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Introduction: Determining metabolic profiles during host-pathogen interactions

is crucial for developing novel diagnostic tests and exploring the mechanisms

underlying infectious diseases. However, the characteristics of the circulating

metabolites and their functions after Mycobacterium tuberculosis infection have

not been fully elucidated. Therefore, this study aimed to identify the differential

metabolites in tuberculosis (TB) patients and explore the diagnostic value of

these metabolites as potential biomarkers.

Methods: Seventy-two TB patients and 78 healthy controls (HCs) were recruited

as the training set, while 30 TB patients and 30 HCs were enrolled as the

independent validation set. Metabolites in plasma samples were analyzed by

high-resolutionmass spectrometry. Differential metabolites were screened using

principal component analysis and machine learning algorithms including LASSO,

Random Forest, and XGBoost. The diagnostic accuracy of the core differential

metabolites was evaluated. Pearson correlation analysis was performed.

Result: Themetabolic profiling of TB patients showed significant separation from

that of the HCs. In the training set, 282 metabolites were identified as

differentially expressed in TB patients, with 214 metabolites validated in the

independent validation cohort. KEGG pathway enrichment analysis showed

that the differential metabolites were mainly enriched in lipid metabolism.

Seven core differential metabolites were identified by the three machine

learning algorithms. Receiver operating characteristic analysis revealed that

Angiotensin IV had high accuracy in diagnosing TB.
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Conclusion: These newly identified plasma metabolites are expected to serve as

potentially valuable biomarkers for TB, potentially facilitating the diagnosis of the

disease and enhancing the understanding of its underlying mechanisms.
KEYWORDS

Tuberculosis, metabolite, UHPLC-HRMS, diagnosis, biomarker, machine learning
Introduction

Tuberculosis (TB) is an ancient and serious global infectious

disease caused by Mycobacterium tuberculosis (MTB). Despite

significant advancements in management and prevention

strategies, accurate disease diagnosis and progression monitoring

still face many challenges (World Health Organization, 2024),

which heavily block the global targets to reduce mortality from

active TB. Therefore, the development of novel diagnostic methods

is urgently needed.

The progression of TB can vary depending on the interplay

between the host and the bacterium. MTB infection triggers a series

of complex immune responses in the host (Ndong et al., 2022),

involving not only the activation and regulation of immune cells but

also alterations in the host’s metabolic state (Vrieling et al., 2018).

The interaction between the host cells and MTB affects various

metabolic pathways, including energy metabolism, lipid

metabolism, and amino acid metabolism (Rameshwaram et al.,

2018; Laval et al., 2021). These metabolic changes may exhibit

different characteristics in different stages of TB (such as the latent

and active period) and may vary due to individual genetic

backgrounds, nutritional statuses, and environmental factors

(Singh et al., 2009).

Currently, the diagnostic methods for TB mainly include

traditional bacteriological tests (such as smear microscopy and

sputum culture), immunological tests (such as tuberculin skin test

and gamma-interferon release assays), and recently widely used

molecular diagnostic techniques (such as GeneXpert) (Boloko et al.,

2022). However, bacteriological tests are limited in their capacity for

rapid clinical diagnosis due to low sensitivity and time-consuming

procedures. Immunological tests face challenges in distinguishing

between latent and active TB. Furthermore, current molecular

diagnostic techniques reliant on respiratory tract specimens

encounter challenges in widespread application for patients who

produce little or no sputum, such as children. Therefore, detecting

biomarkers in plasma represents a valuable supplementary method

for disease diagnosis (Captur et al., 2020; Chu et al., 2019).

As the ultimate downstream pool of genome transcription,

metabolites directly reflect the events occurring during the host-

pathogen interactions. In recent years, metabolomics has been

widely used in the study of both infectious diseases (Li et al.,

2022; Song et al., 2021; Zardini Buzatto et al., 2020) and non-

infectious diseases (Cheng et al., 2025; Valo et al., 2025). However,
02
studies on the potential metabolites associated with TB and their

underlying mechanisms in TB progression are relatively rare. The

application of ultra-high-performance liquid chromatography

coupled with high-resolution mass spectrometry (UHPLC-

HRMS) offers considerable advantages in exploring the metabolic

biosignatures of TB due to its high sensitivity, selectivity, and

excellent reproducibility in time retention (Hartling et al., 2021).

Therefore, we aimed to screen differential metabolites in TB

patients and analyze their potential as biomarkers for diagnosis.

Multivariate statistical analysis and machine learning algorithms

(Yao et al., 2024) were then performed to identify the core

metabolites with significant diagnostic value. Our findings

revealed the metabolic characteristics of TB and may provide

evidence for improving the diagnostic efficiency and accuracy of

the disease.
Materials and methods

Study participants

Patients with pulmonary TB aged 18-60 years were recruited

from the Infectious Diseases Hospital of Xinjiang Uygur

Autonomous Region from January to March 2024. They were

diagnosed according to the diagnostic guidelines of China (Sun

et al., 2023). Inclusion criteria: 1) patients with positive etiological

and pathological results; 2) patients with at least one TB-related

symptom or sign; 3) patients with radiographic evidence consistent

with TB; and 4) patients with positive results from tuberculin skin

test or gamma-interferon release assays. Exclusion criteria: 1)

patients with comorbidities such as diabetes mellitus,

autoimmune diseases, pulmonary tumors, or other pulmonary

infections; 2) patients who had received immunomodulatory

agents or anti-TB treatment. Concurrently, adult staff members

who underwent health examinations at the Children’s Hospital of

the Xinjiang Uygur Autonomous Region were recruited as healthy

controls (HCs). All healthy volunteers were confirmed to be free of

MTB infec t ion , lung diseases , immune defic ienc ies ,

or immunosuppression.

In total, 72 patients with active TB and 78 HCs were recruited as

the training set. The independent validation cohort included 30 TB

patients and 30 HCs. The demographic characteristics of these

participants are presented in Table 1. This study was approved by
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the Ethics Committee of the Children’s Hospital of Xinjiang Uygur

Autonomous Region (Approval No. KY2024083006) and all

methods were performed following the relevant guidelines and

regulations under the committee’s supervision.
Sample preparation

Whole blood was collected into EDTA tubes and centrifuged at

3000 g for 10 min to obtain the plasma. The plasma (100 mL) was
mixed with 400 mL of 80% methanol aqueous solution. The mixture

was incubated for 5 minutes on ice and then centrifugated at 15000

g at 4°C for 20 minutes. The supernatant was transferred to a new

centrifuge tube and diluted to achieve a methanol content of 53%.

After centrifugation again at 15000 g at 4°C for 20 minutes, the

supernatant was analyzed with UHPLC-HRMS.
UHPLC-HRMS

UHPLC-HRMS analyses were performed by Novogene Co.,

Ltd. (Beijing, China). A Vanquish UHPLC system (Thermo Fisher,

Dreieich, Germany) coupled with a Q Exactive™ HF mass

spectrometer (Thermo Fisher, Dreieich, Germany) was used.

Samples were injected into a Hypesil Goldcolumn (100×2.1 mm,

1.9 mm, Thermo Fisher, Dreieich, Germany) at a flow rate of 0.2

mL/min. The column temperature was set at 40°C. Elution gradient

was performed using a binary solvent system consisting of 0.1%

formic acid in water (solvent A) and methyl alcohol (solvent B). The

solvent gradient was set as follows: 2% B, 1.5 min; 2-85% B, 3 min;

85-100% B, 10 min;100-2% B, 10.1 min; 2% B, 12 min. The Q

Exactive™ HF mass spectrometer was operated in positive and

negative polarity modes, with the following parameters: scan range:

100-1500 m/z; spray voltage: 3.5 kV; sheath gas flow rate: 35 psi;

auxiliary gas flow rate: 10 L/min; capillary temperature: 320°C; S-

lens RF level: 60; auxiliary gas heater temperature: 350°C. Samples

were injected with a volume of 2 µl and analyzed with a total run

time of 12 min. Accurate mass spectra were acquired using data-

dependent scans in both polarity modes. A polarity switching was

used for electrospray ionization. The Q Exactive HF was calibrated

before every batch analysis and the quality control (QC) pooled

samples were used as in previous studies (Sun et al., 2023). The

positive and negative mass calibration was performed using
Frontiers in Cellular and Infection Microbiology 03
Thermo Scientific™ Pierce™ Negative Ion Calibration Solution

and Thermo Scientific™ Pierce™ LTQ ESI Positive Ion Calibration

Solution (Thermo Fisher, Dreieich, Germany), respectively.
Data processing

The raw data files generated by UHPLC-HRMS were processed

using Compound Discoverer 3.3 (CD3.3, ThermoFisher). The peak

alignment, peak picking, and quantitation for each metabolite were

analyzed. The main parameters were set as follows: the peak area

was corrected with the first quality control sample, with an actual

mass tolerance of 5 ppm, a signal intensity tolerance of 30%, and a

minimum intensity threshold. After that, peak intensities were

normalized to the total spectral intensity. The normalized data

was used to predict the molecular formula based on additive ions,

molecular ion peaks, and fragment ions. Peaks were then matched

with mzCloud (https://www.mzcloud.org/), mzVault, and the

MassList database to obtain accurate qualitative and relative

quantitative results. Data processing was performed using the

Linux system (CentOS version 6.6), statistical software R (R

version R-4.2.3), and Python (Python 2.7.6 version). These

metabolites were annotated using the KEGG database (https://

www.genome.jp/kegg/pathway.html), HMDB database (https://

hmdb.ca/metabolites), and LIPID MAPS database (http://

www.lipidmaps.org/).
Statistical analysis

Principal component analysis (PCA) was performed to evaluate

the data quality of lipid metabolites in terms of homogeneity and

reproducibility. Differential metabolites were defined as those having

a P-value threshold of < 0.05 and a fold change (FC) ≥ 2 or FC ≤ 0.5

and they were visualized using Volcano plots. KEGG PATHWAY

Database (http://www.genome.jp/kegg/) was used for metabolic

pathways analysis. Differential metabolites were further screened

using Least Absolute Shrinkage and Selection Operator (LASSO)

regression analyses, Random Forest, and XGBoost algorithms in R.

Pearson correlation was used for correlation analysis. Receiver

operating characteristic (ROC) curve analysis was performed to

evaluate the diagnostic performance of potential biomarkers. The

significance level was set at P < 0.05 for all tests.
TABLE 1 Demographic characteristics of the participants.

Characteristics
Training set (n=150) Independent testing set (n=60)

TB HC TB HC

Sample size 72 78 30 30

Gender(male/female) 37/35 9/69 14/16 6/24

Age(years)a 64.0(55.0,71.0) 34.0 (28.8,40.3) 63.5 (50.0,70.8) 39.0 (32.5,44.3)

Severity of TB (severe/non-severe) 5/67 / 2/28 /
TB, tuberculosis; HC, healthy control. aData are presented as mean (interquartile range).
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Results

Analysis of differential metabolites in
plasma

Among the 150 patients in the training set, the PCA revealed

that metabolites from the same group clustered together and that

there was significant separation between the two groups

(Figure 1A). As presented in Volcano plots, there were 282

differential metabolites between TB patients and HCs (Figure 1B),

including 31 downregulated and 75 upregulated metabolites in

negative ion mode, as well as 74 downregulated and 117

upregulated metabolites in positive ion mode.

To evaluate the reliability of the differential metabolites, an

independent cohort comprising 60 individuals (including 30 TB

cases and 30 HCs) was used for validation. A significant separation

was also observed between TB patients and HCs (Figure 2A).

Moreover, 297 differential metabolites were identified, including

35 downregulated and 67 upregulated metabolites in negative ion
Frontiers in Cellular and Infection Microbiology 04
mode, along with 84 downregulated and 96 upregulated metabolites

in positive ion mode (Figure 2B).
TB-associated differential metabolites
enriched in lipid metabolism

After intersecting the differential metabolites from the training

and validation sets, 72 and 142 overlapping differential metabolites

were identified in negative and positive modes, respectively

(Figure 3A). The variation of the differential metabolites was

visualized using a heatmap (Figure 3B). KEGG pathway

enrichment analysis indicated that the differential metabolites

were primarily enriched in the primary bile acid biosynthesis,

taurine and hypotaurine metabolism, etc. (Figure 3C). They were

also enriched in cellular processes, environmental information

processing, human disease, metabolism, and the organism system.

Among them, 157 differential metabolites were mainly enriched in

25 pathways, including global and overview maps, lipid metabolism,
FIGURE 1

Identification of differential metabolites in TB patients in the training set. PCA plots of metabolites in the negative ion and positive ion modes (A).
Volcano plots of differential metabolites in the negative ion and positive ion modes (B). Differential metabolites were defined by a threshold of
Pvalue < 0.05 and fold change (FC) ≥ 2 or FC ≤ 0.5.
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and amino acid metabolism, among others (Figure 4A).

Furthermore, 31 and 34 differential lipids between TB patients

and HCs were identified in the training and testing sets,

respectively. Among them, 21 overlapping lipids showed distinct

dysregulation between TB patients and HCs (Figure 4B). The

heatmap for the 15 upregulated and seven downregulated lipids

in TB patients is shown in Figure 4C.
Screening of core metabolites from
overlapping differential metabolites

The differential metabolites were further selected using LASSO,

random forest, and XGBoost. Seven core differential metabolites

were identified by at least two machine learning algorithms,

including Angiotensin IV, glycochenodeoxycholic acid, methyl

indole-3-acetate, dulcitol, Asp-Phe, benzamide, and carbadox.

Detailed information on these seven metabolites is shown in the

Supplementary Table S1. Finally, Angiotensin IV and

glycochenodeoxycholic acid were selected by all three algorithms

(Figure 5).
Frontiers in Cellular and Infection Microbiology 05
The seven core differential metabolites were significantly

different between TB patients and HCs (Figure 6A), with four

metabolites increased and three decreased in TB patients.

Moreover, there were significant correlations among the core

differential metabolites (P < 0.05) (Figure 6B). Additionally, ROC

curve analysis revealed that Angiotensin IV had high accuracy in

the diagnosis of TB (AUC = 0.9990 and 0.9911 in the training and

validation sets, respectively) (Figure 6C). The sensitivity and

specificity were 98.6% and 100.0% in the training set, and 100.0%

and 96.7% in the validation set, respectively.

To decipher the relationship between metabolites, we explored

pathologically relevant lipid modules in TB patients relative to HCs.

Only differential correlations with empirical P < 0.05 were displayed

(Figure 7A). The modules of Angiotensin IV in the global network

were circled and enlarged (Figure 7B).
Discussion

The identification of new biomarkers for active TB is essential

for effectively controlling the ongoing TB pandemic. In China, the
FIGURE 2

Validation of differential metabolites in TB patients in the validation set. PCA plots of metabolites in the negative ion and positive ion modes
(A) Volcano plots of differential metabolites in the negative ion and positive ion modes (B) Differential metabolites were defined by a threshold of
P value < 0.05 and FC > 2 or FC ≤ 0.5.
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Xinjiang Uygur Autonomous Region, which has a high TB burden,

reports patient numbers and morbidity rates significantly higher

than the national average. Establishing and evaluating novel

methods in this region is necessary to provide useful tools for TB

management. In this study, we investigated metabolic dysregulation

in the plasma of TB patients and identified several key differential

metabolites with promising diagnostic potential for TB. Seven core

differential metabolites were identified by LASSO, Random Forest,

and XGBoost. Among them, Angiotensin IV showed the highest

diagnostic value for TB. Our findings provide novel insights into

valuable circulating biomarkers and the underlying mechanisms of

metabolic perturbations in the pathophysiological processes of TB.

Alterations in the systemic metabolite profile provide a near-

holistic view of complex responses and may help characterize the

systemic dimension of host-pathogen interactions (Chu et al.,

2021). The difficulty of obtaining respiratory tract specimens and

the risk of aerosol transmission during sample collection pose

challenges to TB diagnosis. The detection of metabolites in

plasma provides several advantages for TB diagnosis, including

the ability to capture systemic metabolomic changes induced by

infections and to investigate metabolic alterations associated with

both pulmonary and extrapulmonary TB. It has been reported that
Frontiers in Cellular and Infection Microbiology 06
metabolites can regulate immune-inflammatory alterations that

affect the progression of TB (Ferdosnejad et al., 2024). From the

initial stages of MTB infection to the progression of active disease, a

range of metabolic pathways induced by invasive bacteria disrupt

the host’s immune system, resulting in persistent infection (Weiner

et al., 2020). The present study identified a significant percentage of

metabolites enriched in lipid metabolism among TB patients. The

alterations in metabolic pathways reflected changes in the

biochemistry of host cells after MTB infection. Our previous work

in childhood TB also revealed a distinct lipid metabolic signature

(Sun et al., 2023). Host lipids serve as a primary nutritional source

for the growth and reproduction of MTB in vivo and comprise the

major biomolecules that constitute total cell biomass, acting as the

foundation of the eukaryotic membrane (Conover et al., 2008).

Amino acids are integral components of all metabolic cycles and are

therefore essential for all life forms. The relationship between host

amino acids and TB progression has been elucidated. For instance,

levels of tryptophan and its downstream metabolites in

cerebrospinal fluid have been shown to determine outcomes in

tuberculous meningitis (Ardiansyah et al., 2023). A seryl-leucine

glycopeptide detected in urine has been demonstrated to be a

valuable biomarker for effective anti-TB therapy (Fitzgerald et al.,
FIGURE 3

The signatures of the overlapping differential metabolites in TB. (A) Venn diagram of overlapping differential metabolites in the negative ion mode
from the training and validation sets. (B) Heatmap of the differential metabolites in TB patients and HCs. (C) Pathway enrichment analysis of
differential metabolites.
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2019). Nevertheless, there is limited understanding of circulating

metabolites that regulate inflammatory responses in individuals

with latent TB infection or active TB disease.

In recent years, the development of metabolomics has

significantly advanced the identification of new TB biomarkers,

shedding light on novel disease mechanisms and enhancing TB

diagnostics (Preez et al., 2017). This study identified seven key

metabolites responsible for discriminating TB via machine learning

algorithms, with Angiotensin IV showing the highest accuracy.

Angiotensin IV is a major metabolite of angiotensin II which has

been reported to be significantly elevated in patients infected with

SARS-CoV-2 (Vaduganathan et al., 2020; Wu et al., 2020). It has

been confirmed that Angiotensin IV binds to the angiotensin type-4

receptor, leading to vasodilation, natriuresis, and nitric oxide
Frontiers in Cellular and Infection Microbiology 07
release, which triggers oxidative stress and inflammation (Cure

et al., 2020). Oxidative stress is one of the biological mechanisms

that the host has evolved to counteract MTB infection. In contrast

to SARS-CoV-2 infection, we detected a low level of Angiotensin IV

in active TB patients for the first time. The results of this study may

suggest the potential pathogenesis mechanisms through which

MTB inhibits oxidative stress by modulating angiotensin IV.

However, the underlying mechanisms of Angiotensin IV in TB

progression remain to be further investigated. Currently, there is no

data available regarding the diagnostic value of Angiotensin IV in

infectious diseases. Our results showed that this metabolite

demonstrated good diagnostic value in active TB, with a

sensitivity and specificity of 98.6% and 100.0%, respectively.

Nevertheless, the potential of Angiotensin IV to function as a TB-
FIGURE 4

Pathway analysis of lipids dysregulated in TB patients. (A) KEGG pathway analysis. (B) Identifying the differential lipids from the training and validation
sets. (C) Heatmap of the overlapping lipids in TB patients and HCs.
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specific diagnostic biomarker has yet to be fully elucidated. Notably,

we included completely healthy individuals as the control group in

this study, which may lead to an overestimation of the sensitivity

and specificity of the biomarkers. Future large-sample studies

should include controls from other infectious diseases to validate

the diagnostic efficacy of these biomarkers.

The identification of metabolomic signatures can provide useful

information for the early management of TB. A previous study

indicated that serum metabolic biomarker panels could be used for

TB diagnosis and phenotyping in rifampicin-resistant and sensitive TB

cases (Liu et al., 2024). Moreover, another study also found that the

prognostic metabolic signatures could predict the development of

subclinical disease before the manifestation of active TB (Weiner

et al., 2018). Besides metabolites, various host-based biomarkers have

been identified by using unbiased omics approaches, including

cytokines, antibodies, RNAs, other proteins, combined multiple

biomarkers, etc. Several reviews have summarized the implications of

these biomarkers in the diagnosis of infectious diseases (Atallah and
Frontiers in Cellular and Infection Microbiology 08
Mansour, 2022; Nogueira et al., 2022). Additionally, these biomarkers

have facilitated the rapid development of point-of-care tests from easily

accessible specimens. Nevertheless, there remains much knowledge to

be gained in this field. Systematic evaluation research is needed in at-

risk populations, such as children, the elderly, and individuals with

severe TB or HIV co-infection.

This study used metabolomics and machine learning algorithms

(LASSO, random forest, and XGBoost machine) to identify

differential metabolites in active TB patients. The use of machine

learning algorithms enhances diagnostic efficiency and opens new

possibilities for simplifying the comprehensive bioinformatics

analyses of metabolites in “big” data. Identifying reliable

biomarkers for accurate TB diagnosis will facilitate strategies for

disease prevention and early treatment, effectively halting the

progression to advanced disease pathology and transmission.

This study has several limitations. First, TB is a highly

heterogeneous disease, and the metabolic characteristics of

different patients may be influenced by various factors, such as
FIGURE 5

Key differential metabolites identified by three machine learning algorithms. Differential metabolites were selected by LASSO (A), Random Forest (B),
and Xgboost (C). Venn diagram of differential metabolites identified by three machine learning algorithms (D).
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FIGURE 6

Identification of the biomarkers with potential diagnostic values. (A) Boxplot of core differential metabolites in the training and validation set. (B) Correlation
plot of core differential metabolites. (C) ROC curve analysis of Angiotensin IV in differentiating between TB patients and HCs. *** P < 0.001,****P < 0.0001.
FIGURE 7

Differential correlation analyses of plasma metabolites in TB patients relative to HC. (A) Correlation analyses of all the identified metabolites between
TB patients and HCs. (B) Correlation analyses of Angiotensin IV.
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age, gender, genetic background, and co-morbidities. Second, due to

the limited sample size, the metabolic markers identified may not be

universally applicable to all TB patients. Future large-scale

multicenter studies are needed to validate the diagnostic

performance of these metabolites across diverse populations.

Third, the association of the differential metabolites with clinical

phenotypes was not explored in this study. Plasma metabolic levels

may serve as markers reflecting clinical conditions such as systemic

inflammation and symptom severity. Future studies are warranted

to investigate the clinical relevance of the dysregulation of these

differential metabolites. Fourth, because of the limited plasma we

collected in the study, only metabolites were analyzed. According to

the central dogma of molecular biology (Crick, 1970), DNA (genes)

are transcribed to mRNA (transcripts) which are translated to

proteins, and their activities result in the formation of small

molecules (metabolites). As the ultimate downstream pool of

proteins, the metabolome can reflect changes in the biochemistry

of living cells or organisms more directly, when compared with

genetics and proteomics. However, protein-metabolite crosstalk

analysis will help us to reveal the potential mechanism of

metabolic disorder involvement in active TB. An integrative

analysis of multi-omics is needed to reveal the landscape of TB.

In summary, this study identified a series of potential diagnostic

biomarkers for TB through metabolomics analysis, demonstrating

high diagnostic accuracy. Although further research and validation

are needed, these metabolites may provide new ideas and

possibilities for TB diagnosis.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

The studies involving humans were approved by This study was

approved by the Ethics Committee of Children’s Hospital of Xinjiang

Uygur Autonomous Region (Approval No. KY2024083006) and all

methods were also performed following the relevant guidelines and

regulations under the committee supervision. The studies were

conducted in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study. Written informed consent was

obtained from the individual(s) for the publication of any potentially

identifiable images or data included in this article.
Author contributions

GS: Data curation, Project administration, Resources, Writing –

original draft, Writing – review & editing, Investigation. QW: Data
Frontiers in Cellular and Infection Microbiology 10
curation, Methodology, Resources, Writing – review & editing. XS:

Data curation, Methodology, Resources, Writing – review & editing.

MK: Methodology, Supervision, Visualization, Writing – review &

editing. RM: Data curation, Resources, Writing – original draft.

WZ: Data curation, Writing – original draft. LS: Methodology,

Supervision, Visualization, Writing – review & editing. QL:

Methodology, Supervision, Writing – review & editing, Writing –

original draft.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research was

sponsored by the Key R&D Program of Xinjiang(2024B03021-2),

the National Natural Science Foundation of China(No. 82460003,

82170007) and the Tianshan Talent Training Program of Xinjiang

Uygur Autonomous Region (No: 2022TSYCCX0105).
Acknowledgments

We thank Daniel Miller for linguistic help.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

a t : h t t p s : / / www . f r o n t i e r s i n . o r g / a r t i c l e s / 1 0 . 3 3 8 9 /

fcimb.2025.1526740/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1526740/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1526740/full#supplementary-material
https://doi.org/10.3389/fcimb.2025.1526740
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Sun et al. 10.3389/fcimb.2025.1526740
References
Ardiansyah, E., Avila-Pacheco, J., Nhat, L. T. H., Dian, S., Vinh, D. N., Hai, H. T.,
et al. (2023). Tryptophan metabolism determines outcome in tuberculous meningitis: a
targeted metabolomic analysis. Elife 12, e85307. doi: 10.7554/eLife.85307

Atallah, J., and Mansour, M. K. (2022). Implications of using host response-based
molecular diagnostics on the management of bacterial and viral infections: a review.
Front. Med. 9. doi: 10.3389/fmed.2022.805107

Boloko, L., Schutz, C., Sibiya, N., Alfour, A., Ward, A., Shey, M., et al. (2022). Xpert
Ultra testing of blood in severe HIV-associated tuberculosis to detect and measure
Mycobacterium tuberculosis blood stream infection: a diagnostic and disease biomarker
cohort study. Lancet Microbe 3, e521–e532. doi: 10.1016/s2666-5247(22)00062-3

Captur, G., Heywood, W. E., Coats, C., Rosmini, S., Patel, V., Lopes, L. R., et al.
(2020). Identification of a multiplex biomarker panel for hypertrophic cardiomyopathy
using quantitative proteomics and machine learning.Mol. Cell Proteomics 19, 114–127.
doi: 10.1074/mcp.ra119.001586

Cheng, C., Xu, F., Pan, X. F., Wang, C., Fan, J., Yang, Y., et al. (2025). Genetic
mapping of serummetabolome to chronic diseases among Han Chinese. Cell Genom. 5,
100743. doi: 10.1016/j.xgen.2024.100743

Chu, H. W., Chang, K. P., Hsu, C. W., Chang, I. Y., Liu, H. P., Chen, Y. T., et al.
(2019). Identification of salivary biomarkers for oral cancer detection with untargeted
and targeted quantitative proteomics approaches. Mol. Cell Proteomics 18, 1796–1806.
doi: 10.1074/mcp.ra119.001530

Chu, J., Xing, C., Du, Y., Duan, T., Liu, S., Zhang, P., et al. (2021). Pharmacological
inhibition of fatty acid synthesis blocks SARS-CoV-2 replication. Nat. Metab. 3, 1466–
1475. doi: 10.1038/s42255-021-00479-4

Conover, G. M., Martinez-Morales, F., Heidtman, M. I., Luo, Z. Q., Tang, M., Chen,
C., et al. (2008). Phosphatidylcholine synthesis is required for optimal function of
Legionella pneumophila virulence determinants. Cell Microbiol. 10, 514–528.
doi: 10.1111/j.1462-5822.2007.01066.x

Crick, F. (1970). Central dogma of molecular biology. Nature 227, 561–563.
doi: 10.1038/227561a0

Cure, E., Ilco, T. B., and Cumhur Cure, M. (2020). Angiotensin II, III, and IV may be
important in the progression of COVID-19. J. Renin. Angiotensin Aldosterone Syst. 21,
1470320320972019. doi: 10.1177/1470320320972019

Ferdosnejad, K., Zamani, M. S., Soroush, E., Fateh, A., Siadat, S. D., and Tarashi, S.
(2024). Tuberculosis and lung cancer:metabolic pathways play a key role. Nucleosides
Nucleotides Nucleic Acids 43, 1262–1281. doi: 10.1080/15257770.2024.2308522

Fitzgerald, B. L., Islam, M. N., Graham, B., Mahapatra, S., Webb, K., Boom, W. H.,
et al. (2019). Elucidation of a human urine metabolite as a Seryl-Leucine Glycopeptide
and as a biomarker of effective anti-tuberculosis therapy. ACS Infect. Dis. 5, 353–364.
doi: 10.1021/acsinfecdis.8b00241

Hartling, I., Cremonesi, A., Osuna, E., Lou, P. H., Lucchinetti, E., Zaugg, M., et al.
(2021). Quantitative profiling of inflammatory and pro-resolving lipid mediators in
human adolescents and mouse plasma using UHPLC-MS/MS.Clin. Chem. Lab. Med.
59, 1811–1823. doi: 10.1515/cclm-2021-0644

Laval, T., Chaumont, L., and Demangel, C. (2021). Not too fat to fight: The emerging
role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis.
Immunol. Rev. 301, 84–97. doi: 10.1111/imr.12952

Li, J., Luu, L. D. W., Wang, X., Cui, X., Huang, X., Fu, J., et al. (2022). Metabolomic
analysis reveals potential biomarkers and the underlying pathogenesis involved in
Mycoplasma pneumoniae pneumonia. Emerg. Microbes Infect. 11, 593–605.
doi: 10.1080/22221751.2022.2036582

Liu, Y., Wang, R., Zhang, C., Huang, L., Chen, J., Zeng, Y., et al. (2024). Automated
diagnosis and phenotyping of tuberculosis using serummetabolic fingerprints. Adv. Sci.
(Weinh). 11, e2406233. doi: 10.1002/advs.202406233
Frontiers in Cellular and Infection Microbiology 11
Ndong Sima, C. A. A., Smith, D., Petersen, D. C., Schurz, H., Uren, C., andMöller, M.
(2022). The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics 75,
215–230. doi: 10.1007/s00251-022-01290-5

Nogueira, B. M. F., Krishnan, S., Barreto-Duarte, B., Araújo-Pereira, M., Queiroz, A.
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