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Objective: This study aims to conduct a comprehensive analysis of the

differences in gut microbiota and metabolomics in preterm infants stratified by

gestational age.

Methods: Fresh fecal samples were collected from neonates within the first 3

days after birth. The gut microbiota composition and the changes in specific taxa

abundance were analyzed using 16S rRNA sequencing. Metabolomic profiling

was performed using liquid chromatography-tandem mass spectrometry (LC-

MS/MS). Participants were categorized into four groups based on gestational age

at birth: PreA group (34–36 weeks), PreB group (32–33 weeks), PreC group (28–

31 weeks), and control group (37–42 weeks). Metabolic pathways were identified

through metabolomics analysis, referencing the Kyoto Encyclopedia of Genes

and Genomes (KEGG) database.

Results: Notably, Principal Coordinates Analysis (PCoA) showed clear separation

among samples from all groups, with significant differences noted in the PreC

group when compared with the other three. We found a strong association

between Escherichia-Shigella and Ureaplasma genera with infants born before

32 weeks of gestation, suggesting a higher risk of opportunistic infections for

preterm infants under this gestational threshold. As gestational age increases,

Megamonas and Prevotella gradually emerged, while Escherichia-Shigella and

Ureaplasma progressively diminished. KEGG enrichment analysis indicated that

Pyrimidine metabolism was a differentially regulated pathway between the PreA

group and the control group. Interestingly, the only major differential metabolic

pathway between the PreB group and the control group was Arachidonic acid

metabolism. The bubble diagram revealed significant enrichment of differential

metabolites in Pyrimidine and beta-Alanine metabolism pathways when

comparing the PreC group with the control group.
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Conclusion: Significant differences were observed in the fecal microbiome and

metabolome between preterm and full-term infants, particularly in those born

before 32 weeks of gestation. These findings suggested that the gut microbial

system in preterm infants undergone progressive maturation, approaching a

“healthy” state characteristic of full-term infants as gestational age increases.
KEYWORDS

gut microbiota, preterm infants, intestinal metabolites, microbial diversity,
pyrimidine metabolism
Introduction

In recent years, research on the human gut microbiome has

become a significant priority (Toubon et al., 2022). The gut

microbiota forms a symbiotic community within the human

intestinal tract. It metabolizes lipids, proteins, and indigestible

elements while producing short-chain fatty acids (Sender et al.,

2016). With advancements in 16S ribosomal RNA (rRNA) gene

analysis of fecal samples, researchers have identified gut dysbiosis in

various diseases, including inflammatory bowel disease, pneumonia,

mastitis, cancer, metabolic syndrome, and allergic disorders (Chen

et al., 2021; Zhao et al., 2021). Gut dysbiosis compromises the

intestinal mucosal barrier, increasing susceptibility to pathogens

and the occurrence of infections (Wang et al., 2021).

Preterm infants are particularly vulnerable to gut dysbiosis,

which is linked to conditions such as necrotizing enterocolitis

(NEC), growth retardation, cognitive impairment, and cerebral

injury (Toubon et al., 2022). The intestinal microbial composition

in preterm neonates shows temporal dynamics and instability,

differing significantly from that of adults or full-term infants.

Their gastrointestinal colonization process is more susceptible to

disturbances from external factors, including postnatal antibiotic

use, mode of birth, and feeding practices (Wang et al., 2020). The

gut microbiota in preterm infants shows reduced microbial

diversity and abundance, predominantly featuring opportunistic

pathogens such as Enterobacter, Enterococcus, Staphylococcus,

Klebsiella pneumoniae, Escherichia coli, and Pseudomonas

aeruginosa. Additionally, colonization by Bifidobacterium and

Bacteroides is delayed compared to full-term neonates (Hill et al.,

2017; Korpela et al., 2018; Guitor et al., 2022; Hiltunen et al., 2022).

The relationship between an abnormal gut microbiome and

health outcomes in preterm infants has been confirmed. Recent

studies highlighted the critical role of early-life gut microbiota in

modulating immune development and long-term metabolic health,

particularly in preterm infants at high risk of neurodevelopmental

disorders (Richarte et al., 2021; Chang et al., 2024). Despite

advancements, existing studies often lack stratification by

gestational age (GA), limiting insights into developmental-stage-

specific dysbiosis. While prior work has focused on broad
02
taxonomic shifts, the functional implications of gestational age-

dependent metabolic pathways remain poorly understood. To

better understand the gut microbiome’s composition and

function, we performed a comparative analysis of microbial

composition and metabolites. We used 16S rRNA gene

sequencing alongside liquid chromatography tandem mass

spectrometry (LC–MS/MS) in a prospective cohort of preterm

infants across various GA as well as term infants. Furthermore,

we investigated potential dysbiosis related to the gut microbiota

structure and metabolites among preterm infants with differing GA.
Materials and methods

General information

This study involved newborn infants admitted to the Shenzhen

Hospital of the Chinese Academy of Sciences from June 2021 to

January 2022. Researchers collected demographic data from medical

records. They categorized participants into four groups based on

gestational age (GA) at birth: PreA group (34–36 weeks), PreB group

(32–33 weeks), PreC group (28–31 weeks), and control group (37–42

weeks). Inclusion criteria required that newborns be under three days

old, have not received antibiotics or probiotics, and that their legal

guardians signed informed consent forms. Exclusion criteria included

pregnant mothers who used microecologics or antibiotics within one

week prior to delivery, preterm infants who underwent surgeries, and

those with congenital malformations, genetic metabolic disorders, or

other congenital anomalies. Maternal complications during pregnancy

(e.g., preeclampsia, gestational diabetes) were recorded and excluded if

they required antibiotic or immunosuppressive therapy. Furthermore,

the control group had to demonstrate good health without the use of

antibiotics, probiotics, or any other medications. Control group infants

were exclusively vaginally delivered to minimize confounding effects of

cesarean section on initial microbiota colonization. Researchers

obtained written informed consent from each participant’s guardians

before enrollment, adhering to the approval granted by the Ethics

Committee of the Shenzhen Hospital of the Chinese Academy of

Sciences (approval number: LL-KT-21234).
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Collection of stool samples

Stool samples were collected from postpartum individuals

within three days post-delivery. Nursing personnel collected

approximately 0.5–1g of fecal material using sterile spatulas,

transferred into pre-weighed 2mL cryotubes, and immediately

stored at -80°C. Samples were transported on dry ice to

Novogene for 16S rRNA gene sequencing and metabolomics

analysis to ensure integrity.
DNA extraction and Illumina sequencing

The CTAB method was employed for the extraction of total

genomic DNA from the samples. Specific primers (515F-806R for

16S V4) with barcodes were utilized to amplify distinct regions of

the genes (16S V3-V4). For PCR reactions, Phusion® High-Fidelity

PCR Master Mix (New England Biolabs) along with forward and

reverse primers at a concentration of 2μM and approximately 10ng

template DNA were used. Subsequently, TruSeq® DNA PCR-Free

Sample Preparation Kit (Illumina, USA) was employed following

the manufacturer’s instructions to generate sequencing libraries

with added index codes. The quality assessment of the library was

performed using Qubit@2.0 Fluorometer (Thermo Scientific) and

Agilent Bioanalyzer 2100 system. Finally, an Illumina NovaSeq

platform was utilized to sequence the library resulting in paired-end

reads of length 250 bp.
Gut microbial analysis

The raw tags were subjected to specific filtering conditions in

order to ensure the accuracy of subsequent analysis (Bokulich et al.,

2013) utilizing the QIIME software (V1.9.1, http://qiime.org/

scripts/split_libraries_fastq.html) (Caporaso et al., 2010). Quality

control measures were implemented during this process.

Subsequently, the tags were compared against the Silva database

(https://www.arb-silva.de/) using usearch software (https://

github.com/torognes/vsearch/) (Rognes et al., 2016) for

identification and elimination of any chimera sequences (Haas

et al., 2011). Sequence analysis was performed using Uparse

software (Uparse v7.0.100, http://drive5.com/uparse/) (Edgar,

2013). The filtered sequences were then clustered into operational

taxonomic units (OTUs) with a similarity threshold of ≥97%.A

representative sequence was selected for each OTU and further

annotated accordingly. Alpha diversity analyses were conducted

based on this normalized dataset to assess species richness and

evenness in a sample using abundance indices (Chao1 and ACE), as

well as diversity indices (Shannon and Simpson).Beta diversity,

measured by weighted and unweighted unifrac distances, was

calculated using QIIME software (Version 1.9.1). Cluster analysis

was performed via principal component analysis (PCA) and

Principal Coordinate Analysis (PCoA).
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LC–MS/MS analysis

The Vanquish UHPLC system (ThermoFisher, Germany) was

coupled with an Orbitrap Q ExactiveTM HF-X mass spectrometer

(Thermo Fisher, Germany) for sample analysis at Novogene Co.,

Ltd (Beijing, China). A 100 mg sample was taken and placed in an

EP tube, followed by the addition of 500μL of an 80% methanol

aqueous solution. The mixture was vortexed and then allowed to sit

in an ice bath for 5 minutes. Subsequently, it was centrifuged at

15,000g for 20 minutes at 4°C. A specific volume of the supernatant

was diluted with mass spectrometry-grade water to achieve a

methanol concentration of 53%. The solution was then

centrifuged again at 15,000g for 20 minutes at 4°C, and the

supernatant was collected for analysis via LC-MS. Hypesil Gold

column (100×2.1 mm, 1.9mm) was utilized for the samples using a

linear gradient over a duration of 17 minutes at a flow rate of 0.2

mL/min. In positive polarity mode, eluent A consisted of 0.1%

formic acid in water and eluent B comprised methanol. For negative

polarity mode, eluent A contained ammonium acetate at a

concentration of 5 mM with pH adjusted to 9.0 and eluent B

remained as methanol. The solvent gradient was set as follows: 2%

B, 1.5 min; 2-85% B, 3 min; 100% B, 10 min;100-2% B, 10.1 min;2%

B, 12 min.Q ExactiveTM HF mass spectrometer operated under

positive/negative polarity mode with spray voltage of 3.2 kV,

capillary temperature of 320°C, sheath gas flow rate of 40 arb and

aux gas flow rate of 10 arb, Funnel RF level of 40, Aux gas heater

temperature of 350°C.

The UHPLC-MS/MS generated mass spectrometry raw data

underwent processing using Compound Discoverer 3.1 (CD3.1,

ThermoFisher) to align peaks, select metabolites, and quantify

them. Statistical analyses were performed using the statistical

software R (version R-3.4.3), Python (version 2.7.6) and CentOS

(release 6.6). When the data were not normally distributed,

attempts were made to normalize them using the area

normalization method. The identification of these metabolites was

accomplished by referencing the KEGG database (https://

www.genome.jp/kegg/pathway.html), HMDB database (https://

hmdb.ca/metabolites), and LIPIDMaps database (http://

www.lipidmaps.org/). MetaX was employed for conducting

principal components analysis (PCA) and partial least squares

discriminant analysis (PLS-DA) (Wen et al., 2017).

Differential metabolites were identified as those exhibiting

VIP>1, P value< 0.05, and fold change≥2 or FC ≤ 0.5. Volcano

plots were generated using ggplot2 in the R language based on the

log2 (FoldChange) and -log10 (p-value) of these metabolites to

identify metabolites of interest. Pearson’s method was used in

Rlanguage to analyze the correlation between these differential

metabolites. The KEGG database was utilized for investigating

functions and metabolic pathways associated with these

metabolites, while metabolic pathway enrichment analysis was

conducted by assessing ratios x/n>y/N for pathway enrichment

and considering a metabolic pathway statistically significant if its P

value <0.05.
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Statistical analysis

The statistical analyses were conducted using SPSS 24.0

software (SPSS, Inc., Chicago, IL, USA) and R software (Version

2.15.3). Demographic characteristics and delivery data were

compared between groups using Student’s t-test, Wilcoxon rank-

sum test or Mann-Whitney U test. Differences in categorical

variables were determined using the c² or Fisher’s exact test. A

principal components analysis was employed to compare samples

among groups and identify statistically significant species at each

classification level. The comparison of four groups for alpha

diversity was assessed by the Wilcoxon rank-sum test. Unique

taxa or functions that distinguished the groups as statistically

significant biomarkers were identified through linear discriminant

analysis effect size (LEfSE) with an LDA cutoff of 4. Associations

between gut microbiome composition and metabolites were

demonstrated using Spearman correlation coefficient. A

significance level of P < 0.05 was deemed appropriate.
Results

Clinical features of the participants

A total of 48 subjects meeting the inclusion criteria were enrolled at

Shenzhen Hospital of the Chinese Academy of Sciences between June

2021 and January 2022.Stool samples were collected from neonates

with a median birth weight of 2.36 kg (range: 1.1-3.7 kg) and GA

ranging from 28 to 41 weeks (Supplementary Table 1). Supplementary
Frontiers in Cellular and Infection Microbiology 04
Table 1 provides an overview of the baseline characteristics for each

group. The mean GA of the PreA, PreB, PreC and control groups were

35.89, 33.00, 30.12 and 39.64 weeks, respectively. The 48 newborn

infants were divided into the control group (n=15), the PreA group

(n =13), the PreB group (n=11) and the PreC group (n=9).
Microbial diversity analysis

The alpha diversity, which quantifies the species richness and

taxonomic diversity within a sample, was evaluated using multiple

indices (ACE index, Chao index, Simpson index, and Shannon

index).Our analysis revealed significant differences in ACE and Chao

indices between the PreA group and control group (P=0.001 for

Figure 1A; P=0.000 for Figure 1B), indicating that gut microbiota

richness was higher in the PreA group than controls. Furthermore, the

Wilcoxon rank-sum test demonstrated that both ACE and Chao

indices were significantly elevated in the PreC group compared to

controls (P=0.046 for Figure 1A; P=0.023 for Figure 1B). The Shannon

index of PreB samples was lower than that of PreC samples (P=0.042

for Figure 1D), while the Simpson index of PreB samples was lower

than all other groups (Figure 1C). Overall, our findings suggest a

tendency towards greater alpha diversity of fecal microbiota in the PreA

group relative to controls but no significant difference between the

PreA and PreC groups based on these four indices.

The PCoA analysis revealed a distinct separation among the

samples into four groups, with a significant distinction observed

between the PreC group and the other three groups (Figure 1E).

NMDS plots also indicated a significant difference in bacterial
FIGURE 1

Alpha and beta diversity. ACE index (A), Chao1 index (B), Simpson index (C) and Shannon index (D)were used to assess alpha diversity. The Wilcoxon
rank-sum test was conducted to compare these indices among the four groups. (E) PCoA analysis with the unweighted UniFrac distance of the
microcosm composition. (F) Non-Metric Multi-Dimensional Scaling (NMDS) of the gut microbiota based on Bray–Curtis. *P<0.05, **P<0.01, ***P<0.001.
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communities between the PreC group and the remaining groups

(stress=0.14, Figure 1F). ANOSIM results demonstrated a significant

dissimilarity in beta diversity between the PreB group and PreC group

(R=0.118, P<0.05).Consistent with these findings, Amova analysis

further confirmed an extremely significant variation in gut

microbiota composition between the PreB/control group and PreC/

control group (P<0.05). Our data suggested that as GA increases,

preterm infants exhibit a gradual convergence of gut microbiota

towards term infants. Notably, preterm infants born before 32 weeks

displayed significantly different gut microbiota diversity compared to

other gestational ages, which may contribute to subsequent digestive

complications. Therefore, future research should prioritize

investigating preterm infants born before 32 weeks of gestation.
The comparative analysis of gut microbiota
composition

The most predominant phyla identified in the four groups were

Proteobacteria and Firmicutes (Figure 2A). The control group

exhibited the lowest relative abundance of Proteobacteria, while

Firmicutes were found to be the most abundant. Additionally, it was
Frontiers in Cellular and Infection Microbiology 05
observed that the PreC group tended to have a higher proportion of

Bacteroidota and Actinobacteria, as well as a lower proportion of

Firmicutes compared to the other three groups; however, no

statistically significant differences were detected (P>0.05).

Furthermore, an increase in Desulfobacterota and a decrease in

Spirochaetota at the phylum level were observed in the control

group when compared to the PreB group (P<0.05, Figure 2D).

At the family level, a significant decrease in Peptostreptococcaceae

was observed in both the PreB and PreC groups compared to

the control group (P<0.01, Figure 2B and Figure 2E). The analysis

of flora composition at the family level revealed that

Staphylococcaceae was more abundant in the PreA group than in

the other three groups. Conversely, Moraxellaceae and

Pseudomonadaceae showed decreased abundances compared to

the other three groups; however, these differences were not

statistically significant (Figure 2E). Notably, Enterococcaceae was

exclusively present in the PreB group while Enterobacteriaceae

and Prevotellaceae were found only in the PreC group.

Burkholderiaceae and Pseudomonadaceae were enriched in the

control group. As gestational age increases, Peptostreptococcaceae

gradually emerged, while Prevotellaceae and Enterobacteriaceae

progressively diminished, Moraxellaceae remained constant.
FIGURE 2

The distribution of gut microbiota was analyzed at different taxonomic levels including phylum (A), family (B), and genus (C). Statistical significance
between the groups was assessed using the MetaStat test for each taxonomic level- phylum (D), family (E), and genus (F). (G) The distinct bacterial
taxa across the four groups were illustrated using a Linear Discriminant Analysis (LDA) diagram, emphasizing only those species with an LDA>4 as
significantly different. Red indicated the control group. LEfSe, linear discriminant analysis of effect size; LDA, linear discriminant analysis.
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The most prevalent genera identified across all four groups were

Acinetobacter, Enterococcus, Staphylococcus and Paeniclostridium

(Figure 2C). In comparison to the other three groups, the control

group demonstrated an elevation in Paeniclostridium, Megamonas

and Prevotella at the genus level while Buchnera decreased

(Figure 2F). Furthermore, a higher abundance of Escherichia-

Shigella and Ureaplasma was observed in the PreC group

(Figure 2F). The PreAgroup exhibited significantly increased

relative abundances of Bifidobacterium and Streptococcus than the

control group (P<0.05, Figure 2F). As gestational age increases,

Megamonas and Prevotella gradually emerged, while Escherichia-

Shigella and Ureaplasma progressively diminished.

The dominant floras were identified by analyzing all the

samples using LEfSe (LDA>4). Compared to the other three groups,

the control group showed a significant increase in the abundance

of Peptostreptococcaceae (family) and Peptostreptococcales-

Tissierellales (order) (Figure 2G). The LEfSe test indicated

that Methylobacterium_brachiatum(species) had a significantly

higher relative abundance in the PreA group compared to the

control group (Supplementary Figure 1). Among the dominant

fecal floras, it was observed that Peptostreptococcaceae (family),

Peptostreptococcales-Tissierellales (order), and Vibrio (genus)

were more prevalent in the control group than in PreB group

(Supplementary Figure 1). Additionally, through LEfSe analysis,

it was noted that Peptostreptococcaceae (family) showed greater

abundance in the control group while Methylobacterium_

brachiatum (species) displayed higher prevalence in the PreC group

(Supplementary Figure 1).
KEGG

The heatmap analysis revealed disruptions in KEGG pathways

at different levels (level 1, level 2, level 3, and KO) in preterm infants

compared to the control group (Figure 3). The analysis of KEGG

pathways indicated abnormalities in various aspects such as

organismal systems energy, genetic information processing,

cellular processes, metabolism, and human diseases in preterm

infants. For instance, both organismal systems energy and genetic

information processing were found to be higher in the PreC group

than in the control group (Figure 3A). Notably, glycan biosynthesis

and metabolism as well as transport and catabolism exhibited

significant enrichment among the KEGG level 2 pathways of the

PreC group; conversely, cancers and neurodegenerative diseases

showed significant enrichment in the PreB group (Figure 3B). Our

study demonstrated the enrichment for transporters, ABC-

transporters , Genera l_ func t ion_pred ic t ion_only and

Transcription_factors within the control group’s KEGG level 3

pathways when compared to preterm infants (Figure 3C).

Additionally, we observed a significantly higher abundance of

unique genes such as RNA polymerase sigma-70 factor (K03088)

and branched-chain amino acid transport system substrate-binding

protein (K01999) in the PreC group compared to controls; however

phosphoglycolate phosphatase (K01091) was lower in abundance

with statistical significance (P<0.05, Figure 3D).
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The groups exhibit variations in their
intestinal metabolites

The differential untargeted metabolomic substances in each

group were analyzed using principal component analysis (PCA).

Notably, a clear separation was observed between the PreC group

and the other three groups, as illustrated in Figure 4A. The

heatmaps exhibited distinct differences in intestinal metabolites

among these groups (Figure 4B). Volcano maps revealed distinct

screening results for positive ions, leading to the identification of

144 metabolites that exhibited differential abundance between the

PreA group and control group. Among these metabolites, 18 were

upregulated while 126 were downregulated in the PreA group

compared to controls (Figure 4C). Specifically, a total of 229

differential metabolites were identified in the PreB group with 31

being upregulated and 198 downregulated relative to controls.

Moreover, there were a total of 225 differential metabolites

detected in the PreC group with 30 being upregulated and 195

downregulated when compared to controls (Figure 4D). The

metabolites in PreB and PreC exhibited more pronounced

disparities in their metabolic profiles as compared to term infants.

The disparity in metabolite levels increases with the discrepancy in

GA. Preterm infants displayed diverse degrees of metabolic

downregulation compared to full-term infants.

The identified differential metabolites were classified and

annotated using the KEGG database to gain further insights into

the functions performed by these specific metabolites. Our findings

indicated that these differential metabolites were primarily involved

in cellular processes, environmental information processing,

metabolism, and genetic information processing (Figure 5A).

Notably, significant differences were observed in the metabolite

profiles between preterm infants groups compared to the control

group (Figure 5). Through KEGG enrichment analysis, we

discovered that pyrimidine metabolism was a distinct pathway

associated with differential abundance of metabolites between

PreA group and control group (Figure 5B). Similarly, only one

main differential metabolic pathway was found between PreB group

and control group-arachidonic acid metabolism (Figure 5C). The

bubble diagram revealed significant enrichment of differential

metabolites in pyrimidine metabolism and beta-alanine

metabolism pathways when comparing PreC group to control

group (Figure 5D). As gestational age increases, the metabolism

of arachidonic acid progressively intensified, while pyrimidine

metabolism gradually diminished, and the metabolism of

secondary bile acids remained stable.
The alterations in metabolic pathways are
linked to the composition of gut
microbiota

To investigate the relationship between fecal metabolites and

gut microbiota in different groups, we performed a Spearman

correlation analysis at the genus level. The results revealed

significant correlations between Zoogloea, Luteolibacter, Gallicola
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and Pseudoxanthomonas with various metabolites in the PreA vs

control group (Figure 6A). Moreover, Marinospirillum,

Romboutsia, Propionicicella, Taibaiella and Pseudoalteromonas

were found to exhibit significant correlations with different

metabolites in the PreB vs control group. Furthermore,

Psychrobacter, Vagococcus, Anaerostipes, Marinospirillum and

Lachnospira demonstrated significant associations with distinct

metabolites in the PreC vs control group (Figure 6C). There was

a strong correlation (R=0.79) observed between Anaerostipes and

N-Phenylacetylglutamine as depicted by Figure 6C.

The levels of control-enriched N-Phenylacetylglutamine, 3-

Hydroxy-3-methylbutanoic acid, and cis,cis-Muconic acid were

positively correlated with the abundance of Agathobacter, as

depicted in Figure 6C.Furthermore, Romboutsia exhibited a

positive association (R=0.585) with the level of control-enriched
Frontiers in Cellular and Infection Microbiology 07
Argininosuccinic acid (Figure 6B). In Figure 5A, it can be observed

that there is a positive correlation between Acidaminobacter

abundance and control-enriched Nicotinamide levels (R=0.43).

These findings suggested a close connection between the

distinctive metabolites found in preterm infants and changes in

gut microbiota composition. For instance, Luteolibacter displayed a

positive correlation with Nicotinamide but demonstrated a

negative correlation with RNK and Deoxyribose 5-Phosphate

in Figure 6A.
Discussion

To investigate the potential correlation between changes in gut

microbiota and GAs, we conducted a comprehensive analysis of the
FIGURE 3

The average abundance of KEGG pathways differentially enriched in four groups according to level 1 (A), level 2 (B), level 3 (C) and KO (D). Color
gradient blocks were utilized to illustrate the variations in functional abundance across different groups. The closer the color was to red, the higher
the abundance. KO: KEGG Orthology.
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gut microbiota and metabolomics in infants born with different

GAs. As gestational age increases, Megamonas and Prevotella

gradually emerged, while Escherichia-Shigella and Ureaplasma

progressively diminished. Furthermore, we observed the

metabolism of arachidonic acid progressively intensified, while

pyrimidine metabolism gradually diminished as gestational age
Frontiers in Cellular and Infection Microbiology 08
increases. This facilitates the progression of the gut microbiota

system towards a state deemed “healthy” for full-term infants.

These findings also underscored the importance of tailoring

microbiota-associated treatments based on specific GAs.

The gut microbiota of preterm infants, characterized by reduced

microbial diversity and increased colonization by pathogenic
FIGURE 4

Changes in intestinal metabolites. (A) PCA of positive ion compounds. Each sample is represented by a point, and different groups are distinguished
by various colors. (B) Cluster analysis of differential metabolites (positive ion compound). The expression levels of these metabolites are indicated by
color, with blue representing low expression and red representing high expression. (C–H) a volcano map was created to visualize the differences in
metabolites (positive ion compound): down-regulated differential metabolites are depicted in green, up-regulated ones in red, and those without
any difference are labeled as gray.
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microorganisms, differed significantly from that of full-term infants

(Westaway et al., 2022; Zhang et al., 2022). Previous studies had

reported no significant difference in bacterial alpha diversities

between moderately-late preterm infants and term infants

(Chernikova et al., 2018). However, our study revealed substantial

differences in the diversity of gut microbiota among the four groups.

Additionally, PCoA analysis demonstrated a significant distinction

between the PreC group and the other three groups. In our study,

we observed an independent influence of GA on the microbiome of

preterm infants. Preterm infants, especially those born before 32

weeks, faced challenges in establishing a healthy microbiome. These

disparities were likely attributed to significant changes occurring in

the gut microbiota of preterm infants during the initial 30 days after

birth (Hui et al., 2021)as well as limited microbial diversity initially

present in newborns which subsequently increased over time (Niu

et al., 2020). The formation of neonatal gut microbiota begins at

birth and continues to evolve throughout the first three years of life

(Hui et al., 2021).

To further investigate the dominant strains within the four

groups, we conducted a comprehensive analysis of the relative
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abundance of gut microbiota at various taxonomic levels in this

study. In a healthy individual’s gut, Firmicutes and Bacteroides were

primarily predominant, with smaller proportions consisting of

Proteobacteria, Actinobacteria, Verrucobacteria, and Fusobacteria

(Ho et al., 2020; Zhao et al., 2021). Previous research had

demonstrated that Actinobacteria, Proteobacteria, Bacteroidetes,

and Firmicutes were the predominant phyla found in preterm

infants’ intestinal tracts (Zhang et al., 2022). Our findings

suggested that the gut microbiome of newborns primarily consists

of facultative anaerobes belonging to the phylum Proteobacteria,

which was consistent with similar observations in infants from

China (Niu et al., 2020). Although no statistically significant

differences were observed, Proteobacteria abundance was

relatively lower in the control group compared to other groups,

whereas Firmicutes were more abundant. This implied that an

increased presence of Proteobacteria may indicate dysbiosis and

reflect an unstable structure within the intestinal microbial

community (Shin et al., 2015). Previous studies had also

demonstrated that during infancy, all infants tended to have a

dominant population of Proteobacteria which gradually decreased
FIGURE 5

(A) Changes in metabolic pathways. KEGG pathway function annotation bar graph of positive ion compounds: the X-axis represents the number of
metabolite annotations, while the Y-axis represents the annotated KEGG pathway. (B–D) Bubble plots for metabolic pathway enrichment analysis.
The X-axis shows the enrichment factor (RichFactor), which is calculated by dividing the number of differential metabolites annotated to a specific
pathway by the total identified metabolites annotated to that same pathway. A higher value indicates a greater proportion of differential metabolites
being annotated to that particular pathway.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1530653
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2025.1530653
until 24 months after birth (Yap et al., 2021). This transition can be

explained by the gradual shift from a predominantly aerobic to an

anaerobic gut environment in newborns, allowing for colonization

by strict anaerobic bacteria such as Bifidobacterium, Clostridium,

and Bacteroides (Matamoros et al., 2013; Arrieta et al., 2014).

Preterm infants born before 32 weeks of gestation exhibited the

highest abundance of Escherichia-Shigella and Ureaplasma, with the

most pronounced dysbiosis in their gut microbiota, alongside the

highest levels of pyrimidine metabolism. The gut microbiota of

preterm infants, particularly those born before 32 weeks of

gestation, is highly susceptible to harmful bacterial infections and

dysbiosis. Megamonas as a producer of short-chain fatty acids may

reduce the abundance of opportunistic pathogens, such as

Escherichia coli and Shigell, and may be beneficial for gut health,

however, Megamonas may serve as a risk factor in specific diseases,
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such as colorectal cancer and neurodevelopmental disorders

(Richarte et al., 2021). Prevotella in the gut can promote the

production of short-chain fatty acids and can metabolize glycans

present in certain foods and contribute to weight gain and improved

intestinal function (Chang et al., 2024). Escherichia-Shigella are

primarily harmful, causing a range of gastrointestinal illnesses and

other health issues. Ureaplasma is generally considered a potentially

harmful bacterium, and Ureaplasma infections during pregnancy

may be associated with preterm labor and low birth weight (Olomu

et al., 2009). At family level, Peptostreptococcaceae gradually

emerged, while Prevotellaceae and Enterobacteriaceae

progressively diminished. Previous studies had indicated that

Lactobacillaceae and Peptostreptococcaceae played a crucial role

in acetic acid production within rat intestines (Lu et al., 2022). It has

been suggested that Peptostreptococcaceae acted as a beneficial
FIGURE 6

Correlation between gut microbiota and fecal metabolites of PreA vs control group (A), PreB vs control group (B) and PreC vs control group (C).
Positive correlations are represented by red color, while negative correlations are indicated by blue color. The horizontal axis represents differential
bacteria, while the vertical axis represents differential metabolites. The legend on the right is the correlation coefficient. A stronger positive
correlation is depicted with a deeper shade of red, whereas a stronger negative correlation is illustrated with a darker shade of blue. The flatter the
ellipse, the higher the absolute value of the correlation.
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microbe positively associated with acetic acid levels (Lu et al., 2022).

Our findings supported probiotic supplementation (e.g.,

Bifidobacterium longum) tailored to gestational age, particularly

for infants <32 weeks, to suppress opportunistic pathogens like

Escherichia-Shigella.

Finally, we performed KEGG analysis to determine the functional

annotations of genes and metabolic pathways. Significant alterations

were observed in the pathways of arachidonic acid metabolism

between the PreB and control groups, whereas pyrimidine

metabolism was identified as a differential pathway between the

PreA/PreC and control groups. The enrichment of arachidonic acid

metabolism in PreB infants suggested potential targets for lipid-based

nutritional interventions to mitigate inflammation. The gut

microbiota activity modulated pyrimidine metabolism in preterm

infants, which was closely associated with brain growth and

metabolism (Pineiro-Ramos et al., 2021). Arachidonic acid

metabolism has several beneficial effects on the human body,

including its role in regulating renin release, modulating

inflammation and immune responses, maintaining cardiovascular

and renal health, and supporting neurological function

(Gundala et al., 2017; Xu et al., 2020; Das, 2022). Pyrimidine

metabolism is a critical biological process involved in the synthesis

and degradation of pyrimidine nucleotides, which are essential

components of DNA and RNA. Dysregulated pyrimidine

metabolism is associated with several harmful effects on human

health, including cancer, neurological disorders, hematological

disorders, and immunological disorders (Mao et al., 2021; Zhang

et al., 2024). Pyrimidine metabolism disruptions may impair DNA

synthesis in rapidly developing tissues (e.g., brain), while arachidonic

acid dysregulation could exacerbate inflammation in preterm infants.

Targeting these pathways via probiotics (e.g., Bifidobacterium) or

dietary interventions (e.g., omega-3 supplementation) warrants

further investigation.

As gestational age increases, Megamonas and Prevotella

gradually emerged, while Escherichia-Shigella and Ureaplasma

progressively diminished. The gut microbiota of infants

undergone significant changes as gestational age increases, with

certain components remaining stable while others disappear,

ultimately promoting the development of a “healthy” full-term

infant. The stable presence of beneficial bacteria like

Bifidobacterium and the reduction of potentially harmful bacteria

like Escherichia-Shigella and Ureaplasma contributed to a more

balanced gut microbiome, which was associated with improved

immune system development and a lower risk of inflammatory and

autoimmune disease. The use of probiotics and prebiotics, as well as

optimizing feeding practices and antibiotic use, can help support

the development of a robust and balanced gut microbiota,

ultimately improving the health outcomes of preterm infants (Lai

et al., 2024; Huang et al., 2025). Further research is needed to fully

understand the long-term effects of these interventions and to

develop personalized approaches for managing the gut microbiota

in preterm infants. These findings suggested that gestational age-

specific probiotics (e.g., Megamonas or Prevotella strains) could

restore microbial balance in preterm infants. Additionally,
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monitoring metabolites like arachidonic acid may serve as

biomarkers for early intervention. Clinical trials integrating

microbiota-directed therapies with metabolomic profiling are

needed to translate these insights into practice.

It is important to acknowledge the limitations of the study

results. Firstly, it should be noted that this study was conducted at a

single center with a limited number of cases and fecal samples,

especially PreC group. Future multicenter studies with larger

cohorts are warranted to validate these findings. In the present

study, we only collected meconium specimens and did not perform

continuous monitoring of gut microbiota dynamics. Thirdly,

numerous studies have indicated variations in the composition of

gut microbiota between preterm and term infants. To further

investigate our findings, future research should consider

experimental studies and longitudinal analyses.
Conclusion

Our findings indicated that there were significant differences in

the fecal microbiome and metabolome of preterm infants compared

to full-term infants, particularly among those born before 32 weeks

of gestation. It is therefore imperative to identify treatments that are

tailored to the specific associations with microbiota for different

gestational ages.
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