a visual comparison of their performance.
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slightly higher trending relative abundances of Actinobacteria and

Proteobacteria, whereas the relative abundance of Firmicutes

appeared slightly elevated in the FTG group. Spirochaetes and

Tenericutes consistently displayed lower relative abundances in

both cohorts. The genus-level comparison (right panel) revealed

more pronounced inter-group differences. Specifically, the relative

abundances of Rothia and Neisseria were markedly higher in the

ENG group than in the FTG group. Conversely, the FTG group

exhibited significantly higher relative abundances of Filifactor and

Streptococcus. The distributions of numerous other genera,

including Megasphaera and Peptostreptococcaceae incertae sedis,

also showed varying degrees of difference between the groups.

Although many genera were present at low overall abundance,

their differential presence may still possess biological significance.

Following the identification of key bacterial genera exhibiting

significant abundance differences between the FTG and ENG

groups (Figures 5, 6), we sought to gain deeper insights into the

potential functional ramifications of these taxonomic shifts.

Consequently, we performed comprehensive functional

annotation of these differential genera, with detailed results

compiled in Supplementary Table S2. This annotation integrates

multi-dimensional information, including the potential pro- or

anti-inflammatory properties of each genus, their capacity for

gamma-aminobutyric acid (GABA) metabolism, notable

metabolite production (particularly short-chain fatty acids,

SCFAs), ecological and adaptive traits (e.g., carriage of mobile

genetic elements (MGEs), biofilm formation capabilities), and

potential clinical relevance (e.g., associations with periodontal

pathogenesis or systemic diseases). The information presented in

Supplementary Table S1 was systematically curated from published

literature and public databases (references in table footnotes).
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Overall, this table highlights that several genera enriched in the

FTG group (e.g., Filifactor, Streptococcus, Parvimonas, Tannerella,

Treponema) possess known pro-inflammatory potential or are

associated with periodontal disease. In contrast, some genera

relatively enriched in the ENG group (e.g., Rothia, Neisseria,

Cardiobacterium) are linked to oral health or potential anti-

inflammatory functions. These detailed functional annotations

provide a crucial, taxon-specific foundation for subsequently

exploring the functional alterations within the salivary

microbiome under fatigue and their potential biological

significance (see Section 2.7 and Discussion).
3.7 Functional prediction of the salivary
bacterial community in the FTG group

To investigate functional phenotypic differences at the

community level between the microbial communities of the ENG

and FTG groups, we predicted their phenotypic profiles using

BugBase analysis. The results indicated (Figure 8A) that,

compared to the ENG group, the relative abundance of bacteria

predicted to contain Mobile Genetic Elements (MGEs) was

significantly higher in the FTG group (Wilcoxon rank-sum test, P

= 0.048), suggesting a potentially higher capacity for Horizontal

Gene Transfer (HGT). Conversely, the relative abundances of

bacteria predicted to be Aerobic and capable of forming Biofilms

were significantly lower in the FTG group (P = 0.006 and P = 0.002,

respectively). No statistically significant differences were observed

between the groups for other predicted phenotypes, including

anaerobic, facultatively anaerobic, Gram-staining characteristics,

potential pathogenicity, or stress tolerance.
FIGURE 7

Comparison of salivary microbial community composition between the ENG and FTG groups at the phylum and genus levels. Box plots show the
relative abundance (%) distribution (Y-axis, log10 scale) of major taxa at the phylum (left panel) and genus (right panel) levels. Orange boxes
represent the ENG group, and blue boxes represent the FTG group. Each box indicates the interquartile range (IQR), the horizontal line within the
box represents the median, and the whiskers extend to the furthest data points within 1.5 times the IQR from the box edge. Individual dots represent
the actual relative abundance values for each sample corresponding to the respective taxon.
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Further taxonomic analysis resolved the contributions to these

significantly different phenotypes (Figure 8B). Within the MGE-

containing communities, the FTG group was primarily dominated

by Firmicutes, exhibiting a significantly higher relative abundance

compared to the ENG group, alongside a concomitant decrease in

the relative abundance of Proteobacteria. For the Aerobic

phenotype, the higher abundance in the ENG group was mainly

attributed to Actinobacteria and Proteobacteria, both of which

showed lower relative abundances in the FTG group. In the

biofilm-forming communities, while the relative abundances of

Actinobacteria and Proteobacteria were lower in the FTG group

compared to the ENG group, there was a notable enrichment in the

relative abundance of the TM7 phylum.

Furthermore, to investigate the differences in predicted functional

potential of the microbial communities between the ENG and FTG

groups, KEGG pathway enrichment analysis was conducted using

ggpicrust2 (Figure 9; Supplementary Table S5). This predictive analysis

revealed significant functional divergence between the two groups.

Specifically (adjusted p < 0.05), the FTG group exhibited significant

enrichment in several KEGG pathways related to Environmental

Information Processing and Metabolism, including Neuroactive
Frontiers in Cellular and Infection Microbiology 12
ligand-receptor interaction (p=0.004), Flavone and flavonol

biosynthesis (p=0.032), Glycosylphosphatidylinositol (GPI)-anchor

biosynthesis (p=0.017), and Ether lipid metabolism (p=0.003).

Conversely, the KEGG pathways significantly enriched in the

ENG group displayed a diverse functional profile. The Metabolism

category was particularly prominent, with enriched pathways

broadly encompassing core energy metabolism (e.g., Oxidative

phosphorylation, Citrate cycle (TCA cycle), Nitrogen

metabolism), biodegradation of specific substrates (Toluene

degradation), amino acid metabolism (Phenylalanine metabolism,

Histidine metabolism), and various biosynthetic pathways,

including those for cofactors and vitamins (Ubiquinone and other

terpenoid-quinone biosynthesis), glycans (Lipopolysaccharide

biosynthesis) , and secondary metabolites (Novobiocin

biosynthesis, Tropane, piperidine and pyridine alkaloid

biosynthesis). Within Genetic Information Processing, enriched

pathways included protein degradation (Proteasome) and

ribosome biogenesis (Ribosome biogenesis in eukaryotes). In

Cellular Processes, the Peroxisome pathway was significantly

enriched. At the Organismal Systems level, enriched pathways

were associated with functions analogous to host systems, such as
FIGURE 8

Predicted phenotype analysis of microbial communities in ENG and FTG groups. (A) Comparison of relative abundances for nine predicted microbial
phenotypes between the two groups (box plots). Boxes represent the interquartile range (IQR), the horizontal line inside the box indicates the
median, whiskers extend to data points within 1.5 times the IQR from the upper and lower quartiles, and black dots represent outliers. Group
comparisons were performed using the Wilcoxon rank-sum test, with asterisks indicating statistical significance levels: *P < 0.05, **P < 0.01, ***P <
0.001. (B) Relative abundance composition of major taxonomic units at the phylum level within the three phenotypes showing significant inter-
group differences (Aerobic, Contains Mobile Elements, Forms Biofilms) (stacked bar charts). Different colors represent different bacterial phyla as
indicated in the legend.
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circulatory (Cardiac muscle contraction), excretory (Proximal

tubule bicarbonate reclamation), and endocrine (Adipocytokine

signaling pathway) functions. Furthermore, several pathways

related to Human Diseases were also significantly enriched in the

ENG group, including those associated with parasitic infections

(Chagas disease, African trypanosomiasis), immune diseases

(Systemic lupus erythematosus), and cancer (Pathways in cancer,

Renal cell carcinoma).
4 Discussion

Fatigue, a complex physiological and pathological state

ubiquitously impacting human health, quality of life, and

socioeconomic productivity, possesses underlying biological

mechanisms that remain incompletely elucidated (Raizen et al.,

2023; Yoon et al., 2023). In recent years, the pivotal role of the gut

microbiome in the pathogenesis of fatigue, particularly Myalgic

Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), via the

“microbiome-gut-brain axis” has garnered considerable attention

(Guo et al., 2023; Xiong et al., 2023). However, the oral cavity,

housing the second largest microbial community in the human

body, represents a relatively underexplored niche concerning the

association between its microbiome and fatigue states, along with

potential regulatory mechanisms (Kuppuswamy, 2017; Lin et al.,

2021; Raizen et al., 2023; Baker et al., 2024). This study presents the

first systematic investigation into the structural and functional

alterations of the salivary microbiome in healthy individuals

following experimentally induced physiological fatigue (prolonged
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learning), aiming to uncover fatigue-associated oral dysbiosis and

its potential biological significance.

Our findings clearly demonstrate significant alterations in the

salivary microbiome of individuals experiencing physiological

fatigue (FTG group) compared to their energetic counterparts

(ENG group). Alpha diversity analysis revealed a significant

decrease in the Simpson index in the FTG group (p=0.01071),

suggesting reduced community evenness, potentially reflecting the

overgrowth of specific dominant genera. Although other alpha

diversity metrics (e.g., Shannon index) did not show statistically

significant differences, beta diversity analyses based on Non-metric

Multidimensional Scaling (NMDS), Analysis of Similarities

(ANOSIM), and Multi-Response Permutation Procedures

(MRPP) consistently confirmed statistically significant differences

in the overall microbial community structure between the two

groups (p<0.05). Such pronounced shifts in community structure

are key indicators of microbial ecosystem imbalance (dysbiosis)

(Levy et al., 2017). This observation shares similarities with reports

of reduced gut microbiome diversity in some ME/CFS patients

(Nagy-Szakal et al., 2017; Guo et al., 2023). However, a notable

discrepancy emerged: we observed a significant increase in the

relative abundance of Firmicutes in the saliva of the FTG group,

while Bacteroidetes showed a non-significant downward trend. This

contrasts with findings from some ME/CFS gut microbiome studies

reporting elevated Bacteroidetes and reduced Firmicutes

(Raijmakers et al., 2020). Potential explanations for this

divergence include: (1) inherent differences in how microbial

communities respond to physiological stress across distinct

ecological niches (oral cavity vs. gut); (2) fundamental differences
FIGURE 9

Significant differences in predicted microbial KEGG functional pathways between ENG and FTG groups. Functional profiles were predicted via
ggpicrust2 and compared using LinDA method (adjusted p < 0.05). The left panel displays the mean relative abundance (± SEM) of these pathways
for the ENG (red) and FTG (blue) groups, organized by KEGG Level 1 functional categories (indicated by background colors). The right panel shows
the corresponding log2 fold change (calculated as FTG relative to ENG); positive values (blue bars, right) denote enrichment in the ENG group,
whereas negative values (blue bars, left) denote enrichment in the FTG group. Adjusted p-values from the LinDA analysis are presented on the
far right.
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in microbiome signatures between physiological fatigue (focus of

this study) and pathological fatigue states like ME/CFS; and (3)

variations in fatigue triggers (learning stress vs. multifactorial

chronic pathology) and duration, which could shape distinct

microbiome alteration patterns.

At the taxonomic level, we identified several key genera

exhibiting significantly different abundances between the FTG and

ENG groups. The relative abundances of Streptococcus and Filifactor

were significantly enriched in the FTG group. Streptococcus, a

dominant genus in the oral cavity with diverse member functions,

its overall increase could reshape the oral microecological balance,

and certain species are implicated in dental caries, periodontitis, and

even systemic infections (Nobbs et al., 2009; Kilian, 2018). Filifactor,

particularly F. alocis, is recognized as a significant periodontal

pathogen associated with periodontal tissue inflammation and bone

resorption (Aruni et al., 2015). Furthermore, several anaerobic genera

linked to periodontitis or opportunistic infections, such as

Treponema, Tannerella, Parvimonas, and unclassified members of

the Peptostreptococcaceae family, also showed increasing trends

(though not all statistically significant) in the FTG group.

Conversely, Rothia and Neisseria, often considered markers of oral

health (Raijmakers et al., 2020), were significantly enriched in the

ENG group. Neisseria participates in nitrate reduction, generating

nitric oxide (NO) beneficial for cardiovascular health (Rosier et al.,

2020); its reduced abundance could potentially exert adverse effects

on host physiological functions. Collectively, these taxonomic shifts

depict a trend wherein physiological fatigue might be accompanied

by oral dysbiosis, characterized by a relative increase in potential

pathogens or pro-inflammatory bacteria and a decrease in health-

associated commensals. This imbalance may not only elevate the risk

of oral diseases like periodontitis but could also potentially impact

systemic health through pathways such as low-grade inflammation

(Hajishengallis and Chavakis, 2021). Co-occurrence network analysis

further suggested potential instability within the FTG microbial

ecosystem: despite increased network density (more edges and

nodes), the overall clustering coefficient was lower, implying

weakened synergistic interactions or heightened competition

among microbes, thereby disturbing homeostasis.

To explore the functional implications of these structural

microbiome changes, we performed predictive analyses of

biological phenotypes and functional pathways. BugBase-based

phenotype prediction indicated significant phenotypic shifts in

the FTG salivary microbiome compared to the ENG group. The

proportion of bacteria carrying mobile genetic elements (MGEs)

was significantly higher in the FTG group (p=0.048), suggesting that

under fatigue-associated oral environmental stress, bacteria might

adapt through more frequent horizontal gene transfer, potentially

accelerating the spread of resistance or virulence genes (Partridge

et al., 2018). Concurrently, the relative abundance of aerobic

bacter ia was significantly reduced (p=0.006) , with a

corresponding increase in anaerobic or facultative anaerobic

bacteria. This aligns with the anaerobic nature of many pro-

inflammatory genera (e.g., Filifactor, Treponema, Tannerella),

indicating a potential shift towards a more hypoxic oral

microenvironment favoring the colonization and proliferation of
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these potential pathogens (Lamont et al., 2018). Intriguingly,

contrary to the common notion that pathogens tend to form

biofilms, the predicted biofilm-forming capacity was significantly

decreased in the FTG group (p=0.002). A plausible explanation is

the reduced abundance of certain health-associated genera capable

of forming stable protective biofilms (e.g., specific members of

Neisseria or Rothia) in the FTG group (Kolenbrander et al.,

2010), leading to an overall decline in the predicted biofilm

formation potential.

Further functional pathway prediction using PICRUSt2

revealed deeper metabolic reprogramming features. Four key

KEGG pathways were significantly upregulated (q<0.05) in the

FTG group: “Neuroactive ligand-receptor interaction” (ko04080),

“Glycosylphosphatidylinositol (GPI)-anchor biosynthesis”

(ko00563), “Ether lipid metabolism” (ko00565), and “Flavone and

flavonol biosynthesis” (ko00944). The enrichment of the

“Neuroactive ligand-receptor interaction” pathway is particularly

compelling, directly suggesting that oral microbes might participate

in host neural signal regulation by synthesizing or metabolizing

neuroactive substances (e.g., short-chain fatty acids (SCFAs),

gamma-aminobutyric acid (GABA)), providing crucial molecular

clues for exploring the role of the “oral-microbiome-brain axis” in

fatigue development (Rea et al., 2016; Strandwitz, 2018; Bowland et

al., 2022). The coordinated upregulation of GPI-anchor

biosynthesis and ether lipid metabolism pathways might relate to

enhanced bacterial cell surface properties (e.g., structural integrity,

adhesion capacity), signal transduction, and biofilm matrix

synthesis (Guo, 2023), potentially improving microbial

adaptability and colonization in the oral environment.

Furthermore, the activation of flavonoid biosynthesis pathways

(also see ko00941 Flavonoid biosynthesis, p=0.004) suggests that

oral microbes could metabolize dietary plant polyphenols (e.g.,

quercetin, luteolin) to produce secondary metabolites with neuro-

regulatory or other bioactive properties (Braune and Blaut, 2016).

Concurrently, several core metabolic pathways exhibited

significant downregulation in the FTG group, including

“Phenylalanine metabolism” (ko00360, p=0.002), “Histidine

metabolism” (ko00340, p=0.008), “Citrate cycle (TCA cycle)”

(ko00020, p=0.01), and “Oxidative phosphorylation” (ko00190,

p=0.02). This pattern of energy metabolism suppression coupled

with restricted specific amino acid metabolism could promote or

exacerbate fatigue through multiple mechanisms. Firstly, reduced

efficiency of core energy metabolism pathways (TCA cycle and

oxidative phosphorylation) directly leads to decreased cellular ATP

production capacity, potentially forcing the host towards less

efficient anaerobic glycolysis for energy, which might result in the

accumulation of metabolic byproducts like lactate, thereby inducing

or worsening peripheral fatigue (Raizen et al., 2023). Secondly,

phenylalanine is a key precursor for synthesizing catecholamine

neurotransmitters like dopamine and norepinephrine;

downregulation of its metabolism pathway could lead to

diminished dopaminergic system function, affecting motivation,

reward, and attention maintenance, correlating with central

fatigue (Chaudhuri and Behan, 2004; Rea et al., 2016). Similarly,

histidine is the precursor for histamine; its suppressed metabolism
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might impact the histaminergic system and indirectly affect other

neuroendocrine systems (e.g., serotonergic system) via the

hypothalamic-pituitary axis, participating in fatigue regulation

(Chaudhuri and Behan, 2004; Rea et al., 2016). Additionally, the

“Ubiquinone and other terpenoid-quinone biosynthesis” pathway

(ko00130), related to Vitamin E (a key lipid-soluble antioxidant)

metabolism, was also significantly downregulated in the FTG group.

Combined with reports of lower serum a-tocopherol levels in ME/

CFS patients (Logan and Wong, 2001) and the fact that certain gut

bacteria (like some members of Bacteroides and Klebsiella, which

were less abundant in our FTG group) may participate in Vitamin E

metabolism (Tarracchini et al., 2025), this suggests that fatigue

states might involve perturbations in the antioxidant defense

system, particularly the Vitamin E metabolic pathway. This could

represent a potential mechanism linking oral microbial imbalance

to fatigue and associated cognitive symptoms.

Integrating the structural and functional prediction results from

this study with existing literature, we postulate that the significantly

altered key microbes in the saliva of the FTG group may participate

in the regulation of physiological fatigue via the “oral-microbiome-

brain axis” through the following interconnected mechanisms:
4.1 Induction of low-grade inflammation

Oral dysbiosis, particularly the relative enrichment of potential

periodontopathogens (e.g., Treponema, Tannerella, Filifactor

elevated in our study) and the depletion of commensals with anti-

inflammatory potential (e.g., Neisseria, Rothia), could lead to

chronic low-grade inflammation locally in the oral cavity. These

microbes, their metabolites (e.g., lipopolysaccharide, LPS), or

induced pro-inflammatory cytokines (e.g., IL-1b, IL-6, TNF-a)
might enter the systemic circulation through compromised oral

mucosal barriers or periodontal tissues, triggering or exacerbating

systemic low-grade inflammation (Liccardo et al., 2019;

Hajishengallis and Chavakis, 2021). Systemic low-grade

inflammation is a recognized pathophysiological feature of

fatigue-related conditions like ME/CFS and can induce fatigue by

affecting central nervous system functions (e.g., inducing “sickness

behavior”) (Dantzer and Kelley, 2007; Morris et al., 2019).
4.2 Regulation of neurotransmitter
metabolism and signaling

Oral microbes possess the capacity to directly synthesize or

metabolize various neurotransmitters and their precursors,

potentially influencing central nervous functions (Rea et al., 2016;

Bowland et al., 2022).
4.2.1 Dopamine signaling system
The downregulation of the phenylalanine metabolism pathway

in the FTG group, combined with abundance changes in specific

genera potentially involved in phenylalanine metabolism (e.g.,

decreased Bacteroides, Klebsiella), might collectively lead to
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reduced effective dopamine supply, correlating with fatigue-

related symptoms like lack of motivation and anhedonia

(Chaudhuri and Behan, 2004; Rea et al., 2016).

4.2.2 Serotonin signaling system
Certain oral genera (e.g., Streptococcus, enriched in FTG) might

participate in tryptophan metabolism, indirectly influencing

serotonin (5-HT) availability (Jenkins et al., 2016; Rea et al.,

2016). Excessive peripheral 5-HT or its metabolites could

indirectly affect central 5-HT levels or function by altering blood-

brain barrier permeability or directly acting on the vagus nerve;

high central 5-HT levels are generally associated with increased

fatigue perception (Davis and Bailey, 1997). Furthermore, the

downregulation of histidine metabolism in the FTG group could

affect histamine levels , thereby indirect ly perturbing

neuroendocrine balance, including the 5-HT system.

4.2.3 GABA signaling system
Gamma-aminobutyric acid (GABA) is the primary inhibitory

neurotransmitter. In the FTG group, the complex situation arising

from the decreased abundance of potential GABA producers (e.g.,

Megasphaera), the reduction of GABA consumers (e.g., Rothia),

and the enrichment of other genera potentially influencing GABA

levels (e.g., Tannerella) might collectively lead to GABAergic system

imbalance (Strandwitz, 2018). This imbalance could exacerbate

fatigue by modulating hypothalamic-pituitary-adrenal (HPA) axis

activity or affecting neuromuscular signaling (Cryan and

Dinan, 2012).
4.3 Mediation via metabolites (metabolite
pathway)

4.3.1 Short-chain fatty acids metabolism
SCFAs are crucial microbial metabolites. Although reduced

butyrate producers and lower SCFA levels are often observed in

the gut of ME/CFS patients (Guo et al., 2023), our study found

increased abundance of some potential butyrate-producing genera

(e.g., Filifactor, Tannerella) in the saliva of the FTG group, while

acetate/propionate-producing Bacteroides and butyrate-producing

Megasphaera decreased. The SCFA profile changes in saliva and

their local and systemic effects (if they enter circulation) might differ

from those in the gut. In the context of oral inflammation, locally

overproduced SCFAs (especially butyrate), if entering circulation,

might induce mild neuroinflammation, oxidative stress, or

participate in fatigue onset by modulating neurotransmitters (e.g.,

promoting peripheral 5-HT release) in the central nervous system

(Dalile et al., 2019; Silva et al., 2020). However, the effects of SCFAs

are concentration- and context-dependent, and their precise role

(potential dual beneficial and detrimental effects) in physiological

fatigue requires further investigation.

4.3.2 Vitamin E metabolism
As previously mentioned, the downregulation of the

ubiquinone and other terpenoid-quinone biosynthesis pathway
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and the decreased abundance of genera known to metabolize

Vitamin E (Bacteroides, Klebsiella) in the FTG group suggest that

the oral microbiome might be involved in Vitamin E metabolic

balance. Considering Vitamin E’s antioxidant and neuroprotective

roles and its altered levels in ME/CFS patients (Hajishengallis and

Chavakis, 2021), oral microbe-mediated dysregulation of Vitamin E

metabolism could be a potential mechanism linking oral dysbiosis

to fatigue and related cognitive symptoms.

Notably, the combination of 15 genus-level taxa identified using

the Boruta-SHAP machine learning algorithm exhibited

exceptionally high predictive performance (AUC=0.948) in

distinguishing between fatigued and non-fatigued states. Among

these, genera such as Rothia, Filifactor, Neisseria, and Streptococcus

had high importance scores (SHAP values) and were consistently

identified as differential by multiple analytical methods (e.g., LEfSe,

ZicoSeq, MaAsLin3, ANCOM-II, ALDEx2, PROC-GLM),

reinforcing the robustness of our findings. This not only further

corroborates the key roles of these genera in fatigue-associated oral

microecological shifts but also highlights the potential of the

salivary microbiome as a non-invasive, high-potential biomarker

for assessing physiological fatigue status.

However, this study has several limitations. Firstly, the sample

size of the fatigue group was relatively small (n=7), potentially

limiting statistical power and the generalizability of the findings;

validation in larger cohort studies is warranted. Secondly, the cross-

sectional design precludes direct inference of causality from the

observed associations; fatigue is dynamic, necessitating future

longitudinal studies to track salivary microbiome changes

throughout the onset, progression, and recovery phases of fatigue.

Thirdly, while the physiological fatigue model employed (prolonged

learning combined with EEG and scale assessments) offers

objectivity and representativeness to some extent, its capacity to

fully mimic physiological fatigue induced by diverse stressors in

daily life (e.g., physical exertion, sleep deprivation, emotional stress)

needs verification across varied fatigue models. Fourthly, functional

predictions based on 16S rRNA sequencing (PICRUSt2) and

phenotype predictions (BugBase) provide valuable functional

insights, but their accuracy is constrained by the completeness of

reference databases and algorithmic predictive capabilities. Future

integration of multi-omics technologies, including metagenomics,

metatranscriptomics, and metabolomics, will enable a more

profound and precise elucidation of species/strain-level functional

activities and molecular mechanisms.

In conclusion, this study provides the first systematic

characterization of significant alterations in the salivary

microbiome of healthy individuals following specific physiological

fatigue induced by prolonged learning. These alterations encompass

community structure imbalance (significant beta diversity changes,

decreased evenness), shifts in key taxa abundances (e.g., enrichment

of Streptococcus, Filifactor; reduction of Rothia, Neisseria), and

profound reprogramming of predicted biological phenotypes

(decreased biofilm formation capacity, increased proportion

carrying MGEs, reduced abundance of aerobic bacteria) and
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functional pathways (enrichment of neuroactive ligand-receptor

interaction pathway, downregulation of energy metabolism

pathways, downregulation of specific amino acid metabolism

pathways, changes in inflammation-related pathways). These

findings strongly suggest that the oral microbial ecosystem may

participate in the regulation of physiological fatigue via a potential

“oral-microbiome-brain axis” through multiple pathways,

including induction of low-grade inflammation, modulation of

neurotransmitter metabolic networks, and production of specific

metabolites (e.g., SCFAs, impacting Vitamin E metabolism). The

high-accuracy predictive model based on the salivary microbiome

further underscores its significant potential as a biomarker for

fatigue status. Future research should focus on validating these

findings through larger longitudinal cohort studies, integrating

multi-omics approaches, and conducting mechanistic experiments

(e.g., animal models, in vitro co-cultures, microbial transplantation)

to elucidate specific molecular mechanisms and explore the

feasibility of targeting the oral microbiome as a novel

intervention strategy for ameliorating or preventing fatigue.
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Visceral inflammation and immune activation stress the brain. Front. Immunol. 8,
1613. doi: 10.3389/fimmu.2017.01613

Jenkins, T. A., Nguyen, J. C. D., Polglaze, K. E., and Bertrand, P. P. (2016). Influence
of tryptophan and serotonin on mood and cognition with a possible role of the gut-
brain axis. Nutrients 8, 56. doi: 10.3390/nu8010056

Kilian, M. (2018). The oral microbiome–friend or foe? Eur. J. Oral. Sci. 126, 5–12.
doi: 10.1111/eos.12527

Knoop, V., Cloots, B., and Costenoble, A. (2021). Fatigue and the prediction of
negative health outcomes: A systematic review with meta-analysis. Ageing Res. Rev. 67,
101261. doi: 10.1016/j.arr.2021.101261

Kolenbrander, P. E., Palmer, R. J.Jr., Periasamy, S., and Jakubovics, N. S. (2010). Oral
multispecies biofilm development and the key role of cell–cell distance. Nat. Rev.
Microbiol. 8, 471–480. doi: 10.1038/nrmicro2381

Kuppuswamy, A. (2017). The fatigue conundrum. Brain. 140, 2240–2245.
doi: 10.1093/brain/awx153

Kursa, M. B., and Rudnicki, W. R. (2010). Feature selection with the Boruta package.
J. Stat. Software 36, 1–13. doi: 10.18637/jss.v036.i11

Lamont, R. J., Koo, H., and Hajishengallis, G. (2018). The oral microbiota: dynamic
communities and host interactions. Nat. Rev. Microbiol. 16, 745–759. doi: 10.1038/
s41579-018-0089-x

Lassalle, F., Spagnoletti, M., Fumagalli, M., Shaw, L., Dyble, M., Walker, C., et al.
(2018). Oral microbiomes from hunter-gatherers and traditional farmers reveal shifts
in commensal balance and pathogen load linked to diet. Mol. Ecol. 27, 182–195.
doi: 10.1111/mec.2018.27.issue-1

Levy, M., Kolodziejczyk, A. A., Thaiss, C. A., and Elinav, E. (2017). Dysbiosis and the
immune system. Nat. Rev. Immunol. 17, 219–232. doi: 10.1038/nri.2017.7

Liccardo, D., Cannavo, A., Spagnuolo, G., Ferrara, N., Cittadini, A., Rengo, C., et al.
(2019). Periodontal disease: A risk factor for diabetes and cardiovascular disease. Int. J.
Mol. Sci. 20, 1414. doi: 10.3390/ijms20061414

Lin, D., Hutchison, K. E., Portillo, S., Vegara, V., Ellingson, J. M., Liu, J., et al. (2019).
Association between the oral microbiome and brain resting state connectivity in
smokers. Neuroimage. 200, 121–131. doi: 10.1016/j.neuroimage.2019.06.023

Lin, D., Yang, L., Wen, L., Lu, H., Chen, Q., and Wang, Z. (2021). Crosstalk between
the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral
mucosal disease pathogenesis. Mucosal Immunol. 14, 1247–1258. doi: 10.1038/
s41385-021-00413-7

Loebel, M., Grabowski, P., Heidecke, H., Bauer, S., Hanitsch, L. G., Wittke, K., et al.
(2016). Antibodies to b adrenergic and muscarinic cholinergic receptors in patients
with Chronic Fatigue Syndrome. Brain Behav. Immun. 52, 32–39. doi: 10.1016/
j.bbi.2015.09.013

Logan, A. C., and Wong, C. (2001). Chronic fatigue syndrome: oxidative stress and
dietary modifications. Altern. Med. Review: A J. Clin. Ther. 6, 450–459.

Lundberg, S., and Lee, S. (2017). “A unified approach to interpreting model
predictions,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems. 4768–4777.

Mandal, S., Van Treuren,W.,White, R. A., Eggesbø, M., Knight, R., and Peddada, S. D.
(2015). Analysis of composition of microbiomes: a novel method for studying microbial
composition. Microbial Ecol. Health Dis. 26, 27663. doi: 10.3402/mehd.v26.27663

Morris, G., Berk, M., Galecki, P., Maes, M., and Carvalho, A. F. (2019). The neuro-
immune pathophysiology of central and peripheral fatigue in systemic immune-
inflammatory and neuro-immune diseases. Mol. Neurobiol. 53, 1195–1219.
doi: 10.1007/s12035-015-9090-9

Nagy-Szakal, D., Williams, B. L., Mishra, N., Che, X., Lee, B., Bateman, L., et al
(2017). Fecal metagenomic profles in subgroups of patients with myalgic
encephalomyelitis/chronic fatigue syndrome. Microbiome. 5, 44. doi: 10.1186/s40168-
017-0261-y

Nickols, W. A., Kuntz, T., Shen, J., Maharjan, S., Mallick, H., Franzosa, E. A., et al.
(2024). MaAsLin 3: Refining and extending generalized multivariable linear models for
meta-omic association discovery. bioRxiv. doi: 10.1101/2024.12.13.628459

Nobbs, A. H., Lamont, R. J., and Jenkinson, H. F. (2009). Streptococcus adherence
and colonization.Microbiol. Mol. Biol. Rev. 73, 407–450. doi: 10.1128/MMBR.00014-09
Frontiers in Cellular and Infection Microbiology 18
Oksanen, J. (2024). Vegan: community ecology package. R package version, 4, 2.
Available online at: https://cran.r-project.org/web/packages/vegan (Accessed May 26,
2024).

Partridge, S. R., Kwong, S. M., Firth, N., and Jensen, S. O. (2018). Mobile genetic
elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17.
doi: 10.1128/CMR.00088-17

Piper, B. F., Dibble, S. L., Dodd, M. J., Weiss, M. C., Slaughter, R. E., and Paul, S. M.
(1998). The revised Piper Fatigue Scale: psychometric evaluation in women with breast
cancer. Oncol. Nurs. Forum 25, 677–684. Avaliable at: https://www.researchgate.net/
publication/13685535

Raijmakers, R. P.H., Roerink, M. E., Jansen, A. F.M., Keijmel, S. P., Gacesa, R., Li, Y.,
et al. (2020). Multi-omics examination of Q fever fatigue syndrome identifies similarities
with chronic fatigue syndrome. J. Transl. Med. 18, 448. doi: 10.1186/s12967-020-02585-5

Raizen, D. M., Mullington, J., Anaclet, C., Clarke, G., Critchley, H., Dantzer, R., et al.
(2023). Beyond the symptom: the biology of fatigue. Sleep. 46, zsad069. doi: 10.1093/
sleep/zsad069

Rea, K., Dinan, T. G., and Cryan, J. F. (2016). The microbiome: A key regulator of
stress and neuroinflammation. Neurobiol. Stress 4, 23–33. doi: 10.1016/
j.ynstr.2016.03.001

Ricci, J. A., Chee, E., Lorandeau, A. L., and Berger, J. (2007). Fatigue in the U.S.
workforce: prevalence and implications for lost productive work time. J. Occup.
Environ. Med. 49, 1–10. doi: 10.1097/01.jom.0000249782.60321.2a

Rosier, B. T., Buetas, E., Moya-Gonzalvez, E. M., Artacho, A., and Mira, A. (2020).
Nitrate as a potential prebiotic for the oral microbiome. Sci. Rep. 10, 12895.
doi: 10.1038/s41598-020-69931-x

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al.
(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.
doi: 10.1186/gb-2011-12-6-r60

Silva, Y. P., Bernardi, A., and Frozza, R. L. (2020). The role of short-chain fatty acids
from gut microbiota in gut-brain communication. Front. Endocrinol. 11, 25.
doi: 10.3389/fendo.2020.00025

Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain
Res. 1693, 128–133. doi: 10.1016/j.brainres.2018.03.015

Sunwoo, J., Kim, H., Choi, D., and Bae, K. S. (2020). Validation of “sasLM,“ an R
package for linear models with type III sum of squares. Trans. Clin. Pharmacol. 28, 83–
91. doi: 10.12793/tcp.2020.28.e9

Tarracchini, C., Lordan, C., Milani, C., Moreira, L. P., Alabedallat, Q. M., de Moreno
de LeBlanc, A., et al. (2025). Vitamin biosynthesis in the gut: interplay between
mammalian host and its resident microbiota. Microbiol. Mol. Biol. Rev., e00184–
e00123. doi: 10.1128/mmbr.00184-23

Ward, T., Larson, J., Meulemans, J., Hillmann, B., Lynch, J., Sidiropoulos, D., et al.
(2017). BugBase predicts organism-level microbiome phenotypes. BioRxiv, 133462.
doi: 10.1101/133462

Watanabe, I., Kuriyama, N., Miyatani, F., Nomura, R., Naka, S., Nakano, K., et al.
(2016). Oral Cnm-positive Streptococcusmutans expressing collagen binding activity is
a risk factor for cerebral microbleeds and cognitive impairment. Sci. Rep. 6, 38561.
doi: 10.1038/srep38561

Wen, T., Xie, P., Yang, S., Niu, G., Liu, X., Ding, Z., et al. (2022). ggClusterNet: An R
package for microbiome network analysis and modularity-based multiple network
layouts. Imeta. 1, e32. doi: 10.1002/imt2.v1.3

Wu, Y., Chi, X., Zhang, Q., Chen, F., and Deng, X.. (2018). Characterization of the
salivary microbiome in people with obesity. PeerJ. 6, e4458. doi: 10.7717/peerj.4458

Xiong, R., Gunter, C., Fleming, E., Vernon, S. D., Bateman, L., Unutmaz, D., et al.
(2023). Multi-omics of gut microbiome-host interactions in short- and long-term
myalgic encephalomyelitis/chronic fatigue syndrome patients. Cell Host Microbe 31,
273–287.e5. doi: 10.1016/j.chom.2023.01.001

Xu, Y., Xiao, D., Zhang, H., Yin, T., He, L., Gao, X., et al. (2020). Study on the peptide
spectrum of saliva protein markers in different degrees of fatigue. Chin. Gen. Pract. 23,
4597. doi: 10.3969/j.issn.1008-5971.2017.00.158

Xu, Y. L., Zhao, C. X., Xi, A. P., Ding, M., Li, Y., Jianjun, H., et al. (2018). Discovery
and identification of fatigue-related biomarkers in human saliva. Eur. Rev. Med.
Pharmacol. Sci. 22, 8519–8536. doi: 10.26355/eurrev_201812_16553

Xue, L., Zou, X., Yang, X., Peng, F., Yu, D., and Du, J. (2020). Chronic periodontitis
induces microbiota-gut-brain axis disorders and cognitive impairment in mice. Exp.
Neurol. 326, 113176. doi: 10.1016/j.expneurol.2020.113176

Yang, I., Arthur, R. A., Zhao, L., Clark, J., Hu, Y., Corwin, E. J., et al. (2021). The oral
microbiome and inflammation in mild cognitive impairment. Exp. Gerontol. 147,
111273. doi: 10.1016/j.exger.2021.111273

Yang, L., and Chen, J. (2022). A comprehensive evaluation of microbial differential
abundance analysis methods: current status and potential solutions. Microbiome 10,
130. doi: 10.1186/s40168-022-01320-0

Yang, C., Mai, J., Cao, X., Burberry, A., Cominelli, F., and Zhang, L.. (2023).
ggpicrust2: an R package for PICRUSt2 predicted functional profile analysis and
visualization. Bioinformatics. 39, btad470. doi: 10.1093/bioinformatics/btad470

Yoon, J.-H., Park, N.-H., Kang, Y.-E., Ahn, Y. C., Lee, E. J., and Son, C. G.. (2023). The
demographic features of fatigue in the general population worldwide: a systematic review and
meta-analysis. Front. Public Health 11, 1192121. doi: 10.3389/fpubh.2023.1192121
frontiersin.org

https://doi.org/10.1016/j.anaerobe.2013.06.002
https://doi.org/10.1002/cbic.202200761
https://doi.org/10.1002/cbic.202200761
https://doi.org/10.1016/j.chom.2023.01.004
https://doi.org/10.1038/s41577-020-00488-6
https://doi.org/10.3389/fimmu.2017.01613
https://doi.org/10.3390/nu8010056
https://doi.org/10.1111/eos.12527
https://doi.org/10.1016/j.arr.2021.101261
https://doi.org/10.1038/nrmicro2381
https://doi.org/10.1093/brain/awx153
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1038/s41579-018-0089-x
https://doi.org/10.1038/s41579-018-0089-x
https://doi.org/10.1111/mec.2018.27.issue-1
https://doi.org/10.1038/nri.2017.7
https://doi.org/10.3390/ijms20061414
https://doi.org/10.1016/j.neuroimage.2019.06.023
https://doi.org/10.1038/s41385-021-00413-7
https://doi.org/10.1038/s41385-021-00413-7
https://doi.org/10.1016/j.bbi.2015.09.013
https://doi.org/10.1016/j.bbi.2015.09.013
https://doi.org/10.3402/mehd.v26.27663
https://doi.org/10.1007/s12035-015-9090-9
https://doi.org/10.1186/s40168-017-0261-y
https://doi.org/10.1186/s40168-017-0261-y
https://doi.org/10.1101/2024.12.13.628459
https://doi.org/10.1128/MMBR.00014-09
https://cran.r-project.org/web/packages/vegan
https://doi.org/10.1128/CMR.00088-17
https://www.researchgate.net/publication/13685535
https://www.researchgate.net/publication/13685535
https://doi.org/10.1186/s12967-020-02585-5
https://doi.org/10.1093/sleep/zsad069
https://doi.org/10.1093/sleep/zsad069
https://doi.org/10.1016/j.ynstr.2016.03.001
https://doi.org/10.1016/j.ynstr.2016.03.001
https://doi.org/10.1097/01.jom.0000249782.60321.2a
https://doi.org/10.1038/s41598-020-69931-x
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.3389/fendo.2020.00025
https://doi.org/10.1016/j.brainres.2018.03.015
https://doi.org/10.12793/tcp.2020.28.e9
https://doi.org/10.1128/mmbr.00184-23
https://doi.org/10.1101/133462
https://doi.org/10.1038/srep38561
https://doi.org/10.1002/imt2.v1.3
https://doi.org/10.7717/peerj.4458
https://doi.org/10.1016/j.chom.2023.01.001
https://doi.org/10.3969/j.issn.1008-5971.2017.00.158
https://doi.org/10.26355/eurrev_201812_16553
https://doi.org/10.1016/j.expneurol.2020.113176
https://doi.org/10.1016/j.exger.2021.111273
https://doi.org/10.1186/s40168-022-01320-0
https://doi.org/10.1093/bioinformatics/btad470
https://doi.org/10.3389/fpubh.2023.1192121
https://doi.org/10.3389/fcimb.2025.1506723
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Peng et al. 10.3389/fcimb.2025.1506723
Youngseob, Y., Changsoo, L., Jaai, K., and Seokhwan, H. (2005). Group-specific
primer and probe sets to detect methanogenic communities using quantitative real-
time polymerase chain reaction. Biotechnol. Bioeng. 89, 670–679. doi: 10.1002/bit.20347
Frontiers in Cellular and Infection Microbiology 19
Zhang, Z., Ning, H., and Zhou, F.. (2022). A systematic survey of driving fatigue
monitoring. IEEE Trans. Intell. Transp. Syst. 23, 19999–20020. doi: 10.1109/
TITS.2022.3189346
frontiersin.org

https://doi.org/10.1002/bit.20347
https://doi.org/10.1109/TITS.2022.3189346
https://doi.org/10.1109/TITS.2022.3189346
https://doi.org/10.3389/fcimb.2025.1506723
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

	Characterization of the salivary microbiome in healthy individuals under fatigue status
	1 Introduction
	2 Materials and methods
	2.1 Study design, participants, and assessment procedures
	2.2 Saliva sample collection
	2.3 DNA extraction and 16S rRNA gene sequencing
	2.4 Sequencing data processing and bioinformatics analysis
	2.5 Statistical analysis

	3 Results
	3.1 Overview of the study cohort and sequencing data
	3.2 Intra-variations in salivary microbial diversity between the FTG and ENG groups
	3.3 Inter-variations in salivary microbial diversity between the FTG and ENG groups
	3.4 Taxonomic differences in the salivary microbiome of the FTG and ENG groups
	3.5 Oral microbiome network in healthy individuals in fatigue state
	3.6 Identification and validation of salivary microbiota biomarkers for fatigue status
	3.7 Functional prediction of the salivary bacterial community in the FTG group

	4 Discussion
	4.1 Induction of low-grade inflammation
	4.2 Regulation of neurotransmitter metabolism and signaling
	4.2.1 Dopamine signaling system
	4.2.2 Serotonin signaling system
	4.2.3 GABA signaling system

	4.3 Mediation via metabolites (metabolite pathway)
	4.3.1 Short-chain fatty acids metabolism
	4.3.2 Vitamin E metabolism


	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


