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Multi-omics assessment of
gut microbiota in circadian
rhythm disorders: a cross-
sectional clinical study
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Wei Meng, Zongyuan Tang, Yi Cai, Zhifeng Xiao, Ailin Yi,
Minjia Chen, Xuefei Zhao*, Guangcong Ruan* and Yanling Wei*

Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping
Hospital, Army Medical University (Third Military Medical University), Chongqing, China
Background: The interaction between the host and microbiota is influenced by

host circadian rhythm. However, it is unknown what the changes of gut

microbiota and metabolites.

Methods: We conducted a cross-sectional study (n=72) in which participants’

fecal DNA was detected by macrogenomic sequencing analysis. The feces, urine

and blood were analyzed by widely targeted metabolomics analysis.

Results: Pearson correlation analysis showed that most of the clinical symptoms of

people with circadian rhythm disorders were moderately positively correlated with

gastrointestinal symptoms. By distilling the results of multinomic analysis, we

reported a variety of different species (19 species in the gut) and metabolites. In

our results, the correlation of multiomics is mostly concentrated in Lachnospiraceae

bacterium and Streptococcus mitis oralis pneumoniae. Bile acid-related metabolites

are the most significant metabolites associated with these species.

Discussion: Our study demonstrates the severity of clinical manifestations

caused by circadian rhythm disorder is closely related to microbiota and

metabolism. In the future, personalized interventions targeting specific

microbial species or metabolites may help alleviate the physical and

psychological discomfort induced by circadian rhythm disturbances.
KEYWORDS

gut microbiota, circadian rhythm disorder, metabolites, cross-sectional study,
multiomics analysis
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1 Introduction

Circadian rhythms are 24-hour patterns regulating behavior,

organs, and cells in living organisms. These rhythms align biological

functions with regular and predictable environmental patterns to

optimize function and health. Disruption of the circadian rhythm

will lead to rhythm disorders, which may be harmful to our bodies

(Meyer et al., 2022). As a result of disrupted circadian rhythms, people

working night shifts inevitably lead to fatigue and sleep disturbances,

that increase the risk of harmful health outcomes such as

gastrointestinal disorders, cardiovascular diseases, mental disorders

(depression or anxiety), injuries, and musculoskeletal pain (Neves

et al., 2022).

Recent observations of interactions between gut microbiota and

host circadian rhythm raise an intriguing hypothesis that many of

adverse effects of clock disruption may be due to, in part, to the

impact of an altered diversity and/or composition of gut microbiota

(Kramer et al., 2022; Zhang et al., 2023b). Together, gut microbiome

is one of the key factors that is involved in maintaining host

circadian rhythms. Persistent jet lag, an obesogenic diet, and

clock gene deficiency can affect the composition and metabolism

of gut microbiota. Gut microbiota dysbiosis reduces the production

of metabolites, including short-chain fatty acids and bile acids. Gut

microbial metabolites, such as short-chain fatty acids (Zhang et al.,

2023a), can not only affect intestinal barrier function, inflammation,

oxidative stress, and colonic carcinogenesis (Liu et al., 2021b) but

also affect clock gene expression and decouple the peripheral clock

from the master clock, thus changing the amplitude of circadian

genes (Fawad et al., 2022). Some reports on mice have shown that

disorders of clock genes in mice could lead to the aggravation of

DSS-induced enteritis (Hiramoto et al., 2018; Liu et al., 2021a). The

damage and inflammation of the intestinal barrier can also lead to

damage to cognitive function in mice (Meng et al., 2022). On the

other hand, the disorder of gut microbiota caused by circadian

rhythm disorder can disrupt the host’s metabolism, energy

homeostasis, and inflammatory pathways, leading to metabolic

syndrome, inflammation, and cancer (Bishehsari et al., 2020; Razi

Soofiyani et al., 2021; Fang et al., 2023; Yang et al., 2023).

The complex interplay between circadian rhythm disorders and

gut microbiota has received significant attention in recent years. A

growing body of research has demonstrated that gut microbiota,

along with other interventions such as diet, can modulate the host’s

circadian rhythm (Zheng et al., 2020; Gutierrez Lopez et al., 2021)

and influence daytime cognitive and metabolic functions (Li et al.,

2018; Codoñer-Franch et al., 2023). However, current studies have

primarily focused on single-omics analyses, lacking a systematic

exploration of the multidimensional relationships among gut

microbiota, metabolites, and host health status. Therefore,

integrated multi-omics analysis offers substantial advantages for

in-depth investigation of the intricate interactions between

circadian rhythm disorders, its related health outcomes, and gut

microbiota. Furthermore, this multidimensional approach is

expected to provide a more comprehensive understanding of how

gut microbiota responds to and influences the host’s circadian clock.

In this cross-sectional study, we aim to explore the relationships
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between health status, gut microbiota composition, and metabolic

profiles in individuals with circadian rhythm disorders, thereby

laying the groundwork for future in-depth research.

Our results showed that participants with circadian rhythm

disorders had poorer sleep quality, fatigue, anxiety, and depression

and more obvious gastrointestinal symptoms than the healthy

participants. There were differences in the composition of gut

microbiota between participants with circadian rhythm disorders

and healthy controls, in metabolites in blood, feces, and urine. The

correlation analysis of metagenomics, metabolomics, and

questionnaire survey results showed that the composition of

gut microbiota and the destruction of metabolic balance were closely

related to the clinical symptoms caused by circadian rhythm disorders.
2 Materials and methods

2.1 Subject participation

Thirty-six circadian rhythm disorders (CRD) and 36 healthy

controls (Figure 1) from the Army Medical Center of PLA between

January 2022 and December 2022 were recruited. All participants

provided written informed consent before participation.
2.2 Data collection

The primary outcome was the change in gut microbiota in fecal

samples. The secondary outcomes included the changes in metabolites

of gut microbiota in fecal samples; the changes in plasma metabolites;

the changes in urine metabolites; Circadian Type Inventory (CTI);

Gastrointestinal Symptom Rating Scale (GSRS); Epworth Sleeping

Scale (ESS); Fatigue Scale-14 (FS-14); Maslach Burnout Inventory-

General Survey (MBI-GS); Athens Insomnia Scale (AIS); and

Depression Anxiety Stress Scales-21 (DASS-21).

Notably, circadian rhythm disorders are harmful. Here, we

collected the sleep status, mental status, and gastrointestinal

symptoms of CRD. Lack of sleep and circadian rhythm disorder will

lead to poor mental state and metabolism (Chaput et al., 2022). The

homeostatic drive for sleep and rhythm of sleepiness often lead to

body fatigue, which greatly affects people’s work and life (Caldwell

et al., 2019). At the same time, there is also a certain link between sleep

status and depression, and it seems that circadian rhythm disorder also

plays an important role in it (Pandi-Perumal et al., 2020). The simple

assessment of gastrointestinal symptoms is evidence used to explore

the changes in body state caused by circadian rhythm disorder.

All participants were selected to collect questionnaire information,

fecal samples, and fasting blood and urine samples. The time point

was collected after the night shift work of the circadian rhythm group,

and the healthy controls were collected in the morning of the normal

working day. Participants reported their CTI for nearly a month. The

CTI includes two subscales, of which the Flexibility/Rigidity scale (FR)

has five items. The higher the score, the stronger the flexibility of the

rhythm. Languid/vigorous (LV) has six items, and the higher the

score, the more serious the fatigue of the human body. The GSRS was
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measured to comprehensively assess common gastrointestinal

symptoms for nearly a week. The higher the score, the more serious

the gastrointestinal symptoms. ESS is a widely used tool validated to

measure sleepiness. The higher the score, the more serious the

sleepiness symptoms. FS-14 was used to evaluate the severity of

fatigue. The higher the score, the heavier the fatigue symptoms. The

AIS is a self-assessment psychometric instrument designed for

quantifying sleep difficulty based on the International Classification

of Diseases-10 criteria. The higher the score, the more serious the

insomnia. The MBI-GS is a scale widely used in the general

occupation to measure job burnout. After scoring more than 50

points, the higher the score, the less positive the work attitude. The

DASS-21 can validly be used to measure the dimensions of depression,

anxiety, and stress. The higher the score, the worse the mental state.
2.3 Sample collection and assessment

Fresh fecal samples were collected from participants on the day of

the visit, and approximately 30-50 g was sampled in a sterile

container and stored at -80°C immediately. Blood and urine

samples were collected from the same participants at the same visit.

Blood samples were collected to stand at room temperature for 1 h to
Frontiers in Cellular and Infection Microbiology 03
ensure complete clotting. Plasma was obtained by centrifugation at

3,000 rpm for 15 min at 4°C and stored at −80°C for metabolomics.

Frozen fecal samples were delivered to the BGI-Wuhan

Sequencing Service Center for microbial metagenomic library

construction and sequencing. Briefly, microbial DNA was

extracted from the fecal samples using the MagPure Stool DNA

KF kit B (Magen, China), and the metagenomic libraries were

prepared using the MGIEasy Fast FS DNA Library Prep Set (MGI,

China) according to the manufacturer’s protocols. PE150

sequencing was performed using the MGI DEBSEQ2000 platform.

Fecal, plasma, and urine samples saved for metabolite

analyses were delivered to METWARE BIO (Wuhan, China) for

‘TM’ widely targeted metabolomics analysis as previously described

(Chen et al., 2013).
2.4 Metagenomic sequencing analysis

The PE150 reads from MGI DEBSEQ2000 were obtained and

processed using our in-house pipeline consisting of the following

tools: fastp v0.20 (Chen et al., 2018) was used to trim the sequencing

and PCR adapters and filter short sequences (<50 bp), followed by

kneaddata v0.7.4 (McIver et al., 2018) to trim the low-quality reads (a
Eligible participants

n=72

Data collection:

Case Report Form

n=72

Metabolomics analysis Metabolomics analysis

Independent sample t-test

Pearson correlation analysis

Statistical analysis:
Wilcoxon rank-sum test (two-sided)

Pearson correlation test

Benjamini‒Hochberg method

Sample collection

plasma

n=72

urine

n=72

feces

n=71a

Metabolomics analysis

Metagenomic library construction

and sequencing

FIGURE 1

Consort. The case report form (CRF) contains: Basic information of participants; Circadian Type Inventory (CTI); Gastrointestinal Symptom Rating
Scale (GSRS); Epworth Sleeping Scale (ESS); Fatigue Scale-14 (FS-14); Maslach Burnout Inventory-General Survey (MBI-GS); Athens Insomnia Scale
(AIS); and Depression Anxiety Stress Scales-21 (DASS-21). aone stool sample was not collected on time.
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sliding window of 4 and average quality score of 20 was used) and

decontaminate against the hg19 human genome; (Franzosa et al.,

2018) the HMP Unified Metabolic Analysis Network 2.0 (HUMAnN

2.0) was used to generate taxonomy profiles and functional profiles.

Alpha diversities based on the taxonomy profile were obtained in the

form of metagenomic species count and Shannon index using vegan

v2.6.4. Beta diversities of taxonomy or functional profiles were

obtained using the Bray−Curtis distance, and PCoA was performed

using the cmdscale function in vegan v2.6.4.
2.5 Metabolomics analysis

Relative concentrations in the form of peak areas from a rich set

of metabolites can be obtained from the TM-targeted metabolomics

analysis. The obtained metabolites were first filtered to remove any

entry with >15% relative standard deviation (RSD, standard

deviation/mean) among the 8 QC samples since these metabolites

cannot be reliably measured. Missing values were then imputed

with ½ of minimal peak area for each metabolite across all samples.

Finally, each metabolite was normalized by the total peak areas of all

metabolites in the respective samples, followed by log10

transformation and Pareto scaling. The processed metabolite

measurements were fed into downstream analyses.
2.6 Quantification and statistical analysis

For analysis by Characteristics of patients, the independent

sample t-test was used for comparison between two groups, and

Pearson correlation analysis was used for correlation analysis. The

Shapiro-Wilk test was used to evaluate whether the continuous data

conformed to a normal distribution. The differential abundance of

species, MetaCyc pathways and metabolites between the two groups

was tested by theWilcoxon rank-sum test (two-sided) via the R build-

in function Wilcoxon test. Correlations between continuous variables,

including species abundance, metabolite abundance and clinical

characteristics, were analyzed by using the Pearson correlation test.

All analyses and results visualization were performed in R V4.3.1 with

R packages. For the independent sample t-test, the mean differences

between groups were reported with 95% confidence intervals (95%

CI). For the Pearson correlation test, the correlation coefficients (r)

were reported with 95% confidence intervals (95% CI). The p-values

of multiple testing was corrected as the false discovery rate (FDR) with

the Benjamini-Hochberg method and a p-value or FDR-corrected p-

value <0.05 was considered statistically significant.
3 Results

3.1 Circadian rhythm disorders were linked
to heightened fatigue, insomnia, and
gastroenterology symptoms

After organizing the scales and data collected in the cross-

sectional study, we found considerable differences between the two
Frontiers in Cellular and Infection Microbiology 04
groups. The 72 volunteers we selected were divided into two groups

(Figure 1). The p-values of age (p=0.173, 95%CI:−4.62 to 0.85) and

body mass index (BMI, p=0.590, 95%CI:−1.08 to 1.88) of the two

groups were greater than 0.05 (Table 1), indicating that age and

BMI did not affect the differences between the two groups. For other

questionnaire data (GSRS/ESS, etc.) collected, we calculated the p-

value by t-test and found that there was a difference (FR was not

included) between the two groups.

The results of the clinical data demonstrated differences

between the two groups showing that the ability of participants

with circadian rhythm disorders to overcome drowsiness (ESS) is

challenging. They are also more prone to fatigue and insomnia, and

their mental and work status are also worse (The mean[SD] value of

CRD was higher than that of healthy control group). In addition,

the overall score of gastrointestinal symptoms (Mean[SD], 31.5

[9.85]) of participants with circadian rhythm disorder is higher, and

the symptoms are more serious. Inspired by the significant change

in clinical data, we investigated the correlation between GSRS and

other scales. Pearson correlation analysis (Table 2) showed that

there was a linear relationship between some scales (FR, ESS and

physical fatigue was excluded) and GSRS in participants with

circadian rhythm disorders. There was a moderate positive

correlation with GSRS (r>0.300, p<0.05), including fatigue,

insomnia, mental state, and other data. Significantly, the

probability value of ESS (p=0.011, 95%CI:−3.77 to −0.50) in

Table 1 was higher than AIS score (p<0.001, 95%CI:−5.98 to −2.91).

To explore the relationship between the disordered circadian

rhythm and gut microbiota, we collected stool, plasma, and urine

samples to further analyze the changes in intestinal microorganisms

and the metabolome.
3.2 Microbiome alterations between
participants with circadian rhythm
disorders and healthy controls

We collected a total of 72 blood samples, 72 urine samples, and 71

fecal samples from 36 non-shift workers and 36 day and night shift

workers (one stool sample was not collected on time). To analyze the

gut microbiota of participants with circadian rhythm disorder, we

performed metagenomics detection on all collected fecal samples. The

Simpson index (Figure 2A) showed that there were differences in the

diversity of microbiota between the two groups. The principal

coordinate analysis (PCoA) diagram (Figure 2B) shows that the

icons of participants with circadian rhythm disorder and the healthy

control group are clustered together, which indicates that fecal

metagenomic data may be weak in distinguishing whether the

circadian rhythm is disordered. In agreement with the findings

regarding overall microbiota composition, we found differential

abundance (Figure 2C) of dominant phylum in the fecal microbiota

between CRD and healthy control samples. Some phyla decreased in

CRD, including Bacteroidetes,Actinobacteria,Verrucomicrobia, and so

on. The change of Bacteroidetes was the most obvious. Among the

increased phyla (Firmicutes, Fusobacteria, Euryarchaeota, etc)

Firmicutes showed the greatest change. The changes of Bacteroidetes
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and Firmicutes together constitute the most pronounced difference in

participants with circadian rhythm disorder.

By analyzing the gut metagenomic profiles of 71 samples from

the discovery cohort, we identified 19 differentially abundant gut
Frontiers in Cellular and Infection Microbiology 05
microbiota genera (Figure 2D), of which 12 were elevated in the

CRD relative to the healthy controls, including Bacteroides

cellulosilyticus, Eubacterium siraeum, Eubacterium eligens,

Roseburia inulinivorans, Prevotella stercorea, Bacteroides

massiliensis, Lachnospiraceae bacterium(L. bacterium) 1 1 57FAA,

etc. These genera could be specific for the CRD microbiota. In

comparison, only seven species were enriched in the healthy group,

including two species from the genus L. bacterium, Streptococcus

mitis oralis pneumoniae, Clostridium ramosum, and others. The

enrichment of L. bacterium 9 1 43BFAA in the healthy group was

the most significant, followed by L. bacterium 1 4 56FAA.

We collected 12 questionnaire factors from 72 volunteers for

correlation analysis with their different gut microbiota. The results

showed that among the questionnaire factors, 12 questionnaires had

37 associations with 19 different gut microbiota (Figure 2E). There

were 15 kinds of negative correlations and 22 kinds of positive

correlations. Simply categorizing these scales, the 6 questionnaire

items about fatigue (CTI/MBI-GS/FS-14) contain a total of 14

negative correlations and 12 positive correlations. The two

questionnaire items about sleep (AIS/ESS) contained 0 negative

correlations and 6 positive correlations. The three questionnaire

items related to emotion (DASS) contained 0 negative correlations

and 4 positive correlations. One questionnaire item (GSRS) about

the gastrointestinal tract contained 0 negative correlations and 1

positive correlation. Through simple classification, we can observe

that there are both positive and negative correlations in the

questionnaire data related to microbiota and fatigue. In other

data (sleep/mood/intestinal tract), the difference correlation

showed a positive correlation. The impact of gut microbiota on
TABLE 2 Pearson correlations between GSRS and other clinical data in
circadian rhythm disorders.

Pearson correlation
(r)

p-value

CTI FR 0.223 0.192

LV 0.342 0.041a

total 0.343 0.041a

ESS 0.243 0.153

FS-14 Physical
fatigue

0.294 0.082

Mental
fatigue

0.491 0.002a

total 0.416 0.012a

AIS 0.436 0.008a

MBI-GS 0.586 <0.001a

DASS-21 Depression 0.548 0.001a

Anxiety 0.513 0.001a

Stress 0.631 <0.001a
Pearson correlation(r) coefficients are reported.
aSignificant p-value (p<0.05).
TABLE 1 Characteristics of participants in circadian rhythm disorders and healthy controls.

Healthy controls CRD p-value

Age (y) 27.11 (6.61) 29.00 (4.88) 0.173

BMI (Kg/m2) 22.37 (2.18) 21.97 (3.85) 0.590

CTI FR 14.22 (4.45) 15.81 (3.77) 0.108

LV 21.17 (3.50) 23.61 (3.37) 0.004a

total 35.39 (5.69) 39.31 (5.93) 0.006a

GSRS 22.33 (7.16) 31.50 (9.85) <0.001a

ESS 7.58 (3.20) 9.72 (3.73) 0.011a

FS-14 Physical fatigue 4.17 (2.10) 5.69 (1.97) 0.002a

Mental fatigue 1.17 (1.25) 3.31 (1.56) <0.001a

total 5.33 (3.00) 9.00 (3.23) <0.001a

AIS 3.58 (2.78) 8.03 (3.68) <0.001a

MBI-GS 36.90 (16.11) 50.17 (17.13) 0.001a

DASS-21 Depression 2.03 (2.35) 4.03 (3.72) 0.008a

Anxiety 2.11 (2.23) 4.22 (3.19) 0.002a

Stress 3.06 (2.99) 5.42 (3.43) 0.003a
The values in Table indicates average value (SD) for continuous variables. Using the t-test, p-values were calculated to assess differences between circadian rhythm disorders (CRD) and healthy
controls. Body fat mass index is calculated as body fat (kg)/height (m2). Flexibility/Rigidity scale (FR), Languid/vigorous (LV).
aSignificant p-value (p<0.05).
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FIGURE 2

Gut microbiota alterations between CRD and healthy controls. (A) a-diversity expressed as species diversity for CRD and healthy controls. (B) Principal
coordinates analysis based on unweighted UniFrac showing the distribution along principal component (PCo) 1 and 2 of CRD and healthy controls
samples. The numbers next to the axis indicate the amount of compositional variation explained by each PCo. (C) Differentially abundant gut microbiota
species at the phylum level. Figure C shows the overall differential distribution on the left and the individual differential distribution of gut microbiota on
the right. (D) The relative abundance of 19 dominant genera in the gut microbiota between CRD and healthy controls. (E) The heatmap shows the
associations between 19 differentially abundant species and 13 kinds of questionnaire survey results. (F) The X-axis represents the relative abundance of
MetaCyc pathway, while the Y-axis displays differential metabolic pathways in participants with circadian rhythm disorders. Circadian rhythm disorders
(CRD) and healthy controls (HC).
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fatigue-related questionnaire data is balanced, but the impact on

sleep, emotion and other issues is biased.

We found that if the microbiota is the main body of the heatmap,

the characteristics of correlation aggregation are obvious.

Eubacterium Eligens, Bacteroides Eggerthii, Bacteroides Massiliensis

and other species (these species are enriched in participants with

circadian rhythm disorders.) are positively correlated with our clinical

data, L. bacterium 9 1 43BFAA, Streptococcus Mitis oralis pneumoniae

and other bacteria (these species are enriched in healthy controls.)

showed a negative correlation with clinical data. The abundance of

Bacteroides eggerthii species was higher in shift workers. Participants

with circadian rhythm disorder are more tired and have a poorer

ability to overcome sleepiness, which is also related to the enrichment

of Bacteroides eggerthii. Streptococcus mitis oralis pneumoniae and

Eubacterium eligens are positively related to people’s fatigue and

whether they can overcome sleepiness. Bacteroides Massiliensis is

positively correlated with gastrointestinal symptoms, depression,

insomnia, fatigue, and other symptoms, among which the

correlation with the degree of insomnia is the strongest.

To understand the functional consequences of the microbial

changes in shift workers, we depicted pathways in all metagenomes

(Figure 2F). There were 19 different metabolic pathways in the two

groups. Among the differential metabolic pathways, 18 were

significantly increased in shift workers. Phenylacetate degradation

I (aerobic) represented the most significantly enhanced functional

pathway in shift workers. Allantoin degradation (anaerobic),

creatinine degradation, pyruvate fermentation to butanoate,

superpathway of Clostridium acetobutylicum acidogenic

fermentation, etc. presenting in participants with circadian

rhythm disorder, showed enhancement. In the healthy

population, the C4 photosynthetic carbon assimilation cycle

showed enhancement. Indicating great differences in metabolic

pathways between the two groups, which possibly explains the

difference in metabolites between the two groups to some extent. In

our research findings, multiple key metabolites and bacteria

associated with the allantoin degradation IV (anaerobic) pathway

showed simultaneous enrichment. Eubacterium eligens associated

with this pathway can degrade and recover allantoin in an anaerobic

manner, which is an important way to ensure the metabolic balance

of the human body. Host intestinal microorganisms can also

ferment pyruvate to produce and acetyl coenzyme A (Bogorad

et al., 2013). Butyric acid can be formed by condensation of two

acetyl coenzymes A and subsequent reduction to butyryl coenzyme

A. The activation of the pyruvate fermentation to butyrate pathway

suggests that butyrate production is functionally active.
3.3 Metabolome alterations between the
circadian rhythm disorder population and
healthy controls

Metabolomics testing was performed on all plasma, urine, and

fecal samples. Through PLS-DA (Figures 3A–C), we found

considerable differences in metabolomics between participants

with circadian rhythm disorders and healthy controls. A total of
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1759 metabolites were captured in plasma, 2943 in feces, and 3036

in urine. Through Volcano Plot of DEMs (Figures 3D–F), we found

that 58 kinds of plasma metabolites (fdr<0.05 vip>=1, fc>2 | fc<1/2)

had significant changes in participants with circadian rhythm

disorder; there were 38 changes in fecal metabolites and 29

changes in urine metabolites. The most significant difference was

in blood metabolomics. The following detailed analysis is mainly

based on plasma metabonomics.

There was a total of 58 plasma differentially abundant

metabolites between the two groups (Figure 3G), of which 2 were

enriched in the CRD and 56 were enriched in the healthy controls.

Many differentially abundant metabolites were concentrated in

healthy controls, and bile acid-related metabolites were the most

abundant. For example, 7-ketodeoxycholic acid, glycine

deoxycholic acid, glycohyodeoxycholic acid, etc. In addition to

some differentially abundant metabolites caused by environmental

and dietary factors, there are also some fatty acid-related

metabolites, such as 2-furoylglycine and N-isovaleroylglycine.

Metabolites with signal functions, such as N-docosahexaenoyl

phenylalanine can be synthesized both endogenously and by gut

microbiota. These metabolites have a variety of signaling functions

in physiology, including cardiovascular activity, metabolic

homeostasis, memory, cognition, pain, and motor control. There

are only two kinds of differentially abundant metabolites enriched

in participants with circadian rhythm disorders: free fatty acids

(FFAs) and human exposure.

We screened 38 different metabolites (Supplementary Figure 1A)

in fecal samples from the two groups, 24 of which were enriched in

participants with circadian rhythm disorders. Benzene and

substituted derivatives, as well as organic acid and its derivatives,

are the main metabolites enriched in participants with circadian

rhythm disorders. Most of them are metabolites of food and drug

contact, as well as some metabolites that may come from

environmental and occupational contact. Tetrahydrocurcumin was

enriched in the normal population. The Human Metabolome

Database (HMDB) showed that it was the product of CUR

oxidation by gut microbiota.

There were fewer urine samples observed in differentially

abundant metabolites than in the other two metabolites. A total of

29 differentially abundant metabolites in urine (Supplementary

Figure 1B) were screened out. Few amounts of small peptides

without obvious biological significance, as well as some

lysophospholipids, hormones and hormone-related compounds,

heterocyclic compounds, etc, were observed. Lysophospholipids were

significantly increased in the urine of healthy controls, including

lysophosphatidylcholine and lysophosphatidylethanolamine.
3.4 Associations between plasma
metabolites, questionnaire factors and
gut microbiota

Based on the above, we learned that there were differences in the

gut microbiota and large differences in metabolites in feces, plasma,

and urine between participants with circadian rhythm disorders
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FIGURE 3

Differentially abundant metabolites. (A-C) PLS-DA score plots based on metabolomic profiles of 32 shift workers and 32 healthy controls form the
discovery cohort in both positive and negative ion modes. The stool samples were 31 participants with circadian rhythm disorder and 32 controls.
(D-F) The differential metabolites were screened according to the model obtained in (A-C). Volcano plots depicting the changes in representation
for the 1759 plasma metabolites identified in our shift worker and healthy controls individuals. There are 2943 fecal differential metabolites and 3036
urine differential metabolites. (G) Heat map of the 58 significantly different metabolites (plasma) across CRD and healthy controls. Most of the
plasma differential metabolites were enriched in the healthy controls.
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and healthy participants. However, these differences result in joint

action of multiple factors, not only of the gut microbiota. This study

explored whether the physical and mental health of participants

with circadian rhythm disorders is related to gut microbiota and

metabolites. Therefore, we included the collected questionnaire

factors in the association analysis.

Our use of multiomics combined with the measured data

allowed us to identify the interacting relationship between

differentially expressed microorganisms and metabolic

characteristics in participants with circadian rhythm disorders. In

the following, the correlation data of species, metabolites and

clinical data showed moderate correlation (|r|>0.3, p<0.05). We

mainly focus on the data related among the three groups.

There were 34 significant correlations between 21 blood

metabolites and 8 fecal microorganisms (Figure 4, Left half of

figure). Most of the correlations focused on L. bacterium. Both

Lachnospiraceae bacteria (L. bacterium 1 4 56FAA and L. bacterium

9 1 43BFAA) which showed 21 associations with 16 blood

differentially abundant metabolites. Most of these correlations are

positive, which means that the gut microbiota and metabolism are

in a state of common promotion. A large class of metabolites related

to bacteria such as L. bacterium and Clostridium ramosum are bile

acid-related metabolites. Bile acid-related metabolites such as

glycohyodeoxycholic acid and glycocholic acid can reflect human

liver function (Evangelakos et al., 2021) to some extent. Other gut

microbiota, such as Clostridium ramosum and Streptococcus mitis

oralis pneumoniae, also accounted for a large proportion of the

bacteria collected in the correlation analysis.
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Then, we analyzed the association of clinical questionnaire

factors with plasma differentially abundant metabolites.

Correlation analysis showed that the changes in plasma

differentially abundant metabolites in the participants with

circadian rhythm disorder had a certain correlation with the

questionnaire factors.

At present, there are 51 associations between 21 different blood

metabolites and 11 questionnaire factors in participants with

dysrhythmia (Figure 4, Right half of figure). Bile acid-related

metabolites(Glycochenodeoxycholic Acid, Isochodeoxycholic acid,

Glycoursodeoxycholic acid 3-sulfate) were negative correlation with

five questionnaire factors. In the correlation between plasma

metabolites and species, there was also a positive correlation

between bile acid-related metabolites and L. bacterium. They are

a large group of blood differentially abundant metabolites. Perhaps

for this phenomenon, we can understand that the clinical symptoms

of circadian rhythm disorder and metabolic disorders are associated

with L. bacterium. Docosatrienoic acid, belongs to the class of

organic compounds known as very long-chain fatty acids. It is

negatively correlated with three questionnaire factors and positively

correlated with multiple gut microbiota (including L. bacterium 9 1

43BFAA). Perhaps the increase in these two L. bacterium can

alleviate the symptoms caused by rhythm disorder.

In the correlation analysis between fecal differentially abundant

metabolites and questionnaire factors (Supplementary Figure 2A),

we also noticed that tetrahydro curcumin was negatively correlated

with two questionnaire factors and positively correlated with two

kinds of L. bacterium (9 1 43BFAA and 1 4 56FAA). A small
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Mediation linkages among species, plasma metabolites, and questionnaire factors. The Sankey plot indicates the mediation relationships among
differentially abundant species, plasma metabolites, and questionnaire factors. The ribbons were colored according to the correlation between
various factors, with red indicates positive correlation and blue indicates negative correlation. aIBCI, isobutylbacteriochlorophyllide.
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amount of correlation analysis data (Supplementary Figure 2B) of

urine was not described here.

In general, most of our species and metabolites were positively

correlated, while most of the differentially abundant metabolites

were negatively correlated with clinical data. It’s possible that some

changes in metabolites corresponding to different gut microbiota

can affect human clinical manifestations. In our correlation analysis,

two kinds of L. bacterium were associated with a variety of different

metabolites and questionnaire factors.
4 Discussion

This study reported an integrated analysis of the microbiome and

fecal/plasma/urine metabolome of shift workers. We observed that

the gut microbiota and various metabolomics of participants with

circadian rhythm disorder had certain changes compared with

healthy controls. Metabolomics testing showed that changes in

plasma metabolomics were more pronounced than changes in fecal

and urinary metabolomics. Although we did not observe how

significant changes exist in the gut microbiota composition of

participants with circadian rhythm disorders, we still screened 19

different species with different colonization conditions and 19

metabolic pathways related to these different species. Furthermore,

our correlation analysis results showed that some species and

metabolites were also closely related to the degree of clinical

symptoms in participants with circadian rhythm disorders. These

significant species and metabolites may be able to intervene and

alleviate the damage caused by circadian rhythm.

Fecal metagene data showed differences in multiple metabolic

pathways. Among these differential metabolic pathways, the

phenylacetate degradation pathway widely exists in the field of

bacteria (Jiao et al., 2022). Changes in the phenylacetate degradation

pathway are related to the tolerance of bacteria to antibiotics and

hydrogen peroxide stimulation (Hooppaw et al., 2022). In Escherichia

coli and several Pseudomonas species, this metabolic pathway includes

both aerobic and anaerobic pathways (Jiao et al., 2022; Hernández-

Rocamora et al., 2024). In the aerobic pathway, the accumulation of

early products (ring-1,2-epoxide and its phenolic breakdown product

2-hydroxyphenylacetate) of phenylacetic acid degradation may have

toxic effects on the host (Jiao et al., 2022). In a variety of infectious

diseases caused byAcinetobacter baumannii, disrupting the catabolism

of PAA will interfere with its adaptability, leading to the reduction of

its resistance to antibiotics and hydrogen peroxide (Hooppaw et al.,

2022). The activity of aerobic pathways in our research results reveals

an increased likelihood of disease in individuals with circadian rhythm

disorders due to microbial metabolites.

Allantoin degradation IV (anaerobic) is a functional pathway.

Some organisms, including Escherichia coli K12 and Delftia

acidovorans (Caspi et al., 2018), can utilize allantoin as a nitrogen

source under anaerobic conditions. It is well known that allantoin is

the product of uric acid oxidation after purine metabolism (Keenan,

2020), and maintaining the steady state of purine metabolism is

very important for the human body (Furuhashi, 2020; He et al.,

2022). However, we only observed an increase in the catabolic
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pathway of allantoin, a product of uric acid oxidative stress, that’s

not directly related to the process of purine metabolism. Pyruvate

fermentation to butanoate is a subpathway of the superpathway of

Clostridium acetobutylicum acidogenic fermentation. Butyrate is a

very popular microbial metabolite in various studies. It can help

maintain the health of intestinal cells, reduce the occurrence of

diseases, and has important research value in antitumor (Che et al.,

2023; Zhu et al., 2023), metabolic homeostasis (Li et al., 2023), anti-

inflammatory (Wang et al., 2022), and other aspects. Although we

observed the activity of the butyric acid pathway here, we did not

observe changes in butyric acid-related metabolites.

The aforementioned functional metabolic pathways of

microbiota indicate that the observed aspects on gut microbiota

have influenced the metabolic regulation of participants with

circadian rhythm disorders. However, due to limited supporting

data on metabolomic, we only focused on gut microbiota

metabolism and indicated that the differential microbiota has a

certain function for participants with circadian rhythm.

Bile acid-related metabolites represent a major class of

metabolites that were significantly altered in participants with

circadian rhythm disorders. Compared with the normal

population, it is deficient in participants with circadian rhythm

disorders. Bile acid metabolism in the gut microbiota can be

associated with nonalcoholic fatty liver disease, irritable bowel

syndrome, colorectal cancer, neuroinflammation, and early aging

(Fogelson et al., 2023). Here, the gut microbiota of the host can

affect bile acids, which in turn can shape the composition of the

host-microbe (Collins et al., 2022). Reducing the level of bile acids

can reduce the absorption of lipids (Ding et al., 2021). We also

observed a decrease in fatty acid metabolites (2-furoylglycine) and

an increase in FFAs in the plasma metabolomics which results in

participants with circadian rhythm disorders. This can confirm the

role of bile acids in the regulation of lipid metabolism, and it also

indicates that the function of participants with circadian rhythm

disorder for fatty acid metabolism is weakened.

We know that shift work will affect people’s physical and mental

states, which has been confirmed in our scale data. Linking

metabolomic and microbiological data, we found that many species

and metabolites were associated with these clinical manifestations.

For example, in our correlation analysis, the interaction between L.

bacterium and bile acid-related metabolites and the negative

correlation between bile acid-related metabolites and human

fatigue and other score data. Perhaps we can think that the gut

microbiota and related metabolites of participants with circadian

rhythm disorder can affect the clinical manifestations. This may be

supported by some gut brain axis-related studies (Margolis et al.,

2021). Further research is needed on this matter. In the joint analysis

of metabolic microbiota diseases, the differentially abundant

metabolites and species were analyzed more deeply (Han et al., 2021).
4.1 Conclusion

In summary, our research shows that participants with circadian

rhythm disorder will have changes in gut microbiota. The activity of
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some functional metabolic pathways of microbiota (phenylacetic acid

degradation) may lead to the accumulation of harmful metabolites

and affect human health. The joint analysis of microbiota-metabolite-

clinical data showed that the gut differential microbiota promoted the

production of most of the plasma differentially abundant metabolites,

and the production of these metabolites was negatively correlated

with our clinical data. The association of gut microbiota metabolite

scale data suggests a new and potential way to intervene in circadian

rhythm disorder. It may be possible to regulate the physical and

mental discomfort caused by circadian rhythm disorder through the

intervention of personalized species or metabolites.

We acknowledge that our study has certain limitations, such as

the narrow occupational range of the participants; inability to make

causal inferences due to the cross-sectional study design. In this

study, we did not perform validation experiments for the observed

differential pathways, metabolites, or species. Our study integrates

multi-omics measurements, with the dataset encompassing detailed

participant clinical data, metagenomics, and metabolomics data.

We hope that these publicly available research findings and datasets

will facilitate future validation in broader populations and

contribute to mechanistic explorations.
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