AUTHOR=El-Gazzar Nashwa , Said Lekaa , Al-Otibi Fatimah Olyan , AbdelGawwad Mohamed Ragab , Rabie Gamal TITLE=Antimicrobial and cytotoxic activities of natural (Z)-13-docosenamide derived from Penicillium chrysogenum JOURNAL=Frontiers in Cellular and Infection Microbiology VOLUME=Volume 15 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2025.1529104 DOI=10.3389/fcimb.2025.1529104 ISSN=2235-2988 ABSTRACT=IntroductionThe synthesis of natural compounds with strong biological activity from affordable sources has proven challenging for scientists. As a natural resource rich in a variety of bioactive substances, fungal metabolites have the potential to be used in medical applications to serve a global purpose towards a sustainable future.MethodsA total of 25 filamentous fungi were isolated, and their secondary metabolites were assessed for their antimicrobial efficiency. ResultsThe extracellular extract of the strain Penicillium chrysogenum Pc was selected for its high bioactivity compared with the other whole isolates. The GC-MS analysis of the extracellular extract of P. chrysogenum Pc was found to contain approximately 16 variable compounds. After several separation and purification processes using flash chromatography, HPLC, TLC, NMR, and FTIR, the most bioactive compound was identified as (Z)-13-docosenamide or erucylamide with a molecular formula of C22H43NO and a molecular weight of 337.0. The purified (Z)-13-docosenamide possessed antimicrobial activity with an MIC of approximately 10 μg/mL for the tested pathogenic bacteria (Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli), and 20 μg/mL against the tested fungi (Penicillium aurantiogriseum and Aspergillus fumigatus). Furthermore, MTT assay showed that (Z)-13-docosenamide inhibited cellviability and the proliferation of hepatocellular carcinoma, in vitro, with an IC {sb}{/sb}50 of 23.8 ± 0.8 μg/mL.ConclusionThe remarkable bioactivity of (Z)-13- docosenamide makes it a potential candidate to assist the pipeline for the creation of antibacterial and anticancer drugs, which will help to reduce the incidence of antimicrobial resistance (AMR) and fatalities related to cancer.