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Introduction: Body mass index (BMI) is considered an important factor in tumor

prognosis, but its role in gastric cancer (GC) remains controversial. There is a lack

of studies exploring the effect of BMI on gastric cancer from the perspective of

intratumoral microbiota. This study aimed to compare and analyze the

differences in and functions of intratumoral microbiota among GC patients

with varying BMIs, aiming to ascertain whether specific microbial features are

associated with prognosis in low-BMI (LBMI) gastric cancer patients.

Methods: A retrospective analysis of the clinicopathological features and

prognosis of 5567 patients with different BMIs was performed between

January 2010 and December 2019. Tumor tissues from 189 GC patients were

collected for 16S rRNA sequencing, 64 samples were selected for transcriptome

sequencing, and 57 samples were selected for untargeted metabolomic analysis.

Results: Clinical cohort analysis revealed that GC patients with a low BMI

presented poorer clinical and pathological characteristics than those with a

non-low-BMI (NLBMI). LBMI was identified as a significant independent risk

factor for adverse prognosis, potentially exerting immunosuppressive effects

on postoperative adjuvant chemotherapy. 16S rRNA sequencing revealed no

significant differences in the alpha and beta diversity of the intratumoral

microbiota between the two groups of GC patients. However, LEfSe analysis

revealed 32 differential intratumoral microbiota between the LBMI and NLBMI

groups. Notably, the genus Abiotrophia was significantly enriched in the LBMI

group. Further in-depth analysis indicated that the genus Abiotrophia was

inversely associated with eosinophils, P2RY12, and SCN4B genes, and positively

linked with LGR6 in LBMI gastric cancer patients. Metabolomic assessments

revealed that LBMI was positively associated with purine metabolites, specifically

guanine and inosine diphosphate (IDP).
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Discussion: In conclusion, LBMI is an independent risk factor for poor prognosis

in gastric cancer patients and may have an inhibitory effect on postoperative

adjuvant chemotherapy. Intratumor flora of gastric cancer patients with different

BMI levels differed, with different immune cell infiltration and metabolic

characteristics. The genus Abiotrophia may promote gastric cancer

development and progression by regulating eosinophils and the purine

metabolism pathway, which provides a new idea for the precise treatment of

gastric cancer.
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Introduction

Gastric cancer (GC) is the fifth most common malignancy

globally and the fifth leading cause of cancer-related deaths (Bray

et al., 2024). Over the past two decades, the 5-year survival rate of

patients with GC has significantly improved due to various factors

such as early detection, improvement in surgical techniques,

improvement in nutritional care, and widespread use of systemic

chemotherapy and immune-targeted therapy (Ahn et al., 2011).

However, in China, most GC patients are diagnosed at an advanced

or even late stage, with a higher proportion of patients experiencing

significant weight loss and worse prognosis (Li et al., 2022).

BMI is a measure of body weight. It is an important prognostic

factor for various tumors, such as colorectal cancer, breast cancer, and

pancreatic cancer (Chen et al., 2024). However, its role in regulating

the prognosis of patients with tumors including those with GC, is still

controversial (Schooling et al., 2015; Feng et al., 2018; Ma et al., 2021;

Zhao et al., 2021). Ma et al. (2021) demonstrated that GC patients with

LBMI had a poor long-term prognosis, while Feng et al. (2018) found

that GC patients with a high BMI had a better long-term prognosis.

Interestingly, Schooling et al. (2015) found that obese patients had a

high risk of death and poor prognosis. However, Zhao et al. (2021)

showed no association between BMI and GC prognosis.

Previous studies have shown that intratumoral microbiota may

contribute to tumorigenesis and progression and impact prognosis by

inducing genomic instability and mutations affecting epigenetic

modifications, promoting inflammatory responses, averting immune

destruction, regulating metabolism, and activating invasion and
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ntigen-presenting cells;

ntially expressed genes;

Gene Ontology; PCoA,

Reaction; QC, Quality

NA sequencing; TRM,

roenvironment; TNM,

, overall survival.

02
metastasis (Wang et al., 2023; Cao et al., 2024; Liu et al., 2024). For

example, Fusobacterium nucleatum is more abundant in various

tumors such as colorectal cancer(CRC), oral cancer, and gastric

cancers and affects long-term prognosis (Mitsuhashi et al., 2015;

Mima et al., 2016; Hsieh et al., 2022), A novel virulence protein of

Fusobacterium nucleatum, Fn-Dps, has been found to promote

invasion and metastasis of CRC cells by inducing EMT through

upregulation of the chemokine CCL2/CCL7 (Mima et al., 2016).

Interestingly, two recent studies have demonstrated the heterogeneity

of microorganisms at different BMI states (Huang et al., 2024; Li et al.,

2024). In one of them, Huang et al (Huang et al., 2024). Similarly, in

their study of CRC patients with different BMIs states similarly found

the same significant enrichment at the portal level was detected in

hyper-reorganized CRC patients, with significant enrichment of

Actinobacteria spp,Desulfovibrio spp, and Mycobacterium spp at the

genus level. Another study found that Peptostreptococcus stomatis was

elevated in obese patients and that there were differential changes in

metabolites between the two BMI groups, particularly in fatty acid and

phospholipid dysregulation (Li et al., 2024). A study on intratumoral

microbiota and GC revealed that Methylobacterium tumefaciens was

significantly associated with poor prognosis in gastric cancer patients

and was negatively correlated with CD8+ tissue-resident memory T

(TRM) cells and TGF-b in the tumor immune microenvironment

(TIME).Experimental methods verified that Methylobacterium could

reduce TGF-b expression and the number of CD8+ TRM cells in

tumors. These findings suggest that intratumoral microbiota may

regulate the development of GC by influencing the tumor immune

microenvironment (Peng et al., 2022).
Therefore, intratumoral microbiota have attracted increasing

attention as influencing factors of the TIME. However, few studies

have been conducted on GC, especially on LBMI GC patients with

associated immunosuppression or intolerance (Indini et al., 2021).

Therefore, in this study, we performed a multiomics analysis based

on intratumoral microbiotas combined with transcriptomics and

metabolomics to analyze intratumoral microbes and their functions

in GC patients with different BMIs to understand the characteristics

of the differential intratumoral microbes of LBMI GC patients, i.e.,

the mechanism of potential modulation of GC, and to provide a

new solution for the precision treatment of GC.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1511900
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2025.1511900
Material and methods

Clinical cohort data collection
and definitions

A retrospective analysis was conducted on 7,192 patients who

underwent gastrectomy at Zhejiang Cancer Hospital from January

2010 to December 2019. Among them, 5,567 patients met the

following inclusion criteria: 1.Preoperative pathological biopsy

confirmed primary gastric cancer; 2.Underwent radical or

palliative gastrectomy; 3.No concomitant severe diseases such as

acute cardiovascular and cerebrovascular diseases, liver cirrhosis,

and chronic renal failure. Exclusion criteria: 1.Received neoadjuvant

treatments such as preoperative radiotherapy, chemotherapy, or

immunotherapy; 2.Number of dissected lymph nodes<16;

3.Presence of other heterogeneous tumors; 4.Other types of

gastric cancer (e.g.,neuroendocrine carcinoma, squamous cell

carcinoma, adenosquamous carcinoma); 5.Patients with missing

critical clinical data. The median follow-up time was 85 months

(interquartile range:71 months). All eligible patients underwent

radical gastrectomy according to the Japanese gastric cancer

treatment guidelines (Association JGC, 2020). Surgical methods

included proximal, total, and distal gastrectomy. Postoperatively,

specimens were reviewed by pathology experts at the Cancer

Hospital of the Chinese Academy of Sciences. Pathological

tumor-lymph node metastasis (pTNM) staging was based on the

8th edition of the American Joint Committee on Cancer (AJCC)

TNM staging system (Amin et al., 2017). Potential curative

resection was defined as R0 resection. Survival time was

calculated from the date of surgery to the date of GC-related

death or the most recent follow-up. The follow-up cut-off date

was August 1, 2023. Perioperative management followed routine

procedures, with no differences between groups. Patients meeting

the above criteria were divided into two groups according to the

Preoperative BMI standards set by WHO: the low BMI group

(BMI<18.5 kg/m²) and the non-low BMI group (BMI≥18.5 kg/

m²). Various clinicopathological characteristics, surgery-related

indicators, and postoperative outcome factors were collected for

analysis, including gender, height, and weight. BMI was calculated

based on the patients’ height and weight. Tumor location was

classified according to the center of the lesion as Upper 1/3

(cardia, fundus), Middle 1/3 (body), Lower 1/3 (antrum,

including the angular incisure and pylorus), or involving the

entire stomach (Total) (tumor involving more than 2/3 of the

stomach wall). Tumor size was determined by the maximum

diameter of the tumor. The positive levels of tumor markers were

defined as CA199 ≥ 37 U/ml and CEA ≥ 5 ng/ml.
Clinical specimen collection
and preparation

Samples were collected from 335 patients between January 2013

and December 2018 from Zhejiang Cancer Hospital. After

screening according to the above clinical cohort criteria and

ensuring that no antibiotics or intestinal microecological agents
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had been used in the previous month, 198 eligible GC patients were

included in the final analysis. All patients were followed up by

telephone and outpatient clinics with a follow-up cut-off date of 1

August 2023.The study was conducted by the Zhejiang Cancer

Hospital (ZCH). The study was approved by the Ethics Committee

of Zhejiang Cancer Hospital (approval number: IRB-2023-791) and

written informed consent was obtained from all participants.

Gastric samples were collected from patients who underwent

gastrectomy, with peritumoral tissue 2-5 cm from the tumor

margin. Notably, for metabolomics analysis, tissue specimens

were subjected to cold ischemia for less than 30 minutes before

freezing at -80 degrees Celsius. For 16S rRNA sequencing and

transcriptome analyses, tissue specimens were immersed in an

RNA-protecting solution at 4°C overnight, and then frozen at

-80°C. Specimens for each his to logy were col lec ted

simultaneously. All tissue samples were collected at the time of

surgical specimen removal. Histological sections at the top and

bottom of each specimen were reviewed by a senior board-certified

pathologist to confirm whether the tissue was tumor tissue or

adjacent non-tumor tissue. For the purposes of this study, tumor

samples had to have an average of 60% tumor cell nuclei and less

than 20% necrosis to qualify.
16S rRNA sequencing

Microbial DNA was extracted using an E.Z.N.A. Tissue DNA

Kit (D3396-01; Omega, Norcross, Georgia, USA) following the

manufacturer’s instructions as described previously. The DNAs

were quantified using a Qubit 2.0 Fluorometer (Invitrogen,

Carlsbad, CA, USA), and molecular size was estimated using

agarose gel electrophoresis. Primers targeting the hypervariable

V3-V4 region of the 16S rRNA gene were used to amplify the

extracted DNA samples. The forward primer was 5 ’-

CCTACGGGNGGCWGCAG-3’ and the reverse primer was 5’-

GACTACHVGGGTATCTAATCC-3’. AxyPrep PCR Clean-up Kit

(AP-PCR-500G; Corning, NY, USA) was used to separate, extract

and purify the PCR products, and the products were quantified

using a Quant-iT PicoGreen dsDNA Reagent (P7581, Thermo

Scientific, Waltham, MA, USA). After quality determination,

libraries passing quality control were sequenced with Novaseq

sequencer for 2 x Two terminal sequencing of 250 bp at LC-Bio

Co., Ltd.

Species annotation of the colonies was performed using the

Greengene database v13.8, and then the ASV/OUT data of the

colonies were extracted using the phyloseq package v1.26.1. We

used the a-diversity index to characterize the diversity of the flora,

where Shannon and Simpson indices were used to characterize

species richness, homogeneity, and concentration reflecting species

diversity, respectively. Beta diversity was calculated based on

weighted Unifrac distances, and principal coordinate analysis

(PCoA) was used in order to assess differences in microbial

community composition. Linear discriminant analysis (LDA) was

performed using the Mann-Whitney U test, and linear discriminant

analysis effect size (LEfSe) analysis was performed using lefse

software v1.0.0 to screen for species most likely to explain
frontiersin.org
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differences between groups, while LDA scores were used to assess

effect sizes for species with significant differences between groups,

with |LDA |> 2 and P < 0.05 as the thresholds of difference to screen

for differences between species, and ggplot 2 software was used to

assess differences in the composition of microbial communities. The

results were also analyzed as bar graphs using the ggplot 2 software

package v3.4.0. The results were presented as bar graphs. The a-
diversity, b-diversity indices between the two groups were

compared using Mann-Whitney U rank sum test through vegan

software package v2.5.6. All the above analyses were carried out in R

software v4.3.1, and the above P-values were two-tailed tests, and

differences were considered statistically significant when P<0.05.
Transcriptome sequencing

Paired tumor tissues from 108 GCs were subjected to mRNA

sequencing (RNA-seq).In the end, 64 samples met the screening

criteria. Total RNA was isolated from tumor tissues and NATs

using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) in an RNA

protection solution. the amount and purity of RNA from each

sample was quantified using a NanoDrop ND-1000 (NanoDrop,

Wilmington, DE, USA). RNA integrity was assessed using an

Agilent 2100 with a RIN>7.0. For mRNA sequencing, libraries

were prepared on 1 mg of DNase I-treated total RNA using the

TruSeq kit (Illumina) and processed for 150 bpb on the Illumina

HiSeq X Ten instrument at LC-Bio Technology Co. (Hangzhou,

China) on an Illumina HiSeq X Ten instrument with 150-bp paired-

end sequencing. (Hangzhou, China) performed 150-bp paired-end

sequencing on an Illumina HiSeq X Ten machine according to the

protocol recommended by the vendor.

We aligned reads of all samples to the < research species >

reference genome using HISAT2 (https://daehwankimlab.github.io/

hisat2/, version:hisat2-2.0.4) package, which initially remove a

portion of the reads based on quality information accompanying

each read and then maps the reads to the reference genome.

HISAT2 allows multiple alignments per read (up to 20 by default)

and a maximum of two mismatch when mapping the reads to the

reference. HISAT2 build a database of potential splice junctions and

confirms these by comparing the previously unmapped reads

against the database of putative junctions. The mapped reads of

each sample were assembled using StringTie (http://ccb.jhu.edu/

software/stringtie/, version:stringtie- 1.3.4d) with default

parameters. Then, all transcriptomes from all samples were

merged to reconstruct a comprehensive transcriptome using

gffcompare software (http://ccb.jhu.edu/software/stringtie/

gffcompare.shtml, version: gffcompare-0.9.8). After the final

transcriptome was generated, StringTie and ballgown (http://

www.bioconductor.org/packages/release/bioc/html/ballgown.html)

were used to estimate the expression levels of all transcripts and

perform expression abundance for mRNAs by calculating FPKM

(fragment per kilobase of transcript per million mapped

reads) value.

Differentially expressed genes (DEGs) were screened by

DESeq261. genes with P< 0.05 and FC ≥ 2 or FC ≤ 0.5 were

considered statistically significant DEGs. enriched functional
Frontiers in Cellular and Infection Microbiology 04
pathways and modules were analyzed by using KEGG and CO

databases. The Mann-Whitney U test was used to compare

differences between groups.
GC tumor immune
microenvironment analysis

CIBERSORT is a computational method for analyzing the

composition of immune cells from RNA sequencing data based

on the expression profiles of immune cell-specific genes and uses

machine learning algorithms to analyze and classify the expression

patterns of these genes. We use the CIBERSORT R-script v1.03 to

construct a support vector regression-based model using the known

expression data of the reference genes and to-be-estimated gene

expression data of the mixed samples, constructed the optimization

problem by the correlation matrix consisting of the cellular

composition, and solved it in the form of a sparse solution. Thus,

the cellular composition ratio of the mixed samples is estimated.

The FPKM matrix obtained by transcriptome sequencing was

transformed into a matrix of relative content of 22 different types

and functional states of immune cells. The flora matrix was

combined with the immune cell abundance matrix and the

correlation coefficients between the columns in the combined

matrix were calculated by calling the rcorr function. The type of

correlation coefficient was Spearman’s correlation coefficient.
Metabolome assays

The samples were taken out of the -80°C freezer and thawed on

ice, and metabolite were extracted with 80% methanol buffer.

Briefly, 50 mg of sample was extracted with 0.5 ml of precooled

80% methanol. The extraction mixture was then stored in 30 min at

-20°C. After centrifugation at 20,000 g for 15 min, the supernatants

were transferred into new tube to and vacuum dried. The samples

were redissolved with 100 mL 80% methanol and stored at -80°C

prior to the LC-MS analysis. In addition, pooled QC samples were

also prepared by combining 10 mL of each extraction mixture. The

extracted samples were then sorted for machine analysis with

randomization. QC samples were inserted before, in the middle,

and after the samples to evaluate experimental technical replicates.

The samples underwent mass spectrometry positive and negative

ion scans. All samples were acquired by the LC-MS system followed

machine orders. Firstly, all chromatographic separations were

performed using an UltiMate 3000 UPLC System (Thermo Fisher

Scientific, Bremen, Germany). An ACQUITY UPLC T3 column

(100mm×2.1mm,1.8mm, Waters, Milford, USA) was used for the

reversed phase separation. The column oven was maintained at 40°

C. A high-resolution tandem mass spectrometer TripleTOF 6600

(SCIEX, Framingham, MA, USA) was used to detect metabolites

eluted form the column. The Q-TOF was operated in both positive

and negative ion modes. The curtain gas was set 30 PSl,lon source

gas1 was set 60 PSI,lon source gas2 was set 60 PSI, and an interface

heater temperature was 500°C. For positive ion mode, the lonspray

voltage floating were set at 5000 V, respectively. For negative ion
frontiersin.org
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mode, the lonspray voltage floating were set at -4500V, respectively.

The mass spectrometry data were acquired in IDA mode. The TOF

mass range was from 60 to 1200 Da. The survey scans were acquired

in 150 ms and as many as 12 production scans were collected if

exceeding a threshold of 100 counts per second (counts/s) and with

a 1+charge-state. Dynamic exclusion was set for 4s. During the

acquisition, the mass accuracy was calibrated every 20 samples.

Furthermore, in order to evaluate the stability of the LC-MS during

the whole acquisition, a quality control sample (Pool of all samples)

was acquired after every 10 samples.

The raw data from mass spectrometry were converted into

readable data mzXML format using Proteowizard’s MSConvert

software. XCMS software was utilized for peak extraction, and peak

extraction quality control was conducted. Subsequently, substances

extracted were annotated using CAMERA for adduct and ion

annotation, followed by primary identification using the metaX

software. Identification was performed separately using the mass

spectrometry first-level information and matching the mass

spectrometry second-level information with an in-house standard

compound database. Differential metabolites were identified by

Mann-Whitney U test and partial least squares discriminant analysis

(PLS-DA).Metabolites with variable importance in projection (VIP) > 1

and p < 0.05 and FC ≥ 2 or FC ≤ 0.5 were considered differential

metabolites. The functions of these metabolites and metabolic

pathways were analyzed using the KEGG database.
Statistical method

Continuous variables with normal distribution are expressed as

mean ± standard deviation (x ± s) or Mean ± SD and analyzed using

t-test or Mann-Whitney U test. Categorical variables are presented as

counts (n, %) and analyzed using Chi-square test or Fisher’s exact

test. Propensity score matching (PSM) was used to account for

differences in patient backgrounds, with a 1:4 ratio set to minimize

selection bias between the two groups. Survival rates were calculated

using the Kaplan-Meier method and survival curves were compared

using the log-rank test. A Cox proportional hazards model with

forward stepwise regression was employed to identify independent

prognostic factors. Spearman correlation was used for the joint

analysis of microbiome with transcriptome and metabolome. All

data were analyzed using SPSS software version 26.0 (IBM USA), the

Medsta statistical platform (www.medsta.cn/software), OmicStudio

tools (https://www.omicstudio.cn/tool), and R version 4.3.1. All

statistical tests were two-sided, and a p-value < 0.05 was

considered statistically significant.
Results

LBMI is an independent prognostic risk
factor for poor prognosis in patients
with GC

In this study, data from 5567 patients who met the criteria and

had complete follow-up information were collected from 7192
Frontiers in Cellular and Infection Microbiology 05
hospitalized patients with GC (Figure 1A). There were no

statistically significant differences between the two groups of BMI

patients in terms of smoking history, alcohol consumption history,

extent of resection, type of pathology, pM stage or recurrent

metastasis (all P > 0.05). Analysis revealed that relative to NLBMI

patients, LBMI patients had a smaller percentage of family history of

GC; more tumors were located in the lower 1/3 and the whole

stomach and less in the upper 1/3, and there was a greater

percentage of larger and more poorly differentiated tumors, and a

greater percentage of open surgeries (all P < 0.05); the level of pre-

CA199 positivity was significantly greater (P=0.039), and the pre-

CEA positivity level was similar; and the percentage of nerve

invasion was greater (P=0.011), while there was no significant

difference in vascular invasion. Moreover, in the LBMI group, the

percentage of female patients aged ≥60 years, incidence of

complications, deep tumor infiltration, high number of lymph

node metastases, late pathological stage and low percentage of

receiving postoperative adjuvant chemotherapy were significantly

greater than that those in the NLBMI group (P<0.001).

(Supplementary Table S1).

Univariate and multivariate COX analysis revealed that LBMI is

an independent poor prognostic factor for overall survival (OS) in GC

patients (HR=1.28, 95%CI: 1.13-1.45, P<0.001) (Table 1). Kaplan-

Meier survival analysis based on BMI classification showed that

LBMI patients had worse prognosis compared to NLBMI patients

before PSM (5-yr OS: 50.8% vs. 66.2%, P<0.001) (Figure 1B). After

adjusting for clinicopathological characteristics that influence

prognosis (P<0.05) using PSM (ratio 1:4), the clinical

characteristics of the two groups were comparable (P>0.05,

Supplementary Table S2). Similarly, LBMI patients had worse

prognosis (5-yr OS: 50.8% vs. 60.5%, P<0.001) (Figure 1C).

Stratified analysis by TNM stage show no significant difference in

OS between the two BMI groups in stage I and IV disease

(Figures 1D, G); however, in stage II and III patients, LBMI disease

have worse OS compared to NLBMI patients (Figures 1E, F).

Subgroup analysis based on receiving postoperative chemotherapy

set the PSM ratio to 1:4, and included clinicopathological data that

influence prognosis. After PSM, the clinicopathological

characteristics of the two BMI groups were comparable

(Supplementary Table S3), and LBMI patients had worse OS both

before and after PSM (Figures 1H, I).
Intratumoral microbiome landscape in
LBMI and NLBMI gastric cancer patients

To evaluate whether there were differences in microbial

diversity, abundance, and composition between LBMI and

NLBMI gastric cancer patients, we included 189 eligible gastric

cancer patients, including 27 in the LBMI cohort and 162 in the

NLBMI cohort (Supplementary Figure S1). As shown in

Supplementary Table S4, the clinicopathologic data were balanced

and comparable between the two cohorts. On the basis of the

species sparsity curves (Supplementary Figures S2B, C), we found

that the curves of the four groups in both metrics flattened out. The

Venn diagram (Supplementary Figure S2A) revealed that there are
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many overlaps in the microbial environments among the four

groups. The diversity within the cancer tissues was significantly

greater in both LBMI and NLBMI carcinomas than in the LBMI and

NLBMI paracarcinomas, whereas there was no significant difference

between the two cohorts of LBMI and NLBMI cancer tissues

(Figures 2A, B). Principal coordinate analysis (PCoA) revealed

significant differences in both BMI carcinomas and paracancers in

both groups; however, there was no significant difference between

LBMI-CT and NLBMI-CT (P=0.855) (Figure 2C). PLS-DA analysis,

revealed that the intratumoral microbiome of two groups of BMI

carcinomas could be divided into two different clusters (Figure 2D).

Regarding species composition, the differences were a smaller

between the tumor tissues of different BMI groups, while the

differences were a greater between tumor and peritumoral tissues

of the same BMI group (Figures 2E, F).
LBMI intratumor g_Abiotrophia was
significantly elevated

To determine the differentially dominant flora in GC patients

with different BMIs, LEfSe analysis was performed (LDA> 2.0,

P<0.05), which revealed 59 (Supplementary Figure S3) and 230

(Supplementary Figure S4) differentially dominant flora in the

LBMI group and the NLBMI group, respectively, compared with

the paracancerous tissues. There were 32 differentially dominant

flora in the LBMI-CT group compared with the NLBMI-CT group.
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At the phylum level only p_Nitrospinae dominated the flora in

LBMI, whereas at the genus level g_Lachnoanaerobaculum,

g_Brevundimonas and g_Stomatobaculum dominated the flora in

the NLBMI group, whereas g_Acidiphilium,g_Thiobacillus and

g_Abiotrophia and 9 other genera were the dominant flora in the

LBMI group. At the species level, s_Knoelia_sp_BA2_2011 and 15

other species were dominant flora in the LBMI group (Figure 3A;

Supplementary Figure S5). At the genus level, the abundances of

two groups of differentially bacteria, g_Abiotrophia and

g_Lachnoanaerobaculum, significantly differed (Figures 3B-J).

Spearman correlation analysis revealed that g_Abiotrophia was

positively correlated with g_Lachnoanaerobaculum and

g_Stomatobaculum and that g_Brevundimonas was negatively

correlated. These findings suggest a possible complementary

relationship between the dominant differential flora between the

two BMI groups (Supplementary Figure S2D).
LBMI intratumoral g_Abiotrophia negatively
correlates with P2RY12

RNA sequencing analysis was performed on 64 tumor tissues

from both groups, and PCA revealed that there was no significant

difference in BMI the between the two groups (P=0.136) (Figure 4A).

Compared with NLBMI, 343 genes were significantly upregulated

and 320 genes in LBMI were significantly downregulated (Figure 4B).

KEGG and GO analyses were performed on the BMI differential
FIGURE 1

LBMI is an independent risk factor for poor prognosis in GC. (A) Clinical cohort screening flowchart. Kaplan-Meier survival curve analysis for different
cohorts classified by BMI. (B) All patients. (C) All matched patients. (D) Stage I (E) Stage II. (F) Stage III. (G) Stage IV. (H) PAT. (I) PAT of PSM. BMI,
Body Mass Index. ELNs, Number of dissected lymph nodes. PSM, Propensity Score Matching. PAT, Postoperative Adjuvant Therapy. LBMI, Low Body
Mass Index (BMI < 18.5). NLBMI, Non-Low Body Mass Index (BMI ≥ 18.5).All P values for survival curves were corrected for multiplicity by the
BH method.
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genes of the two groups, and KEGG analysis revealed that the LBMI

group was enriched mainly in the Wnt signaling pathway, gastric

cancer, and African trypanosomiasis (Figure 4C); similarly GO

enrichment analysis was performed mainly in the extracellular

region, extracellular space, plasma membrane and Wnt signaling

pathway (Figure 4D). Correlation analysis of the DEGs associated

with the dominant flora at the genus level revealed that g_Abiotrophia

was significantly positively correlated with 11 genes, such as LGR6,
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and significantly negatively correlated with 30 genes, such as P2RY12

and SCN4B,in the LBMI group (Figure 4E; for details, see Additional

File S1). The above results revealed that GC patients with different

BMIs presented different transcriptomic landscapes and that many of

these genes were closely related to differential intratumoral

microbiota, suggesting that differential intratumoral microbiota

may regulate the progression of GC by influencing the genes of

the host.
TABLE 1 Single factor and multi-factors Cox analysis risk factor for gastric cancer OS.

Parameters
Univariate

P value
Multivariate

P value
HR (95%CI) HR (95%CI)

Gender(Male vs Female) 1.21 (1.10 ~ 1.34) <0.001

Age (≥60years vs<60years) 1.65 (1.51 ~ 1.80) <0.001 1.37 (1.25 ~ 1.51) <0.001

BMI(<18.5 vs ≥18.5) 1.60 (1.41 ~ 1.80) <0.001 1.28 (1.13 ~ 1.45) <0.001

Family.history 0.91 (0.83 ~ 0.99) 0.041

Smoking.history 1.06 (0.97 ~ 1.15) 0.171

Drinking.history 1.03 (0.94 ~ 1.13) 0.531

Surgery.methods(Laparoscopy vs Open) 0.50 (0.43 - 0.58) <0.001 0.78 (0.68 - 0.91) <0.001

Tumor location <0.001 0.002

Upper1/3 Ref Ref

Middle1/3 0.53 (0.46 ~ 0.61) <0.001 0.88 (0.76 ~ 1.02) 0.097

Lower1/3 0.61 (0.55 ~ 0.67) <0.001 0.90 (0.82 ~ 0.99) 0.039

Total 2.26 (1.84 ~ 2.77) <0.001 1.46 (1.18 ~ 1.80) <0.001

Pathological type 0.042 <0.001

Adenocarcinoma Ref Ref

MGC 0.87 (0.66 ~ 1.13) 0.296 0.62 (0.47 ~ 0.81) <0.001

SRCC 1.23 (1.05 ~ 1.43) 0.010 1.34 (1.14 ~ 1.57) <0.001

Differentiation <0.001

Poorly Ref

Moderately 0.37 (0.23 ~ 0.59) <0.001

Well 0.79 (0.70 ~ 0.89) <0.001

Vascular.tumor.thrombus 2.45 (2.25 ~ 2.68) <0.001 1.38 (1.26 ~ 1.52) <0.001

Nerve.invasion 2.95 (2.68 ~ 3.24) <0.001 1.42 (1.28 ~ 1.58) <0.001

Maximum tumor diameter(≥5cm vs <5cm) 2.92 (2.68 ~ 3.18) <0.001 1.57 (1.43 ~ 1.72) <0.001

pTNM Satge <0.001 <0.001

I Ref Ref

II 3.14 (2.53 ~ 3.91) <0.001 2.23 (1.77 ~ 2.79) <0.001

III 9.31 (7.72 ~ 11.23) <0.001 4.90 (3.95 ~ 6.07) <0.001

IV 18.67 (14.43 ~ 24.15) <0.001 10.59 (8.00 ~ 14.02) <0.001

Pre-CEA 1.89 (1.72 ~ 2.08) <0.001 1.31 (1.19 ~ 1.45) <0.001

Pre-CA199 2.13 (1.93 ~ 2.34) <0.001 1.26 (1.14 ~ 1.39) <0.001

Postoperative adjuvant therapy 1.14 (1.05 ~ 1.24) 0.002 0.71 (0.65 ~ 0.78) <0.001
BMI: Body Mass Index,MGC: Mucinous adenocarcinoma,SRCC:signet-ring cell carcinoma,Pre-:Pre-operation.P < 0.05 was considered significant. All P values were corrected by BH method.
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LBMI intratumoral g_Abiotrophia negatively
correlates with eosinophils

To explore the associations between BMI-associated

intratumoral microbiota and tumor-infiltrating immune cells, we

analyzed the composition of immune cells in 64 GC patients via

transcriptome sequencing information and BMI data and plotted

bar graphs of immune cell abundance (Figures 5A, B) to discover

the unique features of the TIME of GC patients with different BMIs.

Correlation analysis revealed that in the NLBMI group,

g_Lachnoanaerobaculum showed a significant positive correlation
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with T cell follicular helper, while Mast cells resting exhibited a

significant negative correlation. g_Stomatobaculum demonstrated a

significant positive correlation with T cell follicular helper, whereas

T cells CD4 memory resting showed a significant negative

correlation. In the LBMI group, g_Enterobacter displayed a

significant positive correlation with B cells naive, while Dendritic

cells activated and T cells CD4 memory resting showed significant

negative correlations.g_Abiotrophia showed a significant negative

correlation with eosinophils (Figure 5C). The above results

indicated that the BMI-related dominant intratumoral microbiota

of GC patients were significantly associated with various tumor-
FIGURE 2

Tumor microbiome landscape of LBMI and NLBMI gastric cancer patients. Alpha diversity analysis of the LBMI and NLBMI groups. (A) Shannon index
and (B) Simpson index in gastric cancer samples of each group. (C) Beta diversity analysis using UniFrac distance-weighted PCoA shows differences
between cancerous and adjacent tissues in low BMI and non-low BMI groups. (D) PLS-DA analysis shows that the tumor microbiome composition
of GC patients in the LBMI group and NLBMI group can be clearly divided into two different clusters. Stacked bar charts showing the species
composition at (E) phylum level and (F) genus level for LBMI and NLBMI groups. LBMI-CT, Low BMI tumor tissue; LBMI-NT, Low BMI adjacent
normal tissue; NLBMI-CT, Non-Low BMI tumor tissue; NLBMI-NT, Non-Low BMI adjacent normal tissue. PLS-DA, Partial Least Squares Discriminant
Analysis. PCoA, Principal Coordinate Analysis. P < 0.05 is considered statistically significant. no * indicates P value ≥ 0.05, * indicates 0.01 ≤ P < 0.05,
** indicates 0.001 ≤ P < 0.01, *** indicates P < 0.001. ns, No sense.
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infiltrating immune cells, suggesting that they may play a role in

regulating the immune microenvironment of GC.
High purine metabolism in LBMI tumors

Untargeted metabolomic analysis was performed on 57 tumor

tissues in the transcriptome(Supplementary Table S5), and a total of

2688 metabolites were identified, of which 122 metabolites were

significantly different between the LBMI and NLBMI groups (P<0.05,

FC ≥2 or FC ≤0.5) (Figure 6A), and the PLS-DA scoring plot revealed

that the different metabolites in the LBMI versus NLBMI tumors could

be classified into two different clusters (R2Y = 0.432,Q2Y = 0.368)

(Figure 6B). Tests of the PLS-DA model revealed that R2 > Q2 and the

Q2 regression line had a negative intercept (R2 = [0.0, 0.354],Q2 = [0.0,

-0.421]) (Figure 6C). The heatmap revealed that compared to the

NLBMI group, the LBMI group had higher abundance of

intratumoral purine metabolites, such as idp (Supplementary Figure

S6).Differentially abundant metabolite KEGG enrichment analysis

revealed that the LBMI group was enriched mainly in pathways such

as purine metabolism and the caffeine metabolism pathway(Figure 6D).

Genus-level differential dominant bacteria and differentially abundant
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metabolite correlation analysis, as shown in Figure 6E, revealed

that the differential dominant bacteria in the NLBMI group,

g_Lachnoanaerobaculum, were significantly negatively correlated with

12 differentially abundant metabolites, such as 8-methoxykynurenate;

g_Stomatobaculum was significantly negatively correlated;

g_Brevundimonas was significantly positively correlated with

eleutheroside b1 and 2-dodecylbenzenesulfonic acid and significantly

negatively correlated with mimosine and latamoxef. g_Abiotrophia in

the LBMI group presented a significant negative correlation with

demethoxyfumitremorgin c, whereas it presented a significant positive

correlation with guanine and idp; g_Dubosiella presented a significant

positive correlation with caffeine and four others; g_Enterobacter

presented a significant positive correlation with cyclic n-

acetylserotonin glucuronide and 8-methoxykynurenate presented a

significant positive correlation; g_Sphingopyxis showed significant

negative correlation with 2-piperidinone;g_Prevotellaceae_UCG-001

and g_Methylocystis demonstrated a significant negative correlation

with differentially abundant metabolites that were not significantly

correlated(see Additional File S2). The above results revealed

significant correlations between the two groups of intratumoral

microbiota and metabolites, suggesting that they may further affect

the biological process of gastric cancer by influencing metabolites.
FIGURE 3

Significantly increased intratumoral g_Abiotrophia in LBMI. (A) Lefse analysis of LBM-CT and NLBMI-CT groups. The criterion for feature selection is
an LDA score >2.0. The color of the bars represents the group, and the length of the bars represents the size of the LDA score. LDA score indicates
the influence of the microbiota on LBMI and NLBMI groups. (B-J) Box plots of differential genus-level dominant bacteria abundance in GC patients
between LBMI and NLBMI groups. P < 0.05 is considered statistically significant. The “*” in the figure indicates the significance level: no * indicates
P value ≥ 0.05, * indicates 0.01 ≤ P < 0.05, ** indicates 0.001 ≤ P < 0.01, *** indicates P < 0.001. ns, No sense. LBMI-CT, Low BMI tumor tissue;
NLBMI-CT, Non-Low BMI tumor tissue.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1511900
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2025.1511900
Discussion

In recent years, the relationship between GC and BMI has been

studied with varying results (Schooling et al., 2015; Feng et al., 2018;

Ma et al., 2021; Zhao et al., 2021). The long-term prognosis of

patients with different BMIs remains unclear. Therefore, the present

study was conducted to investigate BMI and GC in a large cohort. In

this study, LBMI was found to be an independent risk predictor of

poor prognosis, and when PSM was used to adjust for confounders

and K−M survival curve analysis, it was observed that the LBMI

group had a worse long-term prognosis in all patients than did the

NLBMI group. This result is consistent with the findings of Feng et al

(Feng et al., 2018). Several other studies have concluded that patients

with LBMI have a poor prognosis (Indini et al., 2021; Ma et al., 2021;

Spyrou et al., 2021). When specific subgroups, such as stage I versus

stage IV patients, were analyzed, there was no significant difference in
Frontiers in Cellular and Infection Microbiology 10
prognosis between the two groups. In contrary in stage II and III

patients, LBMI patients had a significantly worse prognosis than

NLBMI patients did. This finding is consistent with those of Spyrou

et al. (2021) and may be because BMI has little effect on long-term

prognosis in stage I versus stage IV patients. Moreover, among

patients receiving postoperative adjuvant therapy, LBMI patients

had worse overall survival rates and fewer benefits than NLBMI

patients did, possibly because preoperative cancer-related

malignancies are almost always associated with some degree of

weight loss, which makes patients intolerant of postoperative

adjuvant therapy side effects (Indini et al., 2021; Ma et al., 2021).

Therefore, special perioperative nutritional support therapy and

meticulous follow-up treatment for this special population with

LBMI may improve the clinical outcome of patients.

Intratumoral microbiota are microorganisms present in tumor

tissues and are now considered important regulators of many
FIGURE 4

Negative correlation between intratumoral g_Abiotrophia and P2RY12 in LBMI. (A) Principal Component Analysis (PCA) of transcriptome samples
from GC patients in the LBM-CT and NLBMI-CT groups. (B) Volcano plot of GC patients in the LBM-CT and NLBMI-CT groups, with selection
criteria (|log2FC| ≥ 1, P < 0.05). (C, D) The function of these genes and transcription pathways was investigated using the KEGG and GO databases,
and the TOP20 KEGG pathways were displayed in a bubble chart and the TOP15 GO pathways were shown in a bar chart. (E) Correlation heatmap
showing the spearman analysis of the TOP60 differential genes and genus-level intratumoral bacteria. Red indicates positive correlation; blue
indicates negative correlation. The color depth represents the magnitude of the correlation coefficient, with color ranging from light to dark
indicating increasing correlation value. P < 0.05 is considered statistically significant. The “*” in the figure indicates the significance level:
no * indicates P value ≥ 0.05, * indicates 0.01 ≤ P < 0.05, ** indicates 0.001 ≤ P < 0.01, *** indicates P < 0.001. LBMI-CT, Low BMI tumor tissue;
NLBMI-CT, Non-Low BMI tumor tissue.
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tumors, especially those of the gastrointestinal tract (Galeano Niño

et al., 2022). Two recent studies have shown heterogeneity among

microorganisms at different BMI states (Huang et al., 2024; Li et al.,

2024). In the present study, we found significant differences in the

alpha and beta diversity of the microbiota between tumor tissue and

peritumoral tissue in the two groups, whereas there were no

differences between intratumoral microbiota (Figures 2A-C). A

16S rRNA study evaluating the differences in gastric flora between

229 tumor tissues and 247 peritumoral tissues revealed that the

Shannon and Simpson indices of the alpha and beta diversity of

gastric intratumoral microbiota in patients with GC were

significantly greater than those in paraneoplastic tissues, which is

in line with the results of the present study (Liu et al., 2019). In

addition, Huang et al (Li et al., 2024), There was no difference in the

alpha and beta diversity of intratumoral flora between the two

groups, which was consistent with the results of this study.

Moreover analysis (Figures 3A, B) revealed a greater abundance

of the differentially dominant bacterium g_Abiotrophia in LBMI

than in NLBMI.g_Abiotrophia is a nutrient-variant Streptococcus

species that is most commonly found in the oral cavity, frequently

observed in nutritionally deficient states, and results in infective

endocarditis (Mosca et al., 2021). g_Abiotrophia can promote
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fibronectin-mediated adhesion of HUVECs via DnaK and induce

a proinflammatory response, leading to infective endocarditis in

patients (Sasaki et al., 2021). Two studies have shown that this

bacterium is highly abundant in patients with oral cancer (Mäkinen

et al., 2023) and gastric cancer (Wu et al., 2018) and promotes

tumor development and metastasis.

To further explore the intratumoral transcriptomic differences

between the different BMI groups, a gene correlation analysis

(Figure 4E) was performed, and the present findings revealed a

significant negative correlation between g_Abiotrophia and

P2RY12. P2RY12 was initially identified on platelets and plays an

important role in platelet activation, which is also important in

inflammation through the regulation of the innate and adaptive

immune response (Ferrari et al., 2020). Indeed, following ADP-

induced activation of P2RY12, platelets release mediators from their

granules, including a variety of cytokines and chemokines, which

recruit and activate leukocytes (Gómez Morillas et al., 2021).

Widespread expression is also now present in many immune cells

(Li et al., 2021) and it has been shown that activation of this P2RY12

receptor on dendritic cells promotes specific T- cell activation by

increasing antigen endocytosis (Ben Addi et al., 2010), whereas

P2RY12 inhibition induces immunosuppressive effects by
FIGURE 5

Negative correlation between intratumoral g_Abiotrophia and eosinophils in LBMI. (A) Bar chart of the relative abundance of 22 immune cells in GC
patients grouped by BMI status. Each bar represents a sample, with each color corresponding to a different immune cell type. The y-axis represents
the relative abundance values of the immune cells, with the sum of the relative abundance of all immune cells in a single sample equal to 1. (B) Box
plot showing differences in the abundance of tumor-infiltrating immune cells between LBMI and NLBMI groups. (C) Correlation heatmap showing
spearman analysis between tumor-infiltrating immune cells and genus-level intratumoral bacteria. The x-axis represents immune cells, and the y-
axis represents bacteria. Red indicates positive correlation; blue indicates negative correlation. The color depth represents the magnitude of the
spearman correlation coefficient, with color ranging from light to dark indicating increasing correlation value. The “*” in the figure indicates the
significance level: no * indicates P value ≥ 0.05, * indicates 0.01 ≤ P < 0.05, ** indicates 0.001 ≤ P < 0.01, *** indicates P < 0.001. LBMI-CT, Low BMI
tumor tissue; NLBMI-CT, Non-Low BMI tumor tissue.
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decreasing antigen uptake (Mansour et al., 2020). Several recent

studies have demonstrated that P2RY12 is a favorable factor for

long-term prognosis in brain gliomas (Noorani et al., 2023), lung

cancer (Yu et al., 2021), and hepatocellular carcinoma (Ma et al.,

2022). In conclusion, we hypothesize that the inhibition of P2RY12

expression by g_Abiotrophia leads to the development of

immunosuppression in GC patients, which leads to a poor

prognosis in patients with LBMI.

As an important influence on the TIME, intratumoral

microbiota can also play important roles in tumor development

and metastasis by influencing immune cells (Zhou et al., 2023). In

this study, g_Abiotrophia in the LBMI group was negatively

correlated with eosinophils (Figure 5C). Eosinophils were first

identified in peripheral blood, and it is commonly believed that

eosinophils and their mediators are usually associated with

deleterious effects in allergic diseases but can also induce a

protective host immune response against microbial pathogens
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(Yousefi et al., 2008). Interestingly, a review reported that

eosinophils have a beneficial effect on probiotics and may

respond to local immunity by modulating homeostasis between

pro- and anti-inflammatory effects (Rosenberg et al., 2016). Many

studies have investigated the role of eosinophils in tumor growth

control, and a review (Varricchi et al., 2017) summarizing these

studies reported that the presence of eosinophils at the tumor site or

in the peripheral blood is a favorable prognostic factor for most

cancers. Although there is evidence that eosinophils are

tumorigenic, this review demonstrated that eosinophils have an

antitumor effect on patients with gastric cancer with a better

prognosis via the GEO database. Two reports also reached the

same conclusion (Iwasaki et al., 1986; Cuschieri et al., 2002). In

addition, eosinophils can act as nonspecialized antigen-presenting

cells (APCs), and upon activation by certain cytokines or other

inflammatory stimuli, eosinophils can upregulate MHC class II or

costimulatory markers and stimulate an initiated CD4+T-cell
FIGURE 6

Increased purine metabolism in LBMI intratumoral environment. (A) Volcano plot of GC patients’ tumor tissues comparing LBM-CT and NLBMI-CT
groups, with screening criteria (|log2FC|≥1, P < 0.05). (B) PLS-DA analysis of differential metabolites between LBM-CT and NLBMI-CT groups, with
screening criteria (VIP>1, |log2FC|≥1, P < 0.05). (C) Validation of the PLS-DA model indicating that the model established in this study is effective. (D)
Bar chart of enriched pathways using the KEGG database to investigate the functions of these metabolites and metabolic pathways. (E) Correlation
heatmap showing spearman analysis between differential metabolites and genus-level intratumoral bacteria. Red indicates positive correlation; blue
indicates negative correlation. The color depth represents the magnitude of the correlation coefficient, with color ranging from light to dark
indicating increasing correlation value. The “*” in the figure indicates the significance level: no * indicates P value ≥ 0.05, * indicates 0.01 ≤ P < 0.05,
** indicates 0.001 ≤ P < 0.01, *** indicates P < 0.001. LBMI-CT, Low BMI tumor tissue; NLBMI-CT, Non-Low BMI tumor tissue.
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response in vitro and in vivo (Farhan et al., 2016). These findings

suggest that eosinophils may act as helper cells in cancer and play an

antitumor role. Taken together, these findings indicate that

g_Abiotrophia may lead to tumor development and metastasis by

affecting eosinophils, thus contributing to the poor prognosis of

patients with LBMI gastric cancer.

Intratumoral microbiota can modulate tumor cell function by

producing specific metabolites such as polyamines and short-chain

fatty acids (SCFAs) (Natarajan and Pluznick, 2014). In this study,

we found that LBMI-CT purine metabolism was enriched

(Figure 6D) and that g_Abiotrophia was positively correlated with

guanine and idp (Figure 6E). Purine nucleotides, such as RNA and

DNA, are critical for synthesis, signaling, metabolism and energy

homeostasis (Xie et al., 2024). Nutrients are required for the

proliferation and differentiation of tumor cells, and guanine and

idp are purine metabolites that can be synthesized into purine

nucleotides through the purine metabolic pathway, which further

provides nutrients for the proliferation and differentiation of tumor

tissues and their development and metastasis (Yin et al., 2018). Two

recent studies reported elevated nucleoside levels in GC tumor

tissues (Kaji et al., 2020; Dai et al., 2021). One study, Kaji et al.

(2020) reported that nucleoside concentrations were higher in GC

patients with peritoneal recurrence than in GC patients without

peritoneal recurrence. It is possible that increased levels of

nucleosides, especially adenosine, lead to shorter survival in

gastric cancer patients. Notably, a recent study (Tran et al., 2024)

reported that feeding nucleosides to mice accelerated tumor growth,

whereas inhibition of purine remediation slowed tumor

progression, revealing a critical role of the purine remediation

pathway in tumor metabolism. Interestingly, this study revealed

that g_Abiotrophia was negatively correlated with P2RY12

(Figure 4E). The P2RY12 gene expresses a receptor that is a

purinergic receptor and the gene is coupled to a Gi protein,

resulting in reduced cAMP production (Borea et al., 2018). A

recent study reported that decreased expression of P2RY12

resulted in decreased ligand production and increased cAMP

production, which further led to increased synthesis of purine

nucleotides or other purine metabolites within tumor tissues,

thereby providing energy for tumor growth and development and

promoting tumor development (Burnstock and Di Virgilio, 2013).

Therefore, g_Abiotrophiamay provide nutrients to tumor tissues by

affecting P2RY12, which in turn affects on the conversion of

guanine and IDP to purine nucleotides through the purine

metabolic pathway.

There are several limitations to this study. First, weight loss is a

common symptom in patients with GC, leading to significant

differences in the distribution of BMI compared with healthy

controls. This difference introduces a potential source of analytic

inaccuracy and is unavoidable given the high degree of

heterogeneity among GC patients. Second, the limited sample size

of this study and the fact that it was a single-center retrospective

analysis and that some of the missing data were not included in this

study may have resulted in some selection bias. Third, compared

with macrogenome sequencing, 16S rRNA gene sequencing was

unable to annotate certain species at the species level, and the depth

of species identification by 16S rRNA gene sequencing was
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relatively shallow. Lastly, basic experimental validation was not

performed to draw relevant conclusions from the analysis of the

histological data. Therefore, to overcome these limitations, further

data validation of large-scale and prospective multicenter studies,

which are combined with basic experimental validation, are needed

to further validate the findings. The aforementioned limitations also

offer valuable insights for future research aimed at enhancing

treatment strategies for these patients.
Conclusion

LBMI is an important independent risk factor for poor

prognosis and possible immunosuppression or intolerance to

postoperative adjuvant chemotherapy. g_Abiotrophia, a high-

abundance dominant bacterium in LBMI with a negative

correlation between LBMI and eosinophils, may inhibit P2RY12

to promote purine metabolism, modulate the TIME and thus

contribute to gastric cancer development. Further validation in a

separate cohort may be needed.
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SUPPLEMENTARY FIGURE 1

Bioinformatics Pipeline Flowchart. This flowchart illustrates the
bioinformatics pipeline used in the study, detailing the steps involved in

data collection, processing, and analysis for the gastric cancer patient
cohorts. Each step is visually represented to show the flow of data from

initial patient selection through various analyses, including microbiota
assessment, transcriptome analysis, and metabolomics evaluation. The

figure provides an overview of how the different aspects of the research are
integrated to assess the impact of BMI on gastric cancer outcomes and

microbiota interactions.

SUPPLEMENTARY FIGURE 2

Correlation Analysis of Gastric Microbiota Samples in LBMI and NLBMI Groups
and Rarefaction Curve Analysis. (A) Venn diagram representing the

distribution of gastric microbiota and showing intersections across multiple
microhabitats. (B) Shannon diversity measurement. (C) Simpson diversity

measurement. (D) Correlation heatmap of the differential dominant genera

at the genus level in tumor tissues of LBMI and NLBMI groups. The x-axis and
y-axis represent bacteria. Red indicates a positive correlation, while blue

indicates a negative correlation. The depth of color represents the magnitude
of the Spearman correlation coefficient, with lighter colors indicating smaller

values and darker colors indicating larger values. The “*” in the figure indicates
the significance of the p-value: no * indicates p-value ≥ 0.05, * indicates 0.01

≤ p < 0.05, ** indicates 0.001 ≤ p < 0.01, *** indicates p < 0.001.LBMI-CT, Low

BMI tumor tissue; LBMI-NT, Low BMI adjacent normal tissue; NLBMI-CT,
Non-low BMI tumor tissue; NLBMI-NT, Non-low BMI adjacent normal tissue.

SUPPLEMENTARY FIGURE 3

Differential Analysis of Microbiota in Different Tissue Sites of GC Patients in
the LBMI Group. (A) Positive and negative bar graphs of Lefse analysis of

gastric cancer microbiota in tumor and adjacent tissues of the LBMI group.

The characteristic selection criterion is LDA score > 2.0. The color of the bar
represents the group, and the length of the bar represents the LDA score. The

LDA score indicates the influence level of the microbiota. (B) Evolutionary
branch diagram of Lefse analysis of gastric cancer microbiota in tumor and

adjacent tissues of the LBMI group. The node size represents the abundance
of the species, proportional to their abundance. The color of the nodes

indicates the group, with yellow nodes representing species with no

significant difference between groups. Red nodes represent species
significantly more abundant in the LBMI-CT group, while green nodes

represent species significantly more abundant in the LBMI-NT group. The
nodes within each layer, from inside to outside, represent phylum/class/

order/family/genus/species, with the species annotations in each layer
marking from outside to inside as phylum/class/order/family/genus/species.

LBMI-CT, Low BMI tumor tissue; LBMI-NT, Low BMI adjacent tissue.

SUPPLEMENTARY FIGURE 4

Differential Analysis of Microbiota in Different Tissue Sites of GC Patients in
the NLBMI Group. (A) Positive and negative bar graphs of Lefse analysis of

gastric cancer microbiota in tumor and adjacent tissues of the NLBMI group.
The characteristic selection criterion is LDA score > 2.0. The color of the bar

represents the group, and the length of the bar represents the LDA score. The

LDA score indicates the influence level of the microbiota. (B) Evolutionary
branch diagram of Lefse analysis of gastric cancer microbiota in tumor and

adjacent tissues of the NLBMI group. The node size represents the abundance
of the species, proportional to their abundance. The color of the nodes

indicates the group, with yellow nodes representing species with no
significant difference between groups. Red nodes represent species

significantly more abundant in the NLBMI-CT group, while green nodes

represent species significantly more abundant in the NLBMI-NT group. The
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nodes within each layer, from inside to outside, represent phylum/class/
order/family/genus/species, with the species annotations in each layer

marking from outside to inside as phylum/class/order/family/genus/species.

NLBMI-CT, Non-Low BMI tumor tissue; NLBMI-NT, Non-Low BMI
adjacent tissue.

SUPPLEMENTARY FIGURE 5

Evolutionary Branch Diagram of Lefse Differential Analysis of Intratumoral
Microbiota in LBMI and NLBMI Groups of GC Patients. The size of the nodes

represents the abundance of the species, proportional to their abundance.

The color of the nodes indicates the group, with yellow nodes representing
species with no significant difference between groups. Red nodes represent

species significantly more abundant in the NLBMI-CT group, while green
nodes represent species significantly more abundant in the NLBMI-NT
Frontiers in Cellular and Infection Microbiology 15
group. The nodes within each layer, from inside to outside, represent
phylum/class/order/family/genus/species, with the species annotations in

each layer marking from outside to inside as phylum/class/order/family/

genus/species. LBMI-CT, Low BMI tumor tissue; NLBMI-CT, Non-Low BMI
tumor tissue.

SUPPLEMENTARY FIGURE 6

Heatmap showing the correlation between metabolites and BMI. The
heatmap displays the differential abundance of metabolites between LBMI-

CT (n = 37) and NLBMI-CT (n = 16). It illustrates the relative abundance (Log)

of 69 metabolites. Red indicates positive correlation; blue indicates negative
correlation. The depth of the color represents the magnitude of abundance,

with color ranging from light to dark indicating increasing abundance value.
LBMI-CT, Low BMI tumor tissue; NLBMI-CT, Non-Low BMI tumor tissue.
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Mosca, A. M., Mané, F., Marques Pires, C., and Medeiros, P. (2021). Infective
endocarditis by a rare and fastidious agent:Abiotrophia defectiva. BMJ Case Rep. 14.
doi: 10.1136/bcr-2021-241964

Natarajan, N., and Pluznick, J. L. (2014). From microbe to man: the role of microbial
short chain fatty acid metabolites in host cell biology. Am. J. Physiology-Cell Physiol.
307, C979–CC85. doi: 10.1152/ajpcell.00228.2014

Noorani, I., Sidlauskas, K., Pellow, S., Savage, R., Norman, J. L., Chatelet, D. S., et al.
(2023). Clinical impact of anti-inflammatory microglia and macrophage phenotypes at
glioblastoma margins. Brain Commun. 5. doi: 10.1093/braincomms/fcad176
Peng, R., Liu, S., You, W., Huang, Y., Hu, C., Gao, Y., et al. (2022). Gastric

microbiome alterations are associated with decreased CD8+ Tissue-resident memory
T cells in the tumor microenvironment of gastric cancer. Cancer Immunol. Res. 10,
1224–1240. doi: 10.1158/2326-6066.CIR-22-0107

Rosenberg, H. F., Masterson, J. C., and Furuta, G. T. (2016). Eosinophils, probiotics,
and the microbiome. J. Leukocyte Biol. 100, 881–888. doi: 10.1189/jlb.3RI0416-202R

Sasaki, M., Shimoyama, Y., Kodama, Y., and Ishikawa, T. (2021). Abiotrophia
defectiva dnaK promotes fibronectin-mediated adherence to HUVECs and induces a
proinflammatory response. Int. J. Mol. Sci. 22. doi: 10.3390/ijms22168528
frontiersin.org

https://doi.org/10.1002/bjs.7310
https://doi.org/10.3322/caac.21388
https://doi.org/10.4049/jimmunol.0901799
https://doi.org/10.1152/physrev.00049.2017
https://doi.org/10.1152/physrev.00049.2017
https://doi.org/10.3322/caac.21834
https://doi.org/10.1007/s11302-013-9372-5
https://doi.org/10.1038/s41392-023-01693-0
https://doi.org/10.1016/j.ajcnut.2024.05.016
https://doi.org/10.1038/sj.bjc.6600161
https://doi.org/10.1038/s41419-021-04396-y
https://doi.org/10.1111/imm.2016.149.issue-4
https://doi.org/10.1186/s12885-018-4063-9
https://doi.org/10.3389/fimmu.2020.01339
https://doi.org/10.1038/s41586-022-05435-0
https://doi.org/10.3390/ijms22041636
https://doi.org/10.3390/cancers15010269
https://doi.org/10.1186/s12967-024-04903-7
https://doi.org/10.3390/ijms22052628
https://doi.org/10.1002/1097-0142(19860915)58:6%3C1321::AID-CNCR2820580623%3E3.0.CO;2-O
https://doi.org/10.1002/1097-0142(19860915)58:6%3C1321::AID-CNCR2820580623%3E3.0.CO;2-O
https://doi.org/10.1007/s10120-020-01065-5
https://doi.org/10.1016/j.xcrm.2024.101429
https://doi.org/10.1007/s10557-021-07229-4
https://doi.org/10.1016/j.ebiom.2018.12.034
https://doi.org/10.1186/s13046-024-03034-7
https://doi.org/10.1016/j.ccell.2022.08.004
https://doi.org/10.4251/wjgo.v13.i3.161
https://doi.org/10.1186/s40168-023-01613-y
https://doi.org/10.3390/ijms21041391
https://doi.org/10.1136/gutjnl-2015-310101
https://doi.org/10.18632/oncotarget.3109
https://doi.org/10.1136/bcr-2021-241964
https://doi.org/10.1152/ajpcell.00228.2014
https://doi.org/10.1093/braincomms/fcad176
https://doi.org/10.1158/2326-6066.CIR-22-0107
https://doi.org/10.1189/jlb.3RI0416-202R
https://doi.org/10.3390/ijms22168528
https://doi.org/10.3389/fcimb.2025.1511900
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2025.1511900
Schooling, C. M., Taghizadeh, N., Boezen, H. M., Schouten, J. P., Schröder, C. P.,
Vries, E. G. E. d., et al. (2015). BMI and lifetime changes in BMI and cancer mortality
risk. PloS One 10 (4).

Spyrou, N., Vallianou, N., Kadillari, J., and Dalamaga, M. (2021). The interplay of
obesity, gut microbiome and diet in the immune check point inhibitors therapy era.
Semin. Cancer Biol. 73, 356–376. doi: 10.1016/j.semcancer.2021.05.008

Tran, D. H., Kim, D., Kesavan, R., Brown, H., Dey, T., Soflaee, M. H., et al. (2024). De
novo and salvage purine synthesis pathways across tissues and tumors. Cell 187, 3602–
18.e20. doi: 10.1016/j.cell.2024.05.011

Varricchi, G., Galdiero, M. R., Loffredo, S., Lucarini, V., Marone, G., Mattei, F., et al.
(2017). Eosinophils: The unsung heroes in cancer? OncoImmunology 7. doi: 10.1080/
2162402X.2017.1393134

Wang, G., He, X., and Wang, Q. (2023). Intratumoral bacteria are an important
“accomplice” in tumor development and metastasis. Biochim. Biophys. Acta (BBA) -
Rev. Cancer 1878. doi: 10.1016/j.bbcan.2022.188846

Wu, J., Xu, S., Xiang, C., Cao, Q., Li, Q., Huang, J., et al. (2018). Tongue coating
microbiota community and risk effect on gastric cancer. J. Cancer. 9, 4039–4048.
doi: 10.7150/jca.25280
Frontiers in Cellular and Infection Microbiology 16
Xie, J., Liu, J., Chen, X., and Zeng, C. (2024). Purinosomes involved in the regulation
of tumor metabolism: current progress and potential application targets. Front. Oncol.
14. doi: 10.3389/fonc.2024.1333822

Yin, J., Ren, W., Huang, X., Deng, J., Li, T., and Yin, Y. (2018). Potential mechanisms
connecting purine metabolism and cancer therapy. Front. Immunol. 9. doi: 10.3389/
fimmu.2018.01697

Yousefi, S., Gold, J. A., Andina, N., Lee, J. J., Kelly, A. M., Kozlowski, E., et al. (2008).
Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial
defense. Nat. Med. 14, 949–953. doi: 10.1038/nm.1855

Yu, L., Cao, S., Li, J., Han, B., Zhong, H., and Zhong, R. (2021). Prognostic value and
immune infiltration of a novel stromal/immune score-related P2RY12 in lung adenocarcinoma
microenvironment. Int. Immunopharmacology. 98. doi: 10.1016/j.intimp.2021.107734

Zhao, W., Wang, P., Sun, W., Gu, P., Wang, X., Wu, Z., et al. (2021). Effects of a high
body mass index on the short-term outcomes and prognosis after radical gastrectomy.
Surg. Today 51, 1169–1178. doi: 10.1007/s00595-021-02259-9

Zhou, Y., Cheng, L., Liu, L., and Li, X. (2023). NK cells are never alone: crosstalk and
communication in tumour microenvironments. Mol. Cancer. 22. doi: 10.1186/s12943-023-
01737-7
frontiersin.org

https://doi.org/10.1016/j.semcancer.2021.05.008
https://doi.org/10.1016/j.cell.2024.05.011
https://doi.org/10.1080/2162402X.2017.1393134
https://doi.org/10.1080/2162402X.2017.1393134
https://doi.org/10.1016/j.bbcan.2022.188846
https://doi.org/10.7150/jca.25280
https://doi.org/10.3389/fonc.2024.1333822
https://doi.org/10.3389/fimmu.2018.01697
https://doi.org/10.3389/fimmu.2018.01697
https://doi.org/10.1038/nm.1855
https://doi.org/10.1016/j.intimp.2021.107734
https://doi.org/10.1007/s00595-021-02259-9
https://doi.org/10.1186/s12943-023-01737-7
https://doi.org/10.1186/s12943-023-01737-7
https://doi.org/10.3389/fcimb.2025.1511900
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

	Multiomics insights into BMI-related intratumoral microbiota in gastric cancer
	Introduction
	Material and methods
	Clinical cohort data collection and definitions
	Clinical specimen collection and preparation
	16S rRNA sequencing
	Transcriptome sequencing
	GC tumor immune microenvironment analysis
	Metabolome assays
	Statistical method

	Results
	LBMI is an independent prognostic risk factor for poor prognosis in patients with GC
	Intratumoral microbiome landscape in LBMI and NLBMI gastric cancer patients
	LBMI intratumor g_Abiotrophia was significantly elevated
	LBMI intratumoral g_Abiotrophia negatively correlates with P2RY12
	LBMI intratumoral g_Abiotrophia negatively correlates with eosinophils
	High purine metabolism in LBMI tumors

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


