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It is argued that commensal bacteria in the upper respiratory tract (URT) protect

against pathogen colonization and infection, including respiratory viruses. Given that

the microbiome can mediate immune modulation, a link between the URT

microbiome (URTM) and COVID-19 susceptibility and severity is expected. This

16S metagenomics cross-sectional study assessed URTM composition, metabolic

prediction, and association with laboratory biomarkers in non-COVID-19

pneumonia (NO-CoV), moderate (M-CoV), severe (S-CoV) COVID-19 patients, as

well as COVID-19-negative, asymptomatic (NC) patients. The S-CoV group

exhibited reduced URTM diversity, primarily due to a decreased abundance of

eubiotic taxa. Some of these taxa (e.g., Haemophilus sp., Neisseria sp.) were also

associated with inflammatory biomarkers. Multiple metabolic pathways (e.g., short-

chain fatty acids, vitamin B12) linked to immune response, antiviral activity, and host

susceptibility showed decreased abundance in S-CoV. These pathways could

suggest potential alternatives for the therapeutic arsenal against COVID-19,

providing reassurance about the progress in understanding and treating this disease.
KEYWORDS
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1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative

agent of coronavirus disease 19 (COVID-19), continues to pose a global threat due to its

ability to evade the immune system through genetic mutations. Despite the pandemic

slowdown, immunized individuals remain susceptible to SARS-CoV-2, which is believed to
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keep circulating for many years (Kissler et al., 2020; Rossman et al.,

2021; Barreiro and San Román, 2022).

In COVID-19, both immune suppression and runaway

inflammation have been observed and can result in more severe

disease, while protective immunity consists of the induction of both

humoral and cell-mediated responses (Merenstein et al., 2022). The

SARS-CoV-2 inhibits Interferons I and III (IFN-I and IFN-III) and

pro-inflammatory responses, promoting high viral replication in

the respiratory tract (Wei et al., 2020). Paradoxically, this immune

suppression leads to increased circulating cytokines in COVID-19-

associated pneumonia. Severe lung damage from viral replication

causes epithelial barrier breakdown, triggering a ‘cytokine storm’

with both pro- and anti-inflammatory actions (Tisoncik et al., 2012;

Chen et al., 2020; Hall et al., 2022), which impair lung function

promoting immunoparalysis, resulting in irreversible damage

(Wong et al., 2019).

In the upper respiratory tract (URT), which comprises the nasal

cavity, nasopharynx, and oropharynx, high bacterial densities are

found (103–106 U−1), while in the lung, which belongs to the lower

respiratory tract (LRT), bacterial densities decrease (~102 U−1).

Genera characteristic of a healthy URT include Staphylococcus sp.,

Propionibacterium sp., Leptotrichia sp., Rothia sp., Dolosigranulum

sp., Haemophilus sp., Moraxella sp., Veillonella sp., Prevotella sp.,

Streptococcus sp. and Corynebacterium sp (Man et al., 2017;

Wypych et al., 2019). In eubiosis, these microorganisms act as

‘guardians of respiratory health’ (Wong et al., 2019; Wypych et al.,

2019), avoiding colonization of the URT by pathogens, including

respiratory viruses, suggesting a potential role in resisting SARS-

CoV-2 infection (Bogaert et al., 2004; Wang et al., 2022).

The interactions between the microbiome and its host extend to

crucial functions such as carbohydrate and protein decomposition,

nutrient absorption, vitamin biosynthesis, and modulation of the

immune system (Rooks and Garrett, 2016; Zheng et al., 2020).

Metabolites and components from these interactions can modulate

immune cells through various mechanisms, including signaling of

mucosal-associated T cells (MAIT) (Smith et al., 2013; Godfrey et al.,

2019; Legoux et al., 2020;, IFN-I (Flerlage et al., 2021), and dendritic

cells (Schaupp et al., 2020) beyond the anti-inflammatory activity of

Short-Chain Fatty Acids (SCFA) (Fukuda et al., 2011) and regulation of

immunoglobulin expression (Corbett et al., 2014; Kim et al., 2016;

Dalile et al., 2019; Parrot et al., 2020; Wang et al., 2022).

Recent investigations have revealed substantial dysbiosis in both

intestinal and respiratory microbiomes during COVID-19, and

their specific compositions are correlated with the severity of the

disease and its outcomes (Ferreira et al., 2020; Lloréns-Rico et al.,

2021). Additionally, SARS-CoV-2 infection has been found to

heighten the susceptibility of patients to secondary pathogens,

thereby playing a significant role in exacerbating morbidity and

mortality associated with COVID-19 (Cox et al., 2020; Yeoh et al.,

2021). Besides, the microbiome has been identified as a modulator

of immune responses and diseases in the airways, increasing interest

in the interaction between COVID-19 and this microbiome

(Merenstein et al., 2022). This study aimed to delve into these
Frontiers in Cellular and Infection Microbiology 02
interactions at a functional level, identifying taxa and pathways in

the URT associated with COVID-19 severity.
2 Methods

2.1 Study design

This study employed a cross-sectional design focused on

analyzing the upper respiratory tract microbiome in the context

of COVID-19. 16S rRNA amplicon sequencing was used to assess

composition and predict functionality.

A total of 88 samples of nasal and oropharyngeal combined

swabs were provided by the Hospital de Clinicas de Porto Alegre

(HCPA) biobank. Swabs were immersed in sterile saline solution for

routine SARS-CoV-2 screening using rt-qPCR (National Center for

Immunization and Respiratory Diseases (U.S.). Monteiro et al., 2023)

for diagnostic purposes and stored at -80°C. The experimental groups

were categorized based on the World Health Organization severity

level classification (World Health Organization, 2020):
Group 1 (M-COV, n = 22): Moderate COVID-19 - Patients

with signs and symptoms of pneumonia, respiratory

distress syndrome (ARDS), SpO2 ≥ 90%, and a positive

rt-qPCR test for SARS-CoV-2.

Group 2 (NO-COV, n = 22): Non-COVID pneumonia -

Patients with signs and symptoms of pneumonia, ARDS,

SpO2 ≥ 90%, and two negative rt-qPCR test for SARS-

CoV-2.

Group 3 (S-COV, n = 22): Severe COVID-19 - Patients with

severe signs and symptoms of pneumonia, ARDS, breathing

rate > 30/min., SpO2 < 90%, and a positive rt-qPCR test for

SARS-CoV-2.

Group 4 (NC, n = 22): Asymptomatic individuals - Highly

exposed to SARS-CoV-2, submitted to routine screening

with negative results.
In addition to the COVID-19 severity classification, inclusion

criteria comprised patients who underwent rt-qPCR for SARS-CoV-2

screening and laboratory tests for biomarkers (except for the NC

group), namely: alanine aminotransferase (ALT), aspartate

aminotransferase (AST), c-reactive protein (CRP), creatine

phosphokinase (CPK), d-dimer (DDI), hemogram, lactate

dehydrogenase (LDH), serum creatinine (CRE) and urea.

Demographic characteristics and clinical data were obtained from

electronic medical records through a query requested by the Center of

Data Science of the HCPA. The study was conducted following the

Declaration of Helsinki, and the protocol was approved by the Ethics

Committee of HCPA (IRB 00000921, CAAE 38972220.3.0000.5327),

ensuring compliance with ethical standards and guidelines for human

research. The COVID-19 vaccination was unavailable in Brazil

during the study period (between July 2020 and February 2021).
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2.2 Microbiome data generation

2.2.1 DNA extraction, PCR, and sequencing
The DNA extraction was performed with the DNeasy® Blood and

Tissue extraction kit (QIAGEN®, Canada) following the

manufacturer’s recommendations with minor adaptations. The

adaptation consists of performing a bead beating procedure with

silica/zirconia beads in a MP Biochemicals FastPrep24 Sample

Preparation (RRID: SCR_018599) using a 30s protocol at 6.0 m/s

repeated three times, after the incubation with proteinase K. The total

nucleic acids were eluted in 60 mL of TE buffer (Tris-EDTA pH 8,0)

and submitted to amplification of the v3v4 hypervariable region of 16S

rRNA using the 16S Metagenomic Sequencing Library Preparation

Illumina® (Illumina, USA, 2013; Illumina, 2013). A negative control

(molecular grade water) was included for quality assurance. The

libraries were sequenced on an Illumina MiSeq System (RRID:

SCR_016379) platform using a v2 Reagent Kit (2x250bp; average

coverage ~200.000 reads/sample) (Illumina, Inc.). Extreme care was

taken to mitigate the possibility of environmental contamination

during the entire sample processing (Kirstahler et al., 2018).

2.2.2 Bioinformatics analyses
The bioinformatics analyses were performed with the open-

source software R Project for Statistical Computing (RRID:

SCR_001905) v. 4.3.2 (Eye Holes) (R Core Team, 2021), the

development interface RStudio (RRID: SCR_000432) v. 2022.12.0-

353 (RStudio Team, 2020), and packages of the project

Bioconductor (RRID: SCR_006442) v. 3.16 (Huber et al., 2015).

Raw reads were processed according to a previous report (Callahan

et al., 2016b) using the DADA2 (RRID: SCR_023519) algorithm

(Callahan et al., 2016a). Briefly, reads were quality-checked, trimmed,

filtered, and truncated to position 240. Paired-end joining,

determination of amplicon sequence variants (ASV), and removal of

chimeric sequences were performed, followed by the taxonomic

assignment using the expanded Human Oral Microbiome Database

(RRID: SCR_025964) (eHOMD 16S rRNA RefSeq Version 15.22)

(Escapa et al., 2020). The ASV sequences, counts, taxonomy tables, and

sample metadata were merged into a phyloseq (RRID: SCR_013080)

object (McMurdie and Holmes, 2013) to proceed with the analyses. All

the detailed parameters are presented in the Data Sheet 2.

Taxonomic agglomeration was performed to identify the

dominant taxa and their relative abundance at phyla, genera, and

species levels. The Compositional Data Analysis approach (CODA)

(Aitchison, 1982) was adopted to evaluate the microbiome

composition using the Centered Log-Ratio (CLR) for log-ratio

transformation (Pawlowsky-Glahn et al., 2015; Greenacre et al.,

2021; Bars-Cortina, 2022).

The metabolic prediction was performed with the PICRUSt2

(RRID: SCR_022647) pipeline (Douglas et al., 2020). The functional

prediction and the pathway inference were performed with a modified

version of theMinPath (Minimal set of Pathways) (Ye and Doak, 2009)

tool using the MetaCyc (RRID: SCR_007778) database (Caspi et al.,

2016). The pathway annotation was performed with the ggpicrust2

(RRID: SCR_025965) package (Yang et al., 2023).
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2.2.3 Statistical analysis
a-diversity was performed using the Shannon index followed by

the Wilcoxon Rank-sum test (Haegeman et al., 2013). b-diversity
was conducted by the Principal Component Analysis (PCA) using

Aitchison distance (Aitchison, 1982; Calle, 2019). The statistical

significance and the proportion of explained variance were assessed

by Permutation Multivariate Analysis of Variance (PERMANOVA)

(Anderson, 2017) for experimental groups and each confounding

factor (age, sex, and batch).

The taxonomic differential abundance analysis was performed

using the Analysis of Compositions of Microbiomes with Bias

Correction 2 (ANCOM-BC2 (RRID: SCR_024901)) algorithm

(Lin and Peddada, 2020) for the global test (NC as the reference

group) and multiple pairwise comparisons at the genus level. The

pathway’s differential abundance was evaluated using the LinDA

(RRID: SCR_025966) (linear models for differential abundance

analysis of microbiome compositional data) (Zhou et al.,

2022) algorithm.

We accounted for multiple tests using the Benjamini-Hochberg

(BH) method (Benjamini and Hochberg, 1995) for false discovery

rate (FDR) and a mixed directional false discovery rate (mdFDR)

control using a family-wise error controlling procedure by Holm

method (Holm, 1979), with an alpha of 0.05.

We performed a pairwise log-ratio exploratory analysis with the

coda4microbiome (Calle et al., 2023) package to evaluate the

relationships among taxa and clinical variables. Spearman’s

correlation coefficient was used to measure the association

between the variables and the predictions of a generalized linear

model (GLM). All the detailed parameters used for statistical

analysis are presented in Data Sheet 3.

2.2.4 Code availability
The PICRUSt2 (Douglas et al., 2020) is available at https://

github.com/picrust/picrust2 Custom scripts and data generated for

this paper can be accessible from “Lovison_et_al_2024_COVID19_

URT_microbiome”, GitHub (https://github.com/otaviolovison/

Lovison_et_al_2024_COVID19_URT_microbiome).
3 Results

Among the 88 selected samples, nine were excluded due to the

impossibility of extracting high-quality DNA or unsatisfactory

sequencing results. The samples and their respective experimental

groups that remained for the analysis were M-COV, n = 22;

NO-COV, n = 19; S-COV, n = 20; and NC, n = 18. Data Sheet 1

presents a flowchart representing experimental design and the

bioinformatics workflow.

The quality check as well as the error rates analysis from the

preprocessing and the complete track of the reads are shown in

Supplementary Material (Data Sheet 2, Table 1 - Supplementary

Data 1). After the filtering step ( Data Sheet 3- 0.1 Data

preparation), 11 phyla, 200 genera, 364 species, and 50,347 ASVs

were identified. The complete description, representative
frontiersin.org
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proportions, and overall relative abundance of these taxa are

presented in Supplementary Material (Table 1 - Supplementary

Data 2-Table 1 - Supplementary Data 5).
3.1 a-diversity and b-diversity

The S-CoV group presented the lowest a-diversity (mean =

2.90, standard error (SD) = 0.94). In the pairwise comparison,

statistically significant differences were observed (Figure 1) between

M-CoV and S-CoV (p = 0.0019) and between S-CoV and NC (p =

0.039). The a-diversity summarized statistics are presented in

Supplementary Material (Table 1 - Supplementary Data 6).

No statistically significant difference was detected among

groups for b-diversity ( Data Sheet 3 - Exploratory Analysis, 2.0 -

Beta Diversity).
3.2 Differential abundance analysis

Several taxa presented global differential abundance in

comparison with the NC group. The genera Abiotrophia sp.,

Arthrospira sp., Enterococcus sp. and Lactobacillus sp. showed

positive differential abundance for S-CoV while presenting

negative for M-CoV and NO-CoV. Conversely, Acidovorax sp.

showed positive differential abundance for M-CoV and NO-CoV

while presenting negative for S-CoV. Gemella sp., Mesorhizobium

sp., Novosphingobium sp., and Saccharibacteria_(TM7) were
Frontiers in Cellular and Infection Microbiology 04
enriched only in M-CoV, while Dolosigranulum sp. and family

Enterobacteriaceae were only increased in NO-CoV (Figure 2).

The S-CoV group presented the most significant reduced

differential abundance of eubiotic taxa and enrichment of

potential pathogens such as Enterococcus sp., Klebsiella sp., and

Staphylococcus sp. (Figure 2).

In the pairwise comparisons (Figure 3), differential abundance

in taxa was observed among all COVID-19 groups, with the most

significant differences observed between S-CoV and M-CoV

(Lactobacillus sp., presented positive differential abundance for S-

CoV) as well as S-CoV and NC group (no taxon presented positive

LFC for S-CoV). All data generated from the differential abundance

analysis are presented in Supplementary Material (Table 1 -

Supplementary Data 7-Table 1 - Supplementary Data 10).
3.3 Metabolic prediction

A total of 146 pathways presented statistically significant results in

the differential abundance analysis (Table 1-Supplementary Data 11,

Table 1-Supplementary Data 12), and the 30 metabolic pathways with

the highest relative abundance are illustrated in Figure 4. It is possible

to highlight that adenosylcobalamin (vitamin B12) and

demethylmenaquinol−6 (vitamin K) biosynthesis; aromatic

compounds degradation; purine nucleobases degradation; amino acid

degradation; SCFA metabolism; sugar biosynthesis/lipopolysaccharide

(LPS) biosynthesis/O-Antigen biosynthesis; steroid hormones

degradation; amines and polyamines biosynthesis; amide, amidine,
FIGURE 1

a-diversity analysis by Shannon index for COVID-19 groups. The Wilcoxon rank-sum test assessed statistical significance. M-CoV: moderate COVID-
19; NC: Negative Control; NO-CoV: patients with pneumonia, ARDS, SpO2 ≥ 90% and a negative rt-qPCR test for SARS-CoV-2; S-CoV: severe
COVID-19. The pairwise comparison shows statistical differences between M-CoV and S-CoV (p = 0.0019) and between S-CoV and NC (p = 0.039).
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amine, and polyamine degradation; sugar degradation; tRNA

processing; NAD metabolism; and protein N−glycosylation are

among the most differentially abundant predicted ontologies.

The most pronounced differences were observed between S-

CoV and M-CoV, followed by S-CoV and NC. All the data

generated from the pathways’ differential abundance are

presented in Supplementary Material (Table 1 - Supplementary

Data 11,Table 1 - Supplementary Data 12).
3.4 Pairwise log-ratio exploratory analysis

Differentially abundant taxa between experimental groups also

presented significant associations with clinical variables

(Supplementary Material - Table 2). The pair (s) of taxa whose log-

ratio was more associated with the variables, the name of the most

important taxa, and the correlation-like plot that provides the

association of each pairwise log-ratio and their respective correlation

values with each clinical variable are presented in the Data Sheet 3 –

5.0 Coda4Microbiome.
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4 Discussion

Our study evaluated the upper respiratory tract microbiome in

COVID-19 patients, revealing that severe cases (S-CoV) exhibit a

statistically significant reduction in a-diversity compared to mild

cases (M-CoV) and non-COVID patients (NC). This observation is

consistent with previous reports linking reduced diversity to

increased COVID-19 severity (Mostafa et al., 2020; Soffritti et al.,

2021; Ke et al., 2022). Although b-diversity did not show significant

differences - likely due to confounding factors such as antibiotic use

and comorbidities (Maes et al.; Soffritti et al.; Nardelli et al., 2021) -

the overall disturbance in microbial homeostasis appears to be

associated with a more severe disease phenotype.

The URT microbiome was dominated by genera such as

Streptococcus sp., Prevotella sp., Staphylococcus sp., Propionibacterium

sp., Leptotrichia sp., Rothia sp., Dolosigranulum sp., Haemophilus sp.,

Moraxella sp., Veillonella sp., and Corynebacterium sp (Man et al.,

2017; Wypych et al., 2019). Among these, certain opportunistic species

- such as S. aureus and H. influenzae - are well-known contributors to

pneumonia in critically ill COVID-19 patients (Bai et al., 2022).
FIGURE 2

Log fold change (LFC) of globally significant taxa with NC as the reference group. M-CoV: moderate COVID-19; NC: Negative Control; NO-CoV:
patients with pneumonia, ARDS, SpO2 ≥ 90% and a negative rt-qPCR test for SARS-CoV-2; S-CoV: severe COVID-19. Negative LFCs are colored red,
and positive LFCs are colored blue.
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Notably, Abiotrophia sp. was enriched exclusively in the S-CoV group,

which is positively correlated with COVID-19 severity (Hernández-

Terán et al., 2021; Soffritti et al., 2021). Additionally, taxa like

Saccharibacteria (specifically, Saccharibacteria_[(TM7]_(G1), (G3)

and (G6))) were found in higher abundance in NC and

paucisymptomatic patients, whereas ‘non-Saccharibacteria’

underrepresented taxa such as Mesorhizobium sp., Oribacterium sp.,

and Dolosigranulum sp. were reduced in S-CoV and associated with

inflammatory biomarkers, suggesting a protective effect (Bosch et al.,

2016; Brugger et al., 2016).

A group of beneficial taxa - particularly members of the

Lachnospiraceae family (e.g., Catonella sp., Lachnoanaerobaculum

sp., Butyrivibrio sp.) - were enriched in the NC group and inversely

related to disease severity. These butyrate-producing bacteria have

recognized roles in immune modulation and anti-inflammatory

activity (Al Bataineh et al., 2021), suggesting that their depletion in

S-CoV could impair protective mechanisms against SARS-CoV-2

infection. Similarly, Neisseria sp. - which may enhance anti-SARS-
Frontiers in Cellular and Infection Microbiology 06
CoV-2 antibody production through interactions with T- and B-

cells (Hung and Christodoulides, 2013; Santana-Mederos et al.,

2022) - displayed a reduced differential abundance in S-CoV,

further linking microbial composition to immune functionality.

In parallel with taxonomic alterations, our metabolic predictions

revealed significant changes in key pathways that appear to reflect the

functional impact of microbial dysbiosis in COVID-19. One set of

interrelated findings involves the modulation of steroid hormone

synthesis and vitamin metabolism. The S-CoV group showed a

reduced abundance of pathways involved in steroid hormone

synthesis (including androstenedione degradation), a process

regulated by ACTH and the renin-angiotensin-aldosterone system

(RAAS) that is linked to COVID-19 severity (Pal, 2020; Sezer et al.,

2022). This observation is paralleled by the depletion of eubiotic taxa

from the order Corynebacteriales (related to vitamin B12 biosynthesis)

and the family Propionibacteriaceae (linked to vitamin B12, vitamin K

biosynthesis, and SCFA metabolism) in S-CoV. In contrast, taxa such

as Novosphingobium sp. were enriched only in M-CoV and correlated
FIGURE 3

Log fold change for multiple pairwise comparisons between experimental groups. Only statistically significant results (p-adjusted) are demonstrated
in the plot. M-CoV: moderate COVID-19; NC: Negative Control; NO-CoV: patients with pneumonia, ARDS, SpO2 ≥ 90% and a negative rt-qPCR test
for SARS-CoV-2; S-CoV: severe COVID-19. Negative LFCs are colored red, and positive LFCs are colored blue.
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with critical inflammatory biomarkers, suggesting their possible role in

mitigating severe inflammation.

Another functionally connected group of pathways relates to

mucin metabolism and immune modulation. Several genera within

the Peptostreptococcaceae family, known for cleaving and transporting

mucin-associated monosaccharides (Flynn et al., 2016), were reduced

in S-CoV and NC compared to M-CoV. This reduction aligns with

observed decreases in the superpathway of fucose and rhamnose

degradation—processes that influence mucin O-glycosylation and

subsequent IgG Fc fucosylation (Bennett et al., 2012; Flynn et al.,

2016; Wlodarska et al., 2017; Wang, 2019; Chakraborty et al., 2021).

Such alterations may disrupt immune system activation and

inflammatory signaling, further exacerbating disease severity.

Further, metabolic pathways involved in glycosaminoglycan

(GAG) biosynthesis - evidenced by decreased superpathway of

glucose and xylose degradation - may enhance the availability of
Frontiers in Cellular and Infection Microbiology 07
xylose for GAG synthesis. This is of particular interest given that

both Enterococcus sp. and Lactobacillus sp. (which carry

glycosaminoglycan genetic clusters; (Kawai et al., 2018)) were

enriched in S-CoV, suggesting a potential role in viral attachment

via the S protein and consequent lung inflammation (Cagno et al.,

2019; Kim et al., 2020).

Additional metabolic disruptions include reductions in pathways

related to aromatic compound degradation, purine nucleobase

metabolism, and amino acid degradation (e.g., L-tryptophan, L-

glutamate, and L-lysine). These changes have been implicated in

altered inflammatory responses and immune regulation

(Chakraborty et al., 2021; Wu et al., 2021; Casas-Sanchez et al.,

2022; Kasahara et al., 2023). The diminished capacity for polyamine

and arginine metabolism, which are linked to enhanced IgA

responses and vascular function (Durante, 2013, Durante, 2022;

Rodriguez et al., 2017; Falck-Jones et al., 2021; Martı ́ I Lıńdez and
FIGURE 4

Differential abundance of metabolic pathways. Only statistically significant results (p-adjusted) for the top 30 pathways with the highest relative
abundance are presented. NC - Negative Control; M-CoV - moderate COVID-19; NO-CoV - patients with pneumonia, ARDS, SpO2 ≥ 90% and a
negative rt-qPCR test for SARS-CoV-2; S-CoV - severe COVID-19. Negative LFCs are colored red, and positive LFCs are colored blue. .
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1531084
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


von Ameln Lovison et al. 10.3389/fcimb.2025.1531084
Reith, 2021; Zhao et al., 2023), further underscores the potential for

metabolic impairment to contribute to severe COVID-19 outcomes.

Moreover, the decreased predicted abundance of pathways related

to the biosynthesis of key microbial-derived components, such as

vitamin B12 (Tamura et al., 1999; Yoshii et al., 2019) and vitamin K

(Ragab et al., 2020; Kudelko et al., 2021), as well as SCFA metabolism

(Dalile et al., 2019; Ashique et al., 2022; Batista et al., 2022), suggests

that the loss of these beneficial metabolites may impair immune

regulation and anti-inflammatory responses. This is reinforced by the

observed reduction in taxa associated with SCFA production, including

members of Lachnospiraceae and Propionibacteriaceae.

Lastly, the observed decreases in lipopolysaccharide (LPS)

biosynthesis pathways (Maldonado et al., 2016; Bradley et al.,

2022), in NAD metabolism (Zheng et al., 2022) and tRNA

processing (Katanski et al., 2022) further indicate that key

inflammatory and metabolic responses are disrupted in severe

COVID-19.

Collectively, the close interrelation between specific taxa and their

metabolic functions suggests that dysbiosis in the URT may directly

impact host immune responses. The depletion of beneficial microbes

such as Dolosigranulum sp. and butyrate-producing Lachnospiraceae,

along with impaired vitamin and SCFA biosynthesis, could

compromise mucosal immunity and facilitate an exaggerated

inflammatory response. In addition, alterations in steroid hormone

synthesis pathways, mucin glycosylation, and polyamine metabolism

likely contribute to the cytokine dysregulation observed in severe

COVID-19. This complex network of taxon - metabolic interactions

underscores the potential of the URT microbiome as a modifiable

factor in the progression of COVID-19.
5 Conclusions

This study demonstrates that the primary differences in URT

microbiome composition and functionality are associated with

COVID-19 severity rather than with SARS-CoV-2 infection. Severe

COVID-19 is characterized by a significant reduction in a-diversity, a
depletion of protective eubiotic taxa, and widespread alterations in

metabolic pathways essential for immune modulation and host

homeostasis. Despite inherent limitations (cross-sectional design, not

controlling for confounding factors as age, antibiotic use,

comorbidities), these findings suggest that specific microbial taxa –

such as Lachnospiraceae, Propionibacteriaceae, Dolosigranulum sp. -

and their metabolites - such as SCFAs, vitamins B12 and K, and key

amino acids - could serve as promising targets for therapeutic

intervention. Despite inherent limitations, our results provide a

foundation for future studies aimed at restoring microbial

homeostasis to mitigate severe respiratory outcomes.
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em Pesquisa do Hospital de Clıńicas de Porto Alegre. The studies were

conducted in accordance with the local legislation and institutional

requirements. The human samples used in this study were acquired

from a by- product of routine care or industry. Written informed

consent for participation was not required from the participants or the

participants’ legal guardians/next of kin in accordance with the national

legislation and institutional requirements.
Author contributions

OV: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization, Writing –

original draft, Writing – review & editing. FZ: Conceptualization,

Investigation, Methodology, Writing – review & editing. LW:

Conceptualization, Data curation, Investigation, Software, Visualization,

Writing – review & editing. AB: Conceptualization, Formal analysis,

Funding acquisition, Investigation, Methodology, Project administration,

Resources, Supervision, Writing – review & editing. AC: Writing –

review& editing. AM: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project administration,

Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was financed in

part by the Coordenação de Aperfeiçoamento de Pessoal de Nıv́el

Superior -Brazil (CAPES) -Finance Code 001; CHAMADA Decit/

SCTIE/MS-CNPq-FAPERGS 08/2020 -PROGRAMA PESQUISA

PARA O SUS: Gestão Compartilhada Em Saúde -PPSUS, grant 21/
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Castillejos, M., et al. (2021). Dysbiosis and structural disruption of the respiratory
microbiota in COVID-19 patients with severe and fatal outcomes. Sci. Rep. 11, 21297.
doi: 10.1038/s41598-021-00851-0

Holm, S. (1979). A simple sequentially rejective multiple test procedure.
Scandinavian J. Stat 6, 65–70.

Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., et al.
(2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nat.
Methods 12, 115–121. doi: 10.1038/nmeth.3252

Hung, M.-C., and Christodoulides, M. (2013). The biology of neisseria adhesins.
Biology 2, 1054–1109. doi: 10.3390/biology2031054

Illumina (2013). Illumina 16s-metagenomic-library-prep-guide-15044223-b.pdf.
Available online at: https://support.illumina.com/documents/documentation/
chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
(Accessed March, 2020).

Kasahara, K., Kerby, R. L., Zhang, Q., Pradhan, M., Mehrabian, M., Lusis, A. J., et al.
(2023). Gut bacterial metabolism contributes to host global purine homeostasis. Cell
Host Microbe 31, 1038–1053.e10. doi: 10.1016/j.chom.2023.05.011

Katanski, C. D., Alshammary, H., Watkins, C. P., Huang, S., Gonzales-Reiche, A.,
Sordillo, E. M., et al. (2022). tRNA abundance, modification and fragmentation in
nasopharyngeal swabs as biomarkers for COVID-19 severity. Front. Cell Dev. Biol. 10.
doi: 10.3389/fcell.2022.999351

Kawai, K., Kamochi, R., Oiki, S., Murata, K., and Hashimoto, W. (2018). Probiotics in
human gut microbiota can degrade host glycosaminoglycans. Sci. Rep. 8, 10674.
doi: 10.1038/s41598-018-28886-w

Ke, S., Weiss, S. T., and Liu, Y.-Y. (2022). Dissecting the role of the human
microbiome in COVID-19 via metagenome-assembled genomes. Nat. Commun. 13,
5235. doi: 10.1038/s41467-022-32991-w

Kim, S. Y., Jin, W., Sood, A., Montgomery, D. W., Grant, O. C., Fuster, M. M., et al.
(2020). Glycosaminoglycan binding motif at S1/S2 proteolytic cleavage site on spike
glycoprotein may facilitate novel coronavirus (SARS-CoV-2) host cell entry. doi: 10.1101/
2020.04.14.041459

Kim, M., Qie, Y., Park, J., and Kim, C. H. (2016). Gut microbial metabolites fuel host
antibody responses. Cell Host Microbe 20, 202–214. doi: 10.1016/j.chom.2016.07.001

Kirstahler, P., Bjerrum, S. S., Friis-Møller, A., la Cour, M., Aarestrup, F. M., Westh,
H., et al. (2018). Genomics-based identification of microorganisms in human ocular
body fluid. Sci. Rep. 8, 4126. doi: 10.1038/s41598-018-22416-4

Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H., and Lipsitch, M. (2020).
Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic
period. Science. (2020) 368 (6493), 860–868. doi: 10.1126/science.abb5793

Kudelko, M., Yip, T. F., Hei Law, G. C., and Lee, S. M. Y. (2021). Potential beneficial
effects of vitamin K in SARS-CoV-2 induced vascular disease? Immuno 1, 17–29.
doi: 10.3390/immuno1010003

Legoux, F., Salou, M., and Lantz, O. (2020). MAIT Cell development and functions:
The microbial connection. Immunity 53, 710–723. doi: 10.1016/j.immuni.2020.09.009

Lin, H., and Peddada, S. D. (2020). Analysis of compositions of microbiomes with
bias correction. Nat. Commun. 11, 3514. doi: 10.1038/s41467-020-17041-7
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