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Integrative multi-omics analysis
of the microbiome and
metabolome in bronchoalveolar
lavage fluid from patients with
early-stage lung cancer
Jiajun Xie †, Nengyang Zhu † and Weiguo Xu*

Department of Respiratory and Critical Care Medicine, Mianyang Central Hospital, School of
Medicine, University of Electronic Science and Technology of China, Mianyang, China
Lung cancer is a significant health concern that poses a considerable threat to

human health and quality of life. In order to enhance the prognosis of patients with

lung cancer, we conducted a combined analysis of 16S rDNA gene sequencing of

alveolar lavage fluid and LC-MS metabolomics research, with the objective of

identifying biomarkers in patients with early-stage lung cancer presenting as SPN.

A comparison of the benign nodule group and the early-stage lung cancer patients

revealed that the phylum-level Bacteroidetes and the genus-level Chryseobacterium

and Delftia were more abundant in the latter group. Additionally, the Fusobacteriales

might serve as a predictivemarker for the diagnosis of early-stage lung cancer. In the

context ofmetabolomics, the early-stage lung cancer was found to be characterised

by elevated levels of specific metabolites, including Alternariol, dTMP, Oxymatrine,

Gedunin, PC 36:4. Conversely, reductions in othermetabolites, such as LPCO-24:0,

PC 18:2_18:3, PC 19:2_19:2, Cholecalciferol and T-2 Triol, were also observed.

Correlation analyses demonstrated that alveolar lavagemicroorganismswere closely

associated with differential metabolites. Specifically, reductions in Cholecalciferol

were associated with a variety of high-abundance flora and involved in vitamin

digestion and absorption pathways. Furthermore, reductions in cholecalciferol may

serve as a robust predictor of early-stage lung cancer. These findings provide new

predictive biomarkers for early-stage lung cancer manifested by SPN, which is

clinically important and requires further study of the potential mechanisms of

action and function of the targets.
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1 Introduction

Lung cancer is the most lethal malignant tumor globally, with

the majority of patients diagnosed in the middle to late stages of the

disease (Siegel et al., 2020; Sung et al., 2021). Non-small cell lung

cancer (NSCLC), which represents the most prevalent form of lung

cancer (85%), is associated with a prognosis that is strongly

correlated with stage. Patients diagnosed with stage IA have a

significantly higher five-year survival rate (70%) compared to

those with stage IV (13%) (Aberle et al., 2011; Goldstraw et al.,

2016), therefore the identification of early lung cancer is particularly

important. In the early-stage of lung cancer, the disease typically

manifests as a non-calcified solitary pulmonary nodule (SPN)

(Rampinelli et al., 2016), which is defined as a round,

nontransparent lesion isolated within the lung, has a maximum

diameter of 3 cm, and is surrounded and completely encapsulated

by lung parenchyma (Harzheim et al., 2015). The increased

utilisation of low-dose CT has led to a rise in the detection of

SPNs (Zhang et al., 2023), although the majority of these are

ultimately identified as benign conditions, including infections,

inflammations and vascular lesions. However, a proportion of

SPNs are subsequently confirmed to be lung cancer (Larici et al.,

2017). The low-dose CT scan is not sufficiently specific for use in

screening for malignant SPNs (Boiselle, 2013; Church et al., 2013).

It is therefore evident that the identification of early-stage lung

cancer with SPN as the manifestation through the search for

biomarkers with high sensitivity and specificity provides an

invaluable reference point for medical decision-making.

Multi-omics combination studies are currently a prevalent

methodology for investigating a spectrum of diseases, including

genomics, proteomics, microbiomics and metabolomics (Song et al.,

2019; Krug et al., 2020). The objective of metabolomic research is to

identify differential metabolites within the body, which are then

used as biological markers for disease (Bamji-Stocke et al., 2018).

Studies have been conducted on the early detection, subtype

differentiation, and mechanistic investigations of diseases using

liquid chromatography (LC). Metabolites including hypoxanthine,

L-tryptophan and indoleacetic acid have been identified as potential

biomarkers for NSCLC (Ruiying et al., 2020). However, metabolites

are susceptible to alteration by factors such as diet and nutritional

status (Zhang et al., 2018). The involvement of microorganisms in

the occurrence and development of NSCLC may be attributable to

their effects on processes such as inflammation and metabolism

(Wong-Rolle et al., 2021). A distinct intestinal microbiome has been

identified in early-stage lung cancer, with microbial composition

linked to tumour stage and subtype (Zheng et al., 2020). The

difficulty of accurately elucidating comprehensive changes in

organisms using a single omics analysis has prompted a gradual

increase in comprehensive analyses of microbiomics and

metabolomics. At present, multi-omics comprehensive studies on

lung cancer are primarily concentrated on the analysis of intestinal

microorganisms and serum metabolomics (Vernocchi et al., 2020;

Ni et al., 2021; Ni et al., 2023).

Given the lungs are the host’s primary site of gas exchange, they

are regarded as possessing a distinct microbiome when compared to
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the gut. This is evidenced by the lower number of colonies observed

in the lungs (Mathieu et al., 2018). Local microecological studies of

the lungs have indicated a strong correlation between

microecological imbalance and the development of lung cancer.

The characteristics of the local microbial communities in the lungs

of lung cancer patients are as follows: the total number of these

communities is greater, but the alpha diversity and bacterial

abundance are reduced (Gomes et al., 2019). There is a paucity of

research examining the local microbiome and metabolomics of lung

cancer patients with SPN as the primary manifestation. In this

study, a lobectomy specimen was employed for the purpose to

perform bronchoalveolar lavage of the subsegment in which the

SPN was located. The alveolar lavage fluid was subjected to 16S

rDNA amplicon sequencing and metabolomic research with the

objective of exploring the differences in the local lung microbiome

and metabolites between lung cancer patients with SPN

manifestations and those with benign SPN.
2 Materials and methods

2.1 Study participants

The study included 52 participants from the Department of

Cardiothoracic Surgery, Mianyang Central Hospital, Sichuan

Province. The imaging characteristics of all patients met the

diagnostic criteria for SPN as outlined in the 2017 Fleischner

Society Guidelines for the Management of Lung Nodules

(MacMahon et al., 2017). All patients were diagnosed for the first

time and underwent surgical resection to clarify the pathology type.

The group included 31 patients with early-stage non-small-cell lung

cancer (malignant), and 21 benign lung nodules (benign). There

was no statistically significant difference in baseline data between

the groups(P>0.05). Following the provision of written informed

consent by all patients prior to surgery, alveolar lavage fluid was

collected in accordance with a protocol approved by the ethics

committee, and data pertaining to the patients’ clinical parameters

was collated. Exclusion criteria included (1) the administration of

antibiotics within the previous three months, (2) the presence of

chronic respiratory infections and metabolic disorders, and (3) a

history of definite pulmonary infections within the previous

three months.
2.2 Sample collection and storage

Following the completion of surgical procedures, all subjects

underwent lavage of the subsegment in which the SPN was situated

in the excised lung tissue within a sterile operating theatre under the

same quality control parameters. The alveolar lavage fluid was

subsequently collected, and the duration of the operation was

monitored to ensure it fell within the two-minute threshold post-

lobectomy. The gathered specimens were then transferred to a

refrigerated (-80°C) storage facility (Wells et al., 2019).
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2.3 BALF microbiological analysis (16S
rDNA sequencing)

2.3.1 DNA extraction
The total deoxyribonucleic acid (DNA) from the disparate

samples was extracted via the CTBA methodology, after which a

1% agarose gel electrophoresis was employed for the analysis of the

purity and concentration of the DNA.

2.3.2 Extracting and purifying the PCR product
Corresponding regions were amplified with the following

primers: 515F and 806R (16SV4), 528F and 706R (18SV4), ITS5-

1737F and ITS2-2043R (ITS1), and all PCR mixes were

supplemented with Phusion® PCR Master Mix (New England

Biolabs), primers and genomic DNA templates, initial

denaturation at 98°C, 30 cycles at different temperatures and

finally 72°C for 5 minutes.

2.3.3 Library preparation and sequencing
The libraries were quantified by Qubit and Q-PCR. The libraries

were qualified for PE250 machine sequencing using NovaSeq 6000.
2.3.4 Microbiology data analysis
The final Amplicon Sequence Variants (ASVs) characterisation

table was obtained by splitting the raw data, double-ended splicing,

quality control and chimera removal, and noise reduction using the

DADA2 module in QIIME2 software (version QIIME2-202202).

Species annotation was performed using QIIME2 software, 16S and

18S from Silva 138.1 database and ITS from Unite v9.0 database,

based on which clustering and grouping of sequences was performed.

The distribution of relative abundance in Perl was plotted as a

histogram using the SVG function according to the 10 most

abundant species at different taxonomic levels (phylum, order,

order, family, genus and species) for each sample. Venn diagrams

were generated in R using the Venn diagram function to visualise

common and unique information between different samples or

groups. (Alpha, a) Diversity reflects the diversity and richness of

communities using Shannon, Chaol index, R to plot species

cumulative box plots and rank gradient curves. To analyse the

complexity of community composition between experimental and

control groups, (Beta, b) diversity analysis was performed in QIME2

based on weighted and unweighted distances, and Principal

Component Analysis (PCA) and Principal Coordinate Analysis

(PCoA) were performed using R software (V4.0.3). Histograms of

the distribution of LDA values, evolutionary branching diagrams and

comparisons of biomarkers between groups were obtained by LEfSe

(LDA Effect Size) statistical analyses, which were used to discover and

interpret high-latitude biomarkers. For random forest analysis based

on species abundance, different numbers of species were selected by

gradient for different taxonomic levels, random forest models were

constructed and ROC curves were plotted. Each model was then

cross-validated (10-fold by default) and important species were

filtered by MeanDecreaseAccuracy and MeanDecreaseGin.
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2.4 Metabolomic Analysis of BALF

2.4.1 Testing of the metabolite samples
Each lavage sample was placed in an EP tube with 400mL of an

80% methanol aqueous solution, subjected to several

centrifugations, and the resulting supernatant was collected for

subsequent LC-MS analysis. QC samples were derived from an

equal-volume mix of individual experimental samples, while blank

samples were prepared with a 53% methanol aqueous solution in

place of the experimental samples. The UHPLC-MS spectra were

analysed using a Q Exactive™ HF/Q Exactive™ HF-X mass

spectrometer (Thermo Fisher, Germany) and a Vanquish UHPLC

chromatograph (Thermo Fisher, Germany). Samples were injected

onto a Hypersil Goldcolumn (100×2.1 mm, 1.9mm) using a 12-min

linear gradient at a flow rate of 0.2 mL/min. The eluents for the

positive and negative polarity modes were eluent A (0.1% FA in

Water) and eluent B (Methanol). The solvent gradient was set as

follows: 2% B, 1.5 min; 2-85% B, 3 min; 85-100% B, 10 min;100-2%

B, 10.1 min;2% B, 12 min. Q ExactiveTM HF mass spectrometer

was operated in positive/negative polarity mode with spray voltage

of 3.5 kV, capillary temperature of 320°C, sheath gas flow rate of

35 psi and aux gas flow rate of 10 L/min, S-lens RF level of 60, Aux

gas heater temperature of 350°C.

2.4.2 Data processing and metabolite
identification

The downstream data files (i.e.raw files) were imported into

CD3.3 library search software for processing. Each metabolite was

briefly screened for retention time, mass-to-charge ratio, and other

parameters. Thereafter, the peak area was corrected with the first

quality control (QC) sample to ensure more accurate identification.

Finally, the peaks were extracted by setting the information. The

parameters for this were 5 ppm of mass deviation, 30% deviation of

signal intensity, minimum signal intensity, and the addition of ions.

The data were then quantified by integrating the target ions, and the

molecular formula was predicted and compared with the mzCloud

(), mzVault, and Masslist databases by molecule peaks and

fragmented ions. The quantification of target ions was followed

by integration and molecular formula prediction by molecular ion

peaks and fragmented ions. This was then compared with mzCloud

(https://www.mzcloud.org/), mzVault and Masslist databases.

Blank samples were used to remove background ions. The raw

quantitative results were based on the formula: the original

quantitative values of the samples/(The original quantitative

results were then normalised according to the formula: original

sample quantitative value/(sum of sample metabolite quantitative

values/sum of metabolite quantitative values of QC1 samples) to

obtain the relative peak area; compounds with a coefficient of

variation of relative peak area greater than 30% in QC samples

were deleted, and then the metabolites were identified and

quantified relative to each other. (MS1 accurate quality vs.

database values (ppm error), MS2 scoring values of spectra vs.

matches in the mzCloud and mzvault databases, as detailed in

Supplementary Information).
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2.4.3 Metabolomic data analysis
The identified metabolites were annotated using the Human

Metabolome Database (HMDB), the Kyoto Encyclopedia of Genes

and Genomes (KEGG), and the LIPID MAPS Structure Database

(LIPIDMaps). The multivariate analysis employed the metaX tool

to transform the data and subjected it to principal component

analysis (PCA) and partial least squares discriminant analysis (PLS-

DA). The resulting VIP values for each metabolite were then

generated. Univariate sectioning was conducted using t-tests to

ascertain statistical disparities (P-values) in metabolites between

groups. The multiplicity of differences in metabolites between

groups was expressed by (FoldChange, FC), with a default

criterion of VIP > 1, P-value < 0.05 and FC ≥ 2 or FC ≤ 0.5. The

R package ggplot2 was employed for the screening of target

metabolites, with volcano and matchstick plots created using the

combined metabolite parameters of VIP value, log2 (Fold Change)

and -log10 (P-value). The clustering heatmap was plotted in the R

language Pheatmap, while the bubble map was generated using

ggplot2 in R. The metabolite functions and pathways were analysed

using the KEGG database, and a metabolic pathway was considered

to be enriched when x/n>y/n, and significantly enriched when the

P-value of the metabolic pathway was <0.05.
2.5 Microbiome and metabolomics
correlation analysis

Significantly disparate genera at the genus level, as determined

by 16S rDNA, and markedly distinct metabolites, as identified by

metabolomics analysis, were correlated using Pearson correlation

coefficients. Heat maps were constructed to quantify the extent of

the association between species diversity and metabolites in

environmental samples.
3 Result

3.1 Clinical and demographic
characteristics of the study participants

To study the microbiological and metabolite changes in alveolar

lavage fluid of patients with early-stage lung cancer presenting as

SPN, a group of 31 patients with early-stage lung cancer

(malignant) and a group of 21 patients with benign lung nodules

(benign) were enrolled. None of these patients had chronic lung

disease, had no lung infections and had received antibiotic therapy

in the 3 months prior to enrolment. There was no statistically

significant difference in the baseline information of age, gender,

body mass index (BMI) and smoking history between the two

groups (P > 0.05). Group malignant was all metastasis-free early-

stage NSCLC with the main pathological type of adenocarcinoma

(29/31) and the control group was the group of benign lung nodules

with the main pathological type of atypical adenomatous

hyperplasia (n = 9). According to the imaging appearance of the

nodules, they were classified as solid (13/52), subsolid (14/52) and
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ground-glass (25/52), and the characteristics of the subjects are

shown in Table 1.
3.2 Microbiological analysis of BALF

3.2.1 The distribution of microorganisms in early
lung cancer and benign lung nodules

The number of common and unique ASVs between group

malignant and group benign was visualised by plotting Veen

diagrams by ASV (Figure 1A). A total of 5922 ASVs were

identified, with 887 ASVs common to both groups, of which

2,491 were unique to the malignant group and 2,544 to the

benign group. At the phylum level, the main flora composition of

BALF in the two groups was Proteobacteria, Bacteroidetes and

Firmicutes, with being more abundant in group malignant

(relative abundance 34.83%) than in group benign (relative

abundance 30.24%), and Firmicutes being enriched in benign

nodules. Fusobacteriota was also increased in group malignant

compared with the group benign (Figure 1B). At the genus level,

the group benign still had a richer microbial composition.

Chryseobacterium, Stenotrophomonas and Delftia were the

predominant lung microorganisms shared by the two groups, and

Chryseobacterium and Delftia were significantly more abundant in
TABLE 1 General clinical comparison of group malignant and
group benign.

Characteristics Malignant
nodule (n = 31)

Benign
nodule
(n = 21)

P value

Age (mean ± SD) 58.23± 10.59 55.10 ± 14.26 0.368

Male/female (No.) 15/16 7/14 0.281

BMI (kg/m2) (mean
± SD)

24.65 ± 2.18 23.56 ± 4.32 0.236

Tumor type, n (%)

ADC 29 – –

SCC 2 – –

Nodule type 0.569

ground-glass nodule 14 11

subsolid nodule 10 4

solid nodule 7 6

Smoking status,
n (%)

0.292

Smoker 10 4

Non-smoker 21 17

Tumor metastasis, n (%)

Non-metastasis 31 – –

Metastasis 0 – –

Family history, n (%) 0 0 –
fro
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the group malignant, Acinetobacter, Prevotella_9, Bifidobacterium

and Lactobacillus were enriched in the group benign (Figure 1C).

3.2.2 Alpha diversity and beta diversity of alveolar
lavage flora

a-diversity reflects the richness and evenness of microbial

communities within a sample, while b-diversity quantifies the

diversity of microbial community composition between groups

(Walters and Martiny, 2020). The Shannon index, which

describes community richness, showed no significant difference

between the two groups (group M vs. group benign, P = 0.439,

Figure 2A). In addition, the Chao 1 index (group malignant vs.

benign, P = 0.441, Figure 2B) was also not statistically different

between the two groups. We then evaluated the b diversity of the

two groups by PCoA analysis based on the weighted unifrac

distance and unweighted unifrac distance, and found that there

were some differences between the two groups of lavage species, but

they were not statistically significant (Figure 2C). Using alpha and

beta diversity analyses, we found that the richness and diversity of

the microbial composition of alveolar lavage fluid was similar
Frontiers in Cellular and Infection Microbiology 05
between patients with lung cancer and patients with benign

lung nodules.

3.2.3 Diagnostic biomarkers for lung cancer in
alveolar lavage fluid

The LDA Effect Size (LEfSe) was utilised to screen the

classification units exhibiting significant variations between groups

via the Kruskal-Wallis test. This procedure facilitated the

identification of biomarkers with substantial differences between

groups and the calculation of the discriminant weight of each

classification unit exhibiting significant variations. the linear

discriminant analysis (LDA) model.The LDA value reflects the

contribution of a specific classification unit to the differences

between groups, and the larger the value, the more important the

classification unit is in distinguishing different groups. The LDA

value reflects the degree of contribution of a particular classification

unit to the differences between groups, and the larger the value, the

more important the classification unit is in distinguishing different

groups. Typically, LDA values greater than 2 are employed as the

default threshold for identifying significant differences, and
A B  

    

C

FIGURE 1

Early-stage lung cancer and benign lung nodules have different microbial distributions (A) The Venn diagram shows unique and common ASVs in
group benign and group malignant. The top 10 representative species and their proportions in the two groups at the level of phylum (B), and
genus (C).
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taxonomic units with high LDA values may serve as potential

biomarkers. LDA Effect Size (LEfSe) analysis was performed to

compare biomarker abundance between lung cancer and benign

nodule groups, and the following three statistical conclusions were

obtained: histograms of the distribution of LDA scores, evolutionary

branching plots, and comparisons of biomarker abundance between

groups. The histogram (Figure 3A) showed that there were 16

differential taxa at different classification levels, of which 3 were

from group malignant and 13 from group benign, with log10 (LDA

score) > 2. Fusobacteria had the highest LDA scores in the group

malignant. Branching plots (Figure 3B) showed an increased

abundance of Fusobacteriales from Fusobacteria in group malignant

compared to group benign. In contrast, Marine_Group_II,

Enterobacterales from the eye level were significantly enriched in

the group benign. The relative abundance of biomarkers (Figure 3C)

suggested that Fusobacteriales were significantly enriched in group

malignant compared to group benign.

Further random forest analysis based on species abundance was

performed to construct a model to discriminate lung cancer patients
Frontiers in Cellular and Infection Microbiology 06
from benign lung nodules, which included 20 microbial genera

(Figure 3D). The overall AUROC of the model was 82.18% (95%CI:

69.83%-94.54%) (Figure 3E), and the discriminatory power of

genus-level Nocardioides, Vibrio and Bifidobacterium was

significantly higher than that of other genera, suggesting that they

are good diagnostic markers for lung cancer. Meanwhile, we found

that the diagnostic value of Fusobacterium was also high, in line

with the LEfSe results.
3.3 Metabolite differences between lung
cancer group and benign lung nodule
group

Untargeted metabolomic analysis of BALF by LC-MS/MS was

performed in order to determine whether there are differences in

the metabolites of the local lung between patients diagnosed with

lung cancer and those diagnosed with benign pulmonary lesions. A

total of 1,917 metabolites were identified, comprising 1,296 positive
A                                    B 

C 

FIGURE 2

Alveolar lavage flora alpha diversity and beta diversity (A) Shannon diversity index of group benign and group malignant. (B) Chao 1 index of group
benign and group malignant. (C) Beta diversity of the genera analysed by weighted UniFrac PCoA and unweighted UniFrac PCoA.
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ions and 621 negative ions. Among the cations, 101 differential

metabolites were identified, of which 56 exhibited a significant

upregulation and 45 demonstrated a significant downregulation.

Partial Least Squares Discrimination Analysis (PLS-DA) was

employed for the statistical selection of differential metabolites

between groups. The results indicate the presence of differential

metabolites between groups benign and malignant (Figure 4A). The

ranking validation data does not exhibit the phenomenon of

overfitting, and the R2Y and Q2 values are 0.57 and -0.38,

respectively, confirming that the model has been effectively
Frontiers in Cellular and Infection Microbiology 07
validated (Figure 4B). The differential metabolites were identified

based on the Variable Importance in the Projection (VIP) of the

PLS-DA model, with VIP > 1.0 and FC > 1.2 serving as the

screening criteria. The results demonstrated the identification of a

total of 101 ESI+ differential metabolites between the lung cancer

group and the benign lung nodule group. The full list of differential

metabolites is provided in Figures 4C, D. The principal upregulated

differential metabolites were Alternariol, dTMP, Oxymatrine,

Gedunin, PC 36:4, and so forth; the principal downregulated

metabolites were LPC O-24:0, PC 18:2_18:3, PC 19:2_19:2,
A                                  B 

C

D E 

FIGURE 3

LEfSe analysis and diagnostic biomarker analysis by a random forest model. (A) Histogram of LDA value distribution(The magnitude of the effect of
different species is represented by the LDA score, which is the length of the bars in the figure). (B) Cladogram. (C) Comparison of the abundances of
significantly biomarker in group benign and group malignant. (D) Random forest model of the twenty microbial genera model. (E) ROC curve of the
twenty microbial genera model.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1513270
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Xie et al. 10.3389/fcimb.2025.1513270
Cholecalciferol, T-2 Triol. Clustering analysis provides a more

intuitive representation of the differences between individual

samples (Figure 4E). The objective of the correlation analysis of

differential metabolites is to ascertain the consistency of the trend of

change in metabolites in relation to other metabolites. The
Frontiers in Cellular and Infection Microbiology 08
correlation between each metabolite was analysed by calculating

the Pearson correlation coefficient between all metabolites

(Figure 4F). Subsequently, a KEEG pathway enrichment analysis

(Figure 4G) revealed that the primary metabolic pathways involved

in the differential metabolites between the two groups include:
A                                   B
 

C                                   

 
D  

 

E                               

 

  F G 

FIGURE 4

Metabolite differences between the groups. (A) PLS-DA score plot shows the difference in metabolites between groups. (B) Comparison of real and
permuted model parameters in validation tests. (C) The significant different metabolites between group benign and group malignant by Volcano plot.
(D) Matchstick diagram of differential metabolites. (E) Heat map of the differential metabolites in group benign and group malignant. (F) Correlation
analysis of differential metabolites. (G) The KEGG pathway enrichment scatter plot displays important discriminatory metabolic processes of group
benign and group malignant.(The color of the dots represents the P-value of the hypergeometric test; the smaller the value, the more reliable and
statistically significant the test. The size of the dots represents the number of differential metabolites in the corresponding pathway; the larger the
value, the more differential metabolites there are in that pathway).
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vitamin digestion and absorption, and neuroactive ligand-receptor

interaction, among others.
3.4 Cross-correlation analysis between the
microbiota and metabolites

In order to explore the functional relationship of the altered BALF

microbiota and differentially accumulated BALF metabolites, we

performed correlation analysis based on Pearson’s correlation

coefficients. The top 16 ASVs with statistical difference annotated at

the different level, and the above 101 differentially accumulated

metabolites were included for analysis. It showed the metabolites were

correlated with the microbiota of group malignant. The heatmap of the

correlation is shown in Figures 5A. Besides, the results of the above

microbiota study showed that Allisonella, Candidatus_Actinomarina,

Shewanella, Pantoea, Candidatus_Nitrosopumilus.
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in genus level and Fusobacteriales in order level were related to

group malignant in Figures 5B. We also made the cross-correlation

analysis between the three microbiotas with the differentially

accumulated metabolites (Figures 5C–E).
4 Discussion

The prognosis of lung cancer patients is closely related to the

timing of tumour diagnosis, and early diagnosis and treatment of

lung cancer is key to improving prognosis (Aberle et al., 2011;

Goldstraw et al., 2016). Low-dose CT cannot accurately identify

malignant SPNs, so it is particularly important to find biomarkers

for the early detection of malignant SPNs (Boiselle, 2013; Church

et al., 2013). This study focused on analysing the local microbial and

metabolic characteristics of patients with early-stage lung cancer

presenting as SPNs and searching for potential biomarkers using a
A 

B 

C D E 

FIGURE 5

Cross-correlation analysis between the microbiota and metabolites. (A) A correlation heatmap of 16 ASVsand 101 differentially abundant metabolites
at different levels is presented herewith. (B) A correlation heatmap of the top 20 metabolites with significant differences and the microorganisms
Allisonella, Candidatus_Actinomarina, Shewanella, Pantoea, Candidatus_Nitrosopumilus and Fusobacteriales. (*p<0.05 in A, B). (C) The abundance of
Allisonella was associated with low levels of Cholecalciferol. (D) The abundance of Fusobacteriales correlates with low levels of T-2 Triol. (E) The
abundance of Pantoea was associated with low levels of Cholecalciferol. The horizontal coordinate represents the differentially abundant bacteria at
the level of the 16S gene, and the vertical coordinate represents the differentially abundant metabolites. Red indicates a positive correlation, blue
indicates a negative correlation, and an asterisk indicates statistical significance (P< 0.05).
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combined omics approach. The results are as follows: 1. At the

phylum and genus levels, patients with early-stage lung cancer had

fewer diverse microbial compositions than that in the benign

nodule group, and has a unique microbial composition that may

be used as a biomarker for the identification of early-stage lung

cancer; 2. There are differences in metabolites between early-stage

lung cancer patients and patients with benign lung nodules; 3.

There is a certain correlation between local tumour microbes and

metabolites in early-stage lung cancer patients, and microbes may

be involved in the development of early-stage lung cancer through

differential metabolites.

In our study, we found significant differences in the microbial

composition of the two groups. At the phylum level, Proteobacteria,

Bacteroidetes and Firmicutes were the main members of the lung

microbes common to both groups of patients. Similar to our study,

these microbes were found to be the main microbial components of

healthy lungs (Man et al., 2017). The difference is that, We found

that the abundance of Bacteroidetes was increased in lung cancer

patients, and similar results were found in a study of the gut flora of

lung cancer patients (Zhang et al., 2018). Bacteroidetes are thought

to affect the host’s systemic inflammatory response and immunity

by reducing the concentration of circulating short-chain fatty acids,

thereby causing an imbalance in the structure of the intestinal flora

in cancer patients and participating in tumourigenesis and

development (Verdam et al., 2013; Gao et al., 2015). At present,

the gut-lung axis has been confirmed to exist (Ma et al., 2022),

Therefore, we speculate that Bacteroidetes may be involved in

tumourigenesis in the local microenvironment of lung tumours.

The present study found that lung cancer and benign lung nodules

had comparable Proteobacterial levels, which contradicts

Greathouse’s experimental findings. They found large numbers of

Proteobacteria in lung cancer tissues that were immediately

examined and in the adjacent non-tumour tissues of cancer

patients, while no enrichment of Proteobacteria was found in

healthy controls (Greathouse et al., 2018).This raises the question

of whether tumours influence changes in the local and surrounding

non-tumour tissue microenvironment. At the genus level, the

benign lung nodule group still had a richer microbial

composition. One study has identified an increase in the presence

of Chryseobacterium in lung cancer tissues (Kovaleva et al., 2022).

However, the diagnostic potential of this genus has yet to be

confirmed, and the abundance of Chryseobacterium did not

significantly correlate with the histological type of tumour.

Additionally, the LDA results indicated an increase in the

presence of Chryseobacterium in homozygous mice following the

inhalation of BALF from NSCLC patients (Zheng et al., 2020). It is

hypothes i sed that an increase in the abundance of

Chryseobacterium in recurrent lung samples following the

resection of early-stage adenocarcinoma is positively correlated

with an upregulation of IL-2, IL-3, and IL-17 in the host

transcriptome (Tsay et al., 2024).

Previous studies have found that the a diversity of sputum and

alveolar lavage fluid bacterial communities is reduced in patients

with previously diagnosed lung cancer, and that changes in diversity

are considered an important indicator of malignant transformation
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(Hosgood et al., 2014; Lee et al., 2016). The a and b diversity

analyses in this study suggest that compared with patients with

benign lung nodules, there is no significant difference in the

diversity and richness of alveolar lavage fluid bacterial

communities in patients with early-stage lung cancer, contrary to

the results of Wen’s study (Zeng et al., 2022). The reason for this

finding may be explained by the results of another study suggesting

that airway microorganisms change as lung cancer progresses

(Marshall et al., 2022), Wen’s study included patients with

advanced-stage lung cancer, whereas our study included patients

only with early-stage lung cancer. Lobectomy specimens from lung

cancer patients also suggest that the richness and uniformity of

lavage microorganisms from patients are not different from those

from controls (Zheng et al., 2021), suggesting that differences in

sampling methods may affect the interpretation of microbiome data

(National Academies of Sciences E, Medicine et al., 2017).

A LEfSe and random forest analysis confirmed that the

significant predictive biomarkers for early-stage lung cancer are

Nocardioides, Vibrio, Bifidobacterium and Fusobacterium at the

genus level. Of these, Fusobacterium has high diagnostic value.

Fusobacterium is the most significant genus of Fusobacteria,

predominantly colonising the human oral cavity and colon.

Fusobacterium nucleatum, which is highly abundant, has been

detected in a variety of cancerous tissues, including those of the

colorectum, oesophagus, breast, and pancreas (Kostic et al., 2012;

Mitsuhashi et al., 2015; Hieken et al., 2016; Yamamura et al., 2016).

In vitro experiments have demonstrated that the FadA adhesin of

Fusobacterium nucleatum can stimulate the proliferation of human

colon cancer cell lines, including HCT116, DLD1, and SW480

(Rubinstein et al., 2019). Additionally, Fusobacterium nucleatum

has been demonstrated to facilitate the proliferation and invasion of

colon cancer cells by upregulating microRNA 21 (miR21) (Yang

et al., 2017). It has been demonstrated that Fusobacterium

nucleatum is implicated in the chemoresistance of colon cancer.

The precise mechanism may be that Fusobacterium nucleatum

activates the Toll-like receptor 4 and myeloid differentiation

primary response 88 signalling pathway, downregulates the

expression of microRNA 18a and microRNA 4802, and induces

the transformation of apoptosis to chemoresistance (Ramos and

Hemann, 2017).

It is hypothesised that Fusobacterium has high predictive value

for early-stage lung cancer. It is hypothesised that microorganisms

exert an influence on tumour development through three

principal mechanisms: the regulation of oncogenes or oncogenic

pathways; the promotion of mutagenesis and tumourigenesis; and

the alteration of the host immune system, which in turn affects

tumour progression (Garrett, 2015).It is possible that

microorganisms in the host environment may be causative

agents of tumour formation, but they may also be mere

passengers in the development of tumours. Our data indicate

two possible scenarios: that they may act as promoters or that they

may act as passengers. In order to gain a deeper understanding of

the relationship between microorganisms and early-stage lung

cancer, we also studied the differential metabolites of lung cancer

and benign nodules.
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Metabolites are the products of biological metabolism and are

intrinsic to the host organism, providing a direct indication of the

physiological processes occurring within the body (Johnson et al.,

2012). Metabolomics is a growing area of research in the field of

oncology. A variety of differential metabolites were identified in

lung cancer patients, which suggests that metabolic disorders may

be involved in the pathogenesis of lung cancer. The PLS-DA

analysis revealed significant differences in the composition

between the two groups. A total of 101 differentially accumulated

metabolites were identified in cations, with 56 being significantly

upregulated and 45 being significantly downregulated. Compared

with benign lung nodules, the differentially accumulated

metabolites Alternariol, dTMP, Oxymatrine, Gedunin, PC 36:4,

and others in lung cancer patients exhibited significant

upregulation. Alternariol (AOH) is a mycotoxin produced by the

Alternaria species of fungus. Given its oestrogen-like properties, it

has been linked to an increased risk of oesophageal cancer and

endocrine disorders (Saleh et al., 2024). Deoxythymidine

monophosphate (dTMP) plays a role in the development of

tumours through a number of mechanisms. Deoxythymidine

kinase (DTYMK) catalyses the conversion of dTMP to

deoxythymidine diphosphate (dTDP), which represents a pivotal

step in pyrimidine metabolism. Elevated DTYMK expression in

tumours such as liver cell carcinoma (LIHC) and lung

adenocarcinoma (LUAD) is associated with a poor prognosis.

Furthermore, DTYMK expression levels are linked to the

presence of immune cells within various cancer types. This

indicates that dTMP, which is regulated by DTYMK, plays a

significant role in tumour progression and immune response

regulation across diverse cancer types (Lan et al., 2022);In triple-

negative breast cancer (TNBC), cytoplasmic cytidylyl-5’-phosphate

hydrolase (CT) induces apoptosis by hydrolysing dTMP, thereby

creating a nucleotide imbalance. This imbalance results in the

disruption of the tricarboxylic acid cycle, which in turn causes

metabolic stress and cell death. This approach suggests the potential

for targeting dTMP metabolism as a means of inducing tumour cell

death (Kim et al., 2022);Gedunin represents a novel microtubule

inhibitor that circumvents the typical mechanism of drug resistance

observed in cancer therapy. It has been demonstrated that this agent

exerts pronounced cytotoxic effects on a range of cell lines,

including those of lung cancer (Khalid et al., 2022). Gedunin has

been demonstrated to disrupt the interaction between Hsp90 and

key proteins, including Beclin-1 and Bcl-2, thereby inducing

increased apoptosis in A549 lung cancer cells (Hasan et al., 2020).

The concentration of PC 36:4 is elevated in bladder cancerous

tissue, and may potentially serve as a biomarker for the disease (Ho

et al., 2022). A significant down-regulation was observed in a

number of compounds, including LPC O-24:0, PC 18:2_18:3, PC

19:2_19:2, cholecalciferol and T-2 triol, in lung cancer tissue. LPC

O-24:0 is a lysophosphatidylcholine, particularly LPC [16:0] and

LPC [18:2], which were observed to be diminished in tumour tissue

relative to healthy tissue. This depletion, in conjunction with the

accumulation of other glycerophospholipids, indicates that LPC

may serve as a diagnostic marker for differentiating between tumour

and non-tumour tissue (Schmidt et al., 2020). The application of
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proteomics strategies has revealed the significance of lipid

biomarkers, including LPC, in enhancing the sensitivity and

specificity of UBC diagnosis. The incorporation of LPC into

biomarkers has the potential to enhance diagnostic accuracy

(Tabaei et al., 2023). The aforementioned studies indicate that

LPC, including LPC O-24:0, may serve as promising tumour

markers. However, further research is necessary to elucidate their

precise diagnostic value. The metabolite phosphatidylcholine (PC)

is indispensable for the maintenance of membrane integrity and the

promotion of lipid signalling pathways, which are of paramount

importance for the growth of cancer cells. In hepatocellular

c a r c inoma (HCC) , e x e r c i s e - induced a l t e r a t i on s in

phosphatidylcholine (PC) metabolism, particularly PC 18:1/18:1,

have been demonstrated to remodel the tumour microenvironment

and reduce inflammation (Zhang et al., 2024). These findings

indicate that alterations in polycarbonate species, including PC

18:2_18:3/PC 19:2_19:2, can also influence tumour biology by

modifying the tumour microenvironment.

The metabolism of Cholecalciferol represents a classic

metabolic pathway. A reduction in vitamin D levels has been

demonstrated to elevate the risk of a number of cancers,

including breast cancer, colon cancer, prostate cancer, and blood

cell cancer. 58 (Tabaei et al., 2023). Vitamin D has been

demonstrated to exert an inhibitory effect on the development of

lung cancer by downregulating the expression of the histidine-rich

calcium-binding protein (Carlberg and Muñoz, 2022). In vitro

experiments have demonstrated that the combination of cisplatin

nanoparticles and vitamin D3 can markedly suppress inflammatory

processes and diminish the expression of tumour markers in mice

with early-stage lung cancer. It is therefore reasonable to posit that a

reduction in cholecalciferol levels is an effective predictor of early-

stage lung cancer (Carlberg and Muñoz, 2022).

Vitamin D has been demonstrated to exert an inhibitory effect

on the development of lung cancer by downregulating the

expression of the histidine-rich calcium-binding protein (Liu

et al., 2021). In vitro experiments have demonstrated that the

combination of cisplatin nanoparticles and vitamin D3 can

markedly suppress inflammatory processes and diminish the

expression of tumour markers in mice with early-stage lung

cancer (Radwan et al., 2021). It is therefore reasonable to posit

that a reduction in cholecalciferol levels is an effective predictor of

early-stage lung cancer. T-2 triol, a derivative of the T-2 toxin, is a

trichothecene mycotoxin produced by Fusarium species, which has

been studied for its potential effects on tumor development. T-2

triol and other metabolites, including HT-2 toxin and neosolaniol,

demonstrated a notable intracellular accumulation in HepG2 cells,

which contributed to the cytotoxicity of T-2 toxin. This

accumulation resulted in increased necrosis and apoptosis in

these cells, indicating that cell viability and proliferation were

disrupted (Taroncher et al., 2020). Furthermore, KEGG

enrichment analysis indicated that the metabolites were

predominantly involved in signalling pathways, including

neuroactive ligand-receptor interaction and vitamin digestion and

absorption. This finding is also consistent with the observed

differences in the metabolites.
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The present study revealed a correlation between the

microbiome and metabolites in alveolar lavage fluid through

correlation analysis. However, the lack of a clear causal

relationship precludes any definitive conclusions. Notably,

Allisonella and Pantoea, which were highly abundant in tumour

tissue, were both correlated with the low level of the metabolite

Cholecalciferol. A reduction in vitamin D levels has been

demonstrated to elevate the risk of various cancers (Carlberg and

Muñoz, 2022). The differentially expressed metabolites identified in

this study were predominantly associated with the vitamin digestion

and absorption signalling pathway. The Fusobacteriales biomarker,

which has been identified as a potential predictor of tumour

development, was also found to be positively correlated with the

downregulated metabolite T-2 triol. These findings collectively

suggest that during the early-stages of lung cancer development,

microbial activity may influence the metabolism of cholecalciferol

via the vitamin digestion and absorption signalling pathway, which

is intricately linked to tumour formation. As indicated by the results

of the above-mentioned metabolic analysis, the presence of plant or

fungal metabolites was indicated. Consequently, a comprehensive

review of the entire study was conducted. Firstly, we performed

alveolar lavage in strict accordance with aseptic procedures; we also

examined the results of serum G and GM tests in both groups of

patients, and the results were negative; we did not observe any fungi

or hyphae in either group. Secondly, our study subjects were not

treated with any specific drugs prior to surgical treatment; however,

in the metabolite study we identified plant or fungal metabolites.

We propose that the presence of these metabolites may be due to the

following reasons: 1) Alternariol and T-2 triol are common

mycotoxins in soil and air, which can be directly inhaled through

respiration and deposited in the lungs. According to

epidemiological studies, these toxins are found in high

concentrations in the air in humid climates or agricultural regions

(Sichuan is a humid agricultural province) (Täubel et al., 2011).

Oxymatrine, the main alkaloid of the plant Sophora flavescens, can

be retained in the pulmonary circulation by inhalation of dust

containing Sophora flavescens (e.g. during the processing of

traditional herbal medicines) or by ingestion (Pierce et al., 2020).

Residues in the pulmonary circulation may occur after inhalation or

ingestion. 2)Metabolite cross-reactivity: Some bacterial secondary

metabolites may show structural similarities to fungal toxins in

mass spectrometry assays, potentially leading to cross-recognition

(Wakefield et al., 2017; Keller, 2019).

It is important to note that our study is not without limitations.

Firstly, the total sample size is relatively small, and the study

population is mainly composed of adenocarcinoma cases, which

limits the generalizability of our findings to other early-stage lung

cancers with different pathological types. Secondly, it is essential to

consider the impact of smoking, living environment and dietary

habits on microbial and metabolic profiles. It is therefore necessary

to acknowledge that our findings may not be applicable to

populations with different dietary environments and geographic

locations. Furthermore, the observed findings were not validated in
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animal tests, which would have enabled a more comprehensive

evaluation of the functions of the observed differential microbes

and metabolites.
5 Conclusion

In conclusion, the results of this study suggest that patients with

early-stage lung cancer have unique lung microbiota and significant

differential metabolites. Furthermore, the multi-omics study

revealed that certain lung microbiota in lung cancer patients may

be associated with reduced Cholecalciferol, T-2 Triol. It is possible

that early-stage lung cancer affects the structure and abundance of

lung microbiota, thereby interfering with the metabolic homeostasis

of the host. Lung microbiota and metabolites may therefore

represent an entry point for the prediction and even treatment of

early-stage lung cancer. However, further animal experiments are

required to verify the possible targets identified in this study, which

will provide a stronger theoretical basis for the prediction of early

NSCLC with SPN as the manifestation.
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