Check for updates

OPEN ACCESS

EDITED BY Ahmed M. Abdel-Azeem, Suez Canal University, Egypt

REVIEWED BY Danushka Sandaruwan Tennakoon, Shenzhen University, China Hiran Kanti Santra, Vidyasagar University, India

*CORRESPONDENCE Saisamorn Lumyong Scboi009@gmail.com Rungtiwa Phookamsak phookamsak@mail.kib.ac.cn

RECEIVED 22 November 2024 ACCEPTED 26 February 2025 PUBLISHED 03 April 2025

CITATION

Monkai J, Phookamsak R, Bhat DJ, Ei TSZ, Xu J and Lumyong S (2025) Novel endophytic pestalotioid species associated with *Itea* in Thailand. *Front. Cell. Infect. Microbiol.* 15:1532712.

doi: 10.3389/fcimb.2025.1532712

COPYRIGHT

© 2025 Monkai, Phookamsak, Bhat, Ei, Xu and Lumyong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Novel endophytic pestalotioid species associated with *Itea* in Thailand

Jutamart Monkai^{1,2}, Rungtiwa Phookamsak^{3,4,5,6*}, Darbhe Jayarama Bhat^{7,8}, Toe Swe Zin Ei², Jianchu Xu^{3,4,5,6} and Saisamorn Lumyong^{2,9,10*}

¹Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand, ²Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, ³Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, Yunnan, China, ⁴Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China, ⁵Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China, ⁶The Center for International Forestry Research and World Agroforestry (CIFOR-ICRAF) China Program, World Agroforestry (ICRAF), Kunming, Yunnan, China, ⁷Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia, ⁸Biology Division, Vishnugupta Vishwavidyapeetam, Gokarna, India, ⁹Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand, ¹⁰Academy of Science, The Royal Society of Thailand, Bangkok, Thailand

Endophytic fungi are a well-known fascinating host-associated fungal group that can enhance plant growth and fitness by producing various bioactive secondary metabolites. They are an excellent source of industrial enzymes for potential secondary metabolite synthesis, which is useful in green agriculture, biotechnology, and pharmaceuticals. Itea is a valuable plant genus since it naturally contains rare sugar; however, endophytic fungi associated in this host have not yet been documented. In the present study, 11 strains of endophytic fungi were isolated and primarily identified as pestalotioid taxa based on morphological characteristics exhibited in vitro. Eleven strains of Pestalotiopsis-like taxa were isolated from the healthy leaves, stems, and roots of Itea japonica and I. riparia from Chiang Mai Province, Thailand. Species delimitation was based on morphology, multiloci phylogeny of a concatenated ITS, tub2, and tef1- α sequence data, and nucleotide polymorphism analyses. Neopestalotiopsis iteae and Pseudopestalotiopsis iteae are proposed as new species on I. japonica and I. riparia, respectively. Neopestalotiopsis chrysea, N. haikouensis, and Pestalotiopsis jinchanghensis are described as new records on *I. riparia*. Owing to the conspecific relationship based on multiloci phylogeny and identically nucleotide pairwise comparison of sufficient gene regions, several species are synonymized including Neopestalotiopsis cercidicola and N. terricola as N. haikouensis, N. umbrinospora as N. chrysea, and Pestalotiopsis zhaoqingensis as P. jinchanghensis. The updated phylogenetic trees, nucleotide comparisons, and morphological descriptions are herein provided and discussed for the taxonomic placements of these new species and records. This study is the first to investigate Itea endophytes in Thailand, and it reveals the intra- and interspecific relationships of pestalotioid species, which need to be further reevaluated because of ambiguous taxa.

KEYWORDS

Neopestalotiopsis, Pestalotiopsis, polyphasic taxonomic approach, Pseudopestalotiopsis, Sporocadaceae

1 Introduction

Pestalotioid fungi are generally referred to as appendagebearing coelomycetes that have multi-septate and fusiform conidia in the family Sporocadaceae (Amphisphaeriales, Sordariomycetes), including genera Neopestalotiopsis, Pestalotiopsis, and Pseudopestalotiopsis (Maharachchikumbura et al., 2011; 2014; Peng et al., 2022; Razaghi et al., 2024). Pestalotiopsis and allied genera are taxonomically, chemically, and ecologically diverse, which have been associated with a broad range of host plants through their life cycle as endophytes, pathogens, and saprobes (Peng et al., 2022; Giri and Pradhan, 2023; Hsu et al., 2024). The natural classification of this group based on the conidial morphology suggests concolorous median cells in Pestalotiopsis and Pseudopestalotiopsis, and versicolorous median cells in Neopestalotiopsis (Maharachchikumbura et al., 2014; Peng et al., 2022; Sun et al., 2023). Compared with Pestalotiopsis, Pseudopestalotiopsis has darker colored median cells (Maharachchikumbura et al., 2014; Nozawa et al., 2018; Sun et al., 2023). However, the characteristics of conidia (e.g., color, size, and shape) and conidial appendages (e.g., number, length, shape, branched or unbranched, and presence or absence of knobbed tips) are overlapping (Maharachchikumbura et al., 2014; Liu et al., 2017; Tsai et al., 2021). The multiloci phylogeny of the concatenated ITS, *tub2*, and *tef1-\alpha* coupled with morphology has proved to be reliable for the taxonomic circumscription of pestalotioid species (Maharachchikumbura et al., 2012; 2014; Nozawa et al., 2017; 2018; Norphanphoun et al., 2019; Sun et al., 2023; Hsu et al., 2024).

Ecologically, Pestalotiopsis-like species are important as phytopathogens, endophytes, and saprobes and have a wide range of distribution in the temperate regions and tropics (Maharachchikumbura et al., 2012; 2014; Gu et al., 2022; Peng et al., 2022; Giri and Pradhan, 2023; Hsu et al., 2024). As plant pathogens, they cause various diseases, resulting in significant loss in various economic plants such as avocado (Fiorenza et al., 2022), eucalyptus (Diogo et al., 2021), blueberry (Zheng et al., 2023), macadamia (Prasannath et al., 2021), mangrove-associated hosts (Norphanphoun et al., 2019), pine (Monteiro et al., 2022), rose (Peng et al., 2022), and tea (Liu et al., 2017; Chen et al., 2018; Tsai et al., 2021). Endophytic pestalotioid fungi are considered as a valuable source for producing secondary metabolites with diverse chemical structures and promising antibacterial, antifungal, and anticancer properties (Xu et al., 2010; Palwe et al., 2021; Wu et al., 2022; Giri and Pradhan, 2023). Since the discovery of the antitumor drug taxol from Pestalotiopsis microspora, which was earlier isolated from Taxus wallachiana (Strobel et al., 1996), more studies have focused on Pestalotiopsis and allied genera.

Itea is a plant genus in *Iteaceae*, including approximately 21 species, widely distributed in Africa, Asia, and North America (POWO, 2024; Song and Zhang, 2024). *Itea japonica* is an edible species, native to Japan, and located in the temperate regions (Ayers et al., 2014; POWO, 2024), whereas *I. riparia* is endemic to China,

Laos, Myanmar, Thailand, and Vietnam and is located in the tropical region (POWO, 2024; Song and Zhang, 2024). Itea species are recognized for their nutritional and medicinal value owing to the presence of rare sugars (e.g., D-allulose and allitol) and other bioactive compounds (e.g., coumarins, flavonoids, and terpenoids), which exhibited antioxidant, anti-hepatocellular carcinoma, anti-tuberculosis, and glycosidase inhibitory activities (Luo et al., 2014; Zeng et al., 2015; Lang et al., 2022; Feng et al., 2024). Previous studies have isolated some pathogenic and endophytic fungi from Itea species (Farr et al., 2021). However, fungi associated with I. japonica and I. riparia have not yet been reported. Therefore, it is worthy to investigate the fungi associated to this host plant as it could offer a promising resource for new discoveries of useful bioactive compounds and enzymes. As part of our study on endophytic fungi associated with Itea species, we recovered 11 Pestalotiopsis-like taxa from fresh tissues of I. japonica and I. riparia in Chiang Mai Province, Thailand. Therefore, the aims of this study are to identify these novel strains using morphological and molecular approaches and to examine their intra- and intergeneric affinities within the pestalotioid species.

2 Materials and methods

2.1 Collection and isolation of endophytic fungi

Fresh and healthy samples (viz., leaves, stems, and roots) of Itea japonica and I. riparia were collected from Chiang Mai Province, northern Thailand. The plant samples were initially rinsed with running tap water and cut into small sections (5 mm \times 5 mm). The surface sterilization of plant tissues was carried out by immersing in distilled water for 1 min, 70% alcohol for 30 s, and 2% NaOCl for 30 s, in this order. Finally, the plant sections were thoroughly rinsed in sterile distilled water, air dried, and placed on potato dextrose agar (PDA) plates. After incubation at 25°C for 24-48 h, the hyphal tips grown on the margin of the plant tissues were picked up and inoculated onto new PDA plates to obtain the pure cultures. The cultures were incubated at 25°C for 1-2 months for the sporulation and morphological examination (Mattoo and Nonzom, 2022). The living cultures were deposited in the Culture Collection of Sustainable Development of Biological Resources Laboratory, Faculty of Science, Chiang Mai University, Chiang Mai Province, Thailand (SDBR-CMU) and the Kunming Institute of Botany Culture Collection, Kunming, China (KUNCC). To preserve the dried fungal samples (herbarium), cultures were dried in the hot air oven at 45-50°C for 1-2 days and deposited at the Herbarium of the Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai Province, Thailand (CMUB). The newly described taxa were registered for the Index Fungorum numbers (https://indexfungorum.org/Names/ IndexFungorumRegisterName.asp; accessed on 13 November 2024).

2.2 Morphological observation and examination

The morphological characteristics of endophytic fungi (i.e., conidiomata, conidiophores, conidiogenous cells, and conidia) grown on PDA after 30 days were observed using a Nikon SMZ800N stereo microscope (Nikon Instruments Inc., Melville, NY, USA) and a Nikon Eclipse Ni compound microscope attached to a Nikon DS-Ri2 camera system (Nikon Instruments Inc., Melville, NY, USA). Permanent slides were prepared by adding lactoglycerol and sealed with clear nail polish. The measurements of fungal structures were carried out using a Tarosoft (R) Image Frame Work version 0.9.7 program. The photographic plates were edited and combined using Adobe Photoshop version 21.2.4 (Adobe Systems, San Jose, CA, USA).

2.3 DNA extraction, PCR amplification, and sequencing

The Biospin Fungus Genomic DNA Extraction Kit (BioFlux, Hangzhou, China) was used to extract DNA from 7-day-old colonies grown on PDA at 25°C. The internal transcribed spacer region of ribosomal DNA (ITS) was amplified using primers ITS5 and ITS4 (White et al., 1990); the beta-tubulin (tub2) was amplified using primers T1 and Bt2b (Glass and Donaldson, 1995; O'Donnell and Cigelnik, 1997); and the translation elongation factor-1 alpha (*tef1-* α) was amplified using primers EF1-728F and EF2 (O'Donnell et al., 1998; Carbone and Kohn, 1999). The PCR conditions for the three loci were set up following Sun et al. (2023) and Gao et al. (2024). For Pseudopestalotiopsis species, the beta-tubulin (tub2) was additionally amplified using primers Bt2a and Bt2b (Glass and Donaldson, 1995; O'Donnell and Cigelnik, 1997) with the PCR condition as described by Maharachchikumbura et al. (2012). The PCR amplification was performed in a 25-µL reaction volume, containing 12.5 µL of Master Mix (mixture of EasyTaqTM DNA Polymerase, dNTPs, and optimized buffer; Beijing TransGen Biotech Co., Ltd., Chaoyang District, Beijing, China), 8.5 µL of double-distilled water (ddH2O), 2 µL of DNA template, and 1 µL of each forward and reverse primer (10 µM). The purification of PCR products and DNA sequencing were conducted by TsingKe Company (Kunming City, Yunnan Province, China).

2.4 Phylogenetic analyses

The sequences were checked and assembled using BioEdit version 7.0.5.3 (Hall, 1999). The homogeneous sequences were obtained from relevant publications (Li et al., 2022; Zhang et al., 2022; 2024; Sun et al., 2023; Dong et al., 2023; Hsu et al., 2024) and the results of BLAST searches that were downloaded from GenBank (www.ncbi.nlm.nih.gov/blast/; accessed on 1 September 2024) (Tables 1–3). Alignments for each locus were carried out using the MAFFT v7.307 online version (Katoh et al., 2019; https://mafft.cbrc.jp/alignment/server/, accessed on 1 September 2024)

and manually verified in BioEdit version 7.0.5.3 (Hall, 1999). To construct the phylogenetic analyses, maximum likelihood (ML) was previously applied for single locus, and further combined datasets of ITS, *tub2*, and *tef1-\alpha* gene loci were analyzed by Bayesian inference (BI) and ML when the tree topology of each locus is congruent. ML analysis was generated with 1,000 bootstrap (BS) iterations and the GTRGAMMA model of nucleotide evolution using RAxML-HPC2 on XSEDE (v.8.2.12) (Stamatakis, 2014) via the online web platform CIPRES Science Gateway V3.3 (Miller et al., 2010). The best-fit substitution models were evaluated using MrModeltest v.2.3 (Nylander, 2004). BI analysis was implemented with MrBayes on XSEDE v.3.2.7a (Huelsenbeck and Ronquist, 2001; Zhaxybayeva and Gogarten, 2002; Ronquist et al., 2012) via the same platform (Miller et al., 2010). Six simultaneous Markov chains were run for 10 million generations but were automatically terminated when the standard deviation of split frequency approached 0.01. The trees were sampled every 100th generation, and the first 25% of sampled trees were removed during the burn-in phase of analyses, which were evaluated by Tracer v. 1.7 (Rambaut et al., 2018). The phylograms were displayed and modified with the FigTree v1.4.0 program (Rambaut and Drummond, 2012) and Adobe Illustrator version 24.3 (Adobe Systems, San Jose, CA, the USA). The newly generated sequences were submitted to the NCBI database to obtain GenBank accession numbers.

3 Results

3.1 Multiloci phylogenetic analyses

Analysis 1: the combined sequence dataset of ITS, tub2, and tef1- α comprised 158 Neopestalotiopsis strains and two outgroup taxa, Pestalotiopsis diversiseta (MFLUCC 12-0287) and P. spathulata (CBS 356.86) (Figure 1). The aligned dataset consisted of a total 1,896 characters with gaps (ITS: 1-541 bp, tub2: 542-1340 bp, tef1-o: 1341-1896 bp). The best-scoring RAxML tree was selected to represent the relationships among taxa, with a final likelihood value of -11,777.047879. The matrix contained 944 distinct alignment patterns, with 17.98% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.235628, C = 0.271348, G =0.215132, and T = 0.277892; substitution rates were AC = 0.918956, AG = 2.618624, AT = 1.144576, CG = 0.760024, CT = 3.458802, and GT = 1.000000; gamma distribution shape parameter α = 0.361998; Tree-Length = 1.334915. For BI analysis, the best-fitting model of each locus and the final average standard deviation of split frequencies are shown in Table 4. Similar tree topologies were acquired by ML and Bayesian posterior probability (BYPP) analyses. The phylogenetic tree revealed that a new species, Neopestalotiopsis iteae (SDBR-CMU515), formed an independent branch sister to N. cocoës (0.91 BYPP; Figure 1). The new strain, SDBR-CMU517, is closely related to N. cercidicola, N. haikouensis, and N. terricola (Figure 1), whereas the new strain, SDBR-CMU516, grouped with N. chrysea and N. umbrinospora (Figure 1).

Analysis 2: the combined sequence dataset of ITS, *tub2*, and *tef1-\alpha* comprised 186 *Pestalotiopsis* strains and two outgroup taxa,

TABLE 1 GenBank accession numbers of Neopestalotiopsis strains used in phylogenetic analysis.

Таха	Strains	GenBank accessi	on number	
		ITS	tub2	tef1-α
Neopestalotiopsis acrostichi	MFLUCC 17-1754*	MK764272	MK764338	MK764316
Neopestalotiopsis acrostichi	MFLUCC 17-1755	MK764273	MK764339	MK764317
Neopestalotiopsis alpapicalis	MFLUCC 17-2544*	MK357772	MK463545	MK463547
Neopestalotiopsis amomi	HKAS 124563*	OP498012	OP752133	OP653489
Neopestalotiopsis amomi	HKAS 124564	OP498013	OP765913	OP753382
Neopestalotiopsis aotearoa	CBS 367.54*	NR163673	KM199454	KM199526
Neopestalotiopsis arecacearum	COAD 2017*	MH463406	MH460830	MH460838
Neopestalotiopsis arecacearum	COAD 2021	MH463409	MH460833	MH460841
Neopestalotiopsis asiatica	MFLUCC 12-0286*	JX398983	JX399018	JX399049
Neopestalotiopsis australis	CBS 114159*	KM199348	KM199432	KM199537
Neopestalotiopsis brachiata	MFLUCC 17-1555*	MK764274	MK764340	MK764318
Neopestalotiopsis brasiliensis	COAD 2166*	MG686469	MG692400	MG692402
Neopestalotiopsis brasiliensis	HGUP 191004	MZ724916	MZ724121	-
Neopestalotiopsis camelliae-oleiferae	CSUFTCC 81*	OK493585	OK562360	OK507955
Neopestalotiopsis camelliae-oleiferae	CSUFTCC 82	OK493586	OK562361	OK507956
Neopestalotiopsis cavernicola	KUMCC 20-0269*	MW545802	MW557596	MW550735
Neopestalotiopsis cavernicola	KUMCC 20-0332	MW581238	MW590328	MW590327
Neopestalotiopsis chiangmaiensis	MFLUCC 18-0113*	-	MH412725	MH388404
Neopestalotiopsis chiangmaiensis	MFLUCC 19-0048	MW248391	_	MW259070
Neopestalotiopsis chrysea	MFLUCC 12-0261*	JX398985	JX399020	JX399051
Neopestalotiopsis chrysea	MFLUCC 12-0262	JX398986	JX399021	JX399052
Neopestalotiopsis chrysea	SDBR-CMU516/KUNCC 24-18917	PQ521226	PQ560699	PQ529177
Neopestalotiopsis chrysea (=N. umbrinospora)	MFLUCC 12-0285	JX398984	JX399019	JX399050
Neopestalotiopsis clavispora	MFLUCC 12-0280	JX398978	JX399013	JX399044
Neopestalotiopsis clavispora	MFLUCC 12-0281*	JX398979	JX399014	JX399045
Neopestalotiopsis cocoës	MFLUCC 15-0152*	NR156312	-	KX789689
Neopestalotiopsis coffeae-arabicae	HGUP 4015	KF412647	KF412641	KF412644
Neopestalotiopsis coffeae-arabicae	HGUP 4019*	KF412649	KF412643	KF412646
Neopestalotiopsis concentrica	CFCC 55162/ROC 53*	OK560707	OM117698	OM622433
Neopestalotiopsis concentrica	ROC 137	OK560711	OM117702	OM622437
Neopestalotiopsis cubana	CBS 600.96*	KM199347	KM199438	KM199521
Neopestalotiopsis cubana	UMS01	OM320626	OM339539	OM339540
Neopestalotiopsis dendrobii	MFLUCC 14-0099	MK993570	MK975834	MK975828
Neopestalotiopsis dendrobii	MFLUCC 14-0106*	MK993571	MK975835	MK975829
Neopestalotiopsis drenthii	BRIP 72263a	MZ303786	MZ312679	MZ344171
Neopestalotiopsis drenthii	BRIP 72264a*	MZ303787	MZ312680	MZ344172
Neopestalotiopsis egyptiaca	CBS 140162*	KP943747	KP943746	KP943748

Таха	Strains	GenBank accessic	on number	
		ITS	tub2	tef1- α
Neopestalotiopsis elaeagni	HGUP10002/GUCC 21002*	MW930716	MZ683391	MZ203452
Neopestalotiopsis elaeagni	HGUP10004/GUCC 21006	ON597079	ON595537	ON595535
Neopestalotiopsis elaeidis	MFLUCC 15-0735*	ON650690	-	ON734012
Neopestalotiopsis ellipsospora	MFLUCC 12-0283*	JX398980	JX399016	JX399047
Neopestalotiopsis ellipsospora	MFLUCC 12-0284	JX398981	JX399015	JX399046
Neopestalotiopsis eucalypticola	CBS 264.37*	NR163670	KM199431	KM199551
Neopestalotiopsis eucalyptorum	CBS 147684*	MW794108	MW802841	MW805397
Neopestalotiopsis eucalyptorum	CBS 147685	MW794098	MW802831	MW805398
Neopestalotiopsis foedans	CGMCC 3.9123*	JX398987	JX399022	JX399053
Neopestalotiopsis foedans	CGMCC 3.9178	JX398989	JX399024	JX399055
Neopestalotiopsis foedans	CGMCC 3.9202	JX398988	JX399023	JX399054
Neopestalotiopsis formicarum	CBS 115.83	KM199344	KM199444	KM199519
Neopestalotiopsis formicarum	CBS 362.72*	KM199358	KM199455	KM199517
Neopestalotiopsis fragariae	ZHKUCC 22-0113*	ON553410	ON569075	ON569076
Neopestalotiopsis fragariae	ZHKUCC 22-0114	ON651145	ON685198	ON685196
Neopestalotiopsis guajavae	FMB 0026*	MF783085	MH460871	MH460868
Neopestalotiopsis guajavae	FMB 0027	MF783084	MH460872	MH460869
Neopestalotiopsis guajavicola	FMB 0129*	MH209245	MH460873	MH460870
Neopestalotiopsis hadrolaeliae	VIC 47180*	MK454709	MK465120	MK465122
Neopestalotiopsis haikouensis	SAUCC 212271*	OK087294	OK104870	OK104877
Neopestalotiopsis haikouensis	SAUCC 212272	OK087295	OK104871	OK104878
Neopestalotiopsis haikouensis	SDBR-CMU517/KUNCC 24-18918	PQ521227	PQ560700	PQ529178
Neopestalotiopsis haikouensis (=N. cercidicola)	CFCC 70632	PP784737	PP842614	PP842626
Neopestalotiopsis haikouensis (=N. cercidicola)	CFCC 70624	PP784738	PP842615	PP842627
Neopestalotiopsis haikouensis (=N. cercidicola)	CFCC 70623	PP784739	PP842616	PP842628
Neopestalotiopsis haikouensis (= N. terricola)	CGMCC 3.23553	OP082294	OP235982	OP204796
Neopestalotiopsis haikouensis (= N. terricola)	UESTCC 22.0034	OP082295	OP235983	OP204797
Neopestalotiopsis hispanica	CBS 147686*	MW794107	MW802840	MW805399
Neopestalotiopsis honoluluana	CBS 111535	KM199363	KM199461	KM199546
Neopestalotiopsis honoluluana	CBS 114495*	KM199364	KM199457	KM199548
Neopestalotiopsis hydeana	MFLUCC 20-0132*	MW266069	MW251119	MW251129
Neopestalotiopsis hydeana	MFLUCC 20-0136	MW266066	MW251116	MW251126
Neopestalotiopsis hypericin	KUNCC 22-12597*	OP498010	OP765908	OP713768
Neopestalotiopsis hypericin	KUNCC 22-12598	OP498009	OP737883	OP737880
Neopestalotiopsis iberica	CBS 147688*	MW794111	MW802844	MW805402
Neopestalotiopsis iberica	CBS 147689	MW794114	MW802847	MW805403
Neopestalotiopsis iranensis	CBS 137767	KM074045	KM074056	KM074053

Таха	Strains	GenBank accession number		
		ITS	tub2	tef1- α
Neopestalotiopsis iranensis	CBS 137768*	KM074048	KM074057	KM074051
Neopestalotiopsis iteae	SDBR-CMU515/KUNCC 24-18919*	PQ521228	PQ560701	PQ529179
Neopestalotiopsis javaensis	CBS 257.31*	KM199357	KM199437	KM199543
Neopestalotiopsis keteleeriae	MFLUCC 13-0915*	KJ023087	KJ023088	KJ023089
Neopestalotiopsis longiappendiculata	MEAN 1315*	MW794112	MW802845	MW805404
Neopestalotiopsis longiappendiculata	MEAN 1316	MW794103	MW802836	MW805405
Neopestalotiopsis lusitanica	CBS 147692*	MW794110	MW802843	MW805406
Neopestalotiopsis lusitanica	MEAN 1318	MW794093	MW802826	MW805407
Neopestalotiopsis macadamiae	BRIP 63737c*	KX186604	KX186654	KX186627
Neopestalotiopsis macadamiae	BRIP 63748a	KX186612	KX186663	KX186636
Neopestalotiopsis maddoxii	BRIP 72266a*	MZ303782	MZ312675	MZ344167
Neopestalotiopsis maddoxii	BRIP 72272a	MZ303783	MZ312676	MZ344168
Neopestalotiopsis maddoxii	BRIP 72284a	MZ303785	MZ312678	MZ344170
Neopestalotiopsis magna	MFLUCC 12-0652*	KF582795	KF582793	KF582791
Neopestalotiopsis mesopotamica	CBS 299.74	KM199361	KM199435	KM199541
Neopestalotiopsis mesopotamica	CBS 336.86*	KM199362	KM199441	KM199555
Neopestalotiopsis mianyangensis	UESTCC 22.0006	OP082291	OP235979	OP204793
Neopestalotiopsis mianyangensis	CGMCC 3.23554 *	OP546681	OP672161	OP723490
Neopestalotiopsis musae	MFLUCC 15-0776*	NR156311	KX789686	KX789685
Neopestalotiopsis musae	MM3-2z9A	MW959799	MZ288737	MZ417508
Neopestalotiopsis musae	MM3-2z9C	MW959801	MZ288739	MZ417510
Neopestalotiopsis natalensis	CBS 138.41*	NR156288	KM199466	KM199552
Neopestalotiopsis nebuloides	BRIP 66617*	MK966338	MK977632	MK977633
Neopestalotiopsis nebuloides	BRIP 70567	OM417295	ON995131	ON624201
Neopestalotiopsis olumideae	BRIP 72273a*	MZ303790	MZ312683	MZ344175
Neopestalotiopsis olumideae	BRIP 72283a	MZ303791	MZ312684	MZ344176
Neopestalotiopsis paeonia-suffruticosa	CGMCC 3.23555 *	OP082292	OP235980	OP204794
Neopestalotiopsis paeonia-suffruticosa	UESTCC 22.0033	OP082293	OP235981	OP204795
Neopestalotiopsis pandanicola	MFLUCC 17-2261*	-	MH412720	MH388389
Neopestalotiopsis pernambucana	UFPE-URM 7148*	KJ792466	-	KU306739
Neopestalotiopsis perukae	FMB 0127*	MH209077	MH460876	MH523647
Neopestalotiopsis perukae	FMB 0130	MH208973	MH477871	MH523648
Neopestalotiopsis petila	MFLUCC 17-1737*	MK764275	MK764341	MK764319
Neopestalotiopsis petila	MFLUCC 17-1738	MK764276	MK764342	MK764320
Neopestalotiopsis phangngaensis	MFLUCC 18-0119*	MH388354	MH412721	MH388390
Neopestalotiopsis photiniae	MFLUCC 22-0129*	OP498008	OP752131	OP753368
Neopestalotiopsis photiniae	GUCC 21-0820	OP806524	OP896200	OP828691

Таха	Strains	GenBank accession number		
		ITS	tub2	tef1- α
Neopestalotiopsis piceana	CBS 394.48*	KM199368	KM199453	KM199527
Neopestalotiopsis piceana	SAUCC 210112	OK149224	OK206434	OK206436
Neopestalotiopsis protearum	CBS 114178*	JN712498	KM199463	KM199542
Neopestalotiopsis protearum	CBS 111506	MH553959	MH554618	MH554377
Neopestalotiopsis psidii	FMB 0028*	MF783082	MH477870	MH460874
Neopestalotiopsis rhapidis	GUCC 21501*	MW931620	MW980441	MW980442
Neopestalotiopsis rhizophorae	MFLUCC 17-1551*	MK764277	MK764343	MK764321
Neopestalotiopsis rhododendri	GUCC 21504	MW979577	MW980443	MW980444
Neopestalotiopsis rhododendri	GUCC 21505*	MW979576	MW980445	MW980446
Neopestalotiopsis rhododendricola	KUN-HKAS 123204*	OK283069	OK274147	OK274148
Neopestalotiopsis rosae	CBS 101057*	KM199359	KM199429	KM199523
Neopestalotiopsis rosae	ML1664	MT469940	MT469943	MT469946
Neopestalotiopsis rosicola	CFCC 51992*	KY885239	KY885245	KY885243
Neopestalotiopsis rosicola	CFCC 51993	KY885240	KY885246	KY885244
Neopestalotiopsis samarangensis	MFLUCC 12-0233*	NR120125	JQ968610	JQ968611
Neopestalotiopsis saprophytica	GD22-1	MK228998	MK360939	MK512492
Neopestalotiopsis saprophytica	MFLUCC 12-0282*	JX398982	JX399017	JX399048
Neopestalotiopsis scalabiensis	CAA1029*	MW969748	MW934611	MW959100
Neopestalotiopsis sichuanensis	CFCC 54338*	MW166231	MW218524	MW199750
Neopestalotiopsis sichuanensis	SM15-1C	MW166232	MW218525	MW199751
Neopestalotiopsis siciliana	AC46*	ON117813	ON209162	ON107273
Neopestalotiopsis siciliana	TAP18N016	LC427168	LC427169	LC427170
Neopestalotiopsis sonneratae	MFLUCC 17-1744*	MK764279	MK764345	MK764323
Neopestalotiopsis steyaertii	IMI 192475*	KF582796	KF582794	KF582792
Neopestalotiopsis subepidermalis	CFCC 55160/ROC 161*	OK560699	OM117690	OM622425
Neopestalotiopsis subepidermalis	CFCC 55161/ROC 169	OK560701	OM117692	OM622427
Neopestalotiopsis suphanburiensis	MFLUCC 22-0126*	OP497994	OP752135	OP753372
Neopestalotiopsis surinamensis	MFLUCC 22-0126	KM199351	KM199465	KM199518
Neopestalotiopsis thailandica	MFLUCC 17-1730*	MK764281	MK764347	MK764325
Neopestalotiopsis thailandica	MFLUCC 17-1731	MK764282	MK764348	MK764326
Neopestalotiopsis vaccinii	CAA1059*	MW969747	MW934610	MW959099
Neopestalotiopsis vacciniicola	CAA1054	MW969750	MW934613	MW959102
Neopestalotiopsis vacciniicola	CAA1055*	MW969751	MW934614	MW959103
Neopestalotiopsis vheenae	BRIP 72293a*	MZ303792	MZ312685	MZ344177
Neopestalotiopsis vheenae	BRIP 70210	MN114212	MN114214	MN114213
Neopestalotiopsis vitis	MFLUCC15-1265*	KU140694	KU140685	KU140676
Neopestalotiopsis vitis	MFLUCC 15-1270	KU140699	KU140690	KU140681

Таха	Strains	GenBank acces	GenBank accession number		
		ITS	tub2	tef1-α	
Neopestalotiopsis xishuangbannaensis	KUMCC 21-0424*	ON426865	OR025934	OR025973	
Neopestalotiopsis xishuangbannaensis	KUMCC 21-0425	ON426866	OR025935	OR025974	
Neopestalotiopsis zakeelii	BRIP 72271a	MZ303788	MZ312681	MZ344173	
Neopestalotiopsis zakeelii	BRIP 72282a*	MZ303789	MZ312682	MZ344174	
Neopestalotiopsis zimbabwana	CBS 111495*	JX556231	KM199456	KM199545	
Neopestalotiopsis zimbabwana	MEAN 1329	MW794095	MW802828	MW805418	
Neopestalotiopsis zingiberis	HGUP10001/GUCC 21001*	MW930715	MZ683390	MZ683389	
Neopestalotiopsis zingiberis	HGUP10005/GUCC 21007	ON597078	ON595538	ON595536	
Pestalotiopsis diversiseta	MFLUCC 12-0287	NR_120187	JX399040	JX399073	
Pestalotiopsis spathulata	CBS 356.86	KM199338	KM199423	KM199513	

The newly generated sequences are indicated in bold and the new species are in red. The synonymized taxon is indicated in blue. The ex-type strains are represented as "+" and missing sequences are represented as "-".

TABLE 2 GenBank accession numbers of Pestalotiopsis strains used in phylogenetic analysis.

Таха	Strains	GenBank acc	GenBank accession number		
		ITS	tub2	tef1-α	
Neopestalotiopsis cubana	CBS 600.96*	KM199347	KM199438	KM199521	
Neopestalotiopsis protearum	CBS 114178*	JN712498	KM199463	KM199542	
Pestalotiopsis abietis	CFCC 53011*	MK397013	MK622280	MK622277	
Pestalotiopsis adusta	ICMP 6088*	JX399006	JX399037	JX399070	
Pestalotiopsis aff. jesteri	WPF-54	KT000164	-	-	
Pestalotiopsis aff. jesteri	WPF-55-12G	KT000165	-	-	
Pestalotiopsis aggestorum	LC6301*	KX895015	KX895348	KX895234	
Pestalotiopsis anacardiacearum	IFRDCC 2397*	KC247154	KC247155	KC247156	
Pestalotiopsis anacardiacearum	FY10-12	MK228990	MK360931	MK512484	
Pestalotiopsis anhuiensis	CFCC 54791*	ON007028	ON005056	ON005045	
Pestalotiopsis appendiculata	CGMCC 3.23550*	OP082431	OP185516	OP185509	
Pestalotiopsis arceuthobii	CBS 433.65	MH554046	MH554722	MH554481	
Pestalotiopsis arceuthobii	CBS 434.65*	KM199341	KM199427	KM199516	
Pestalotiopsis arengae	CBS 331.92*	KM199340	KM199426	KM199515	
Pestalotiopsis arengae	MFTU12	MT952584	MT957914	MT957939	
Pestalotiopsis australasiae	CBS 114126*	KM199297	KM199409	KM199499	
Pestalotiopsis australis	CBS 114193*	KM199332	KM199383	KM199475	
Pestalotiopsis australis	MEAN 1096	MT374684	MT374709	MT374696	
Pestalotiopsis biciliata	CBS 124463*	KM199308	KM199399	KM199505	
Pestalotiopsis brachiata	LC2988*	KX894933	KX895265	KX895150	
Pestalotiopsis brachiata	LC8188	KY464142	KY464162	KY464152	
Pestalotiopsis brassicae	CBS 170.26*	KM199379	-	KM199558	

Таха	Strains	GenBank accession number		
		ITS	tub2	tef1-α
Pestalotiopsis camelliae	MFLUCC 12-0277*	JX399010	JX399041	JX399074
Pestalotiopsis camelliae	NTUCC 18-001/BCRC FU31443	MT322016	MT321818	MT321917
Pestalotiopsis camelliae-japonicae	ZHKUCC 23-0826*	OR258040	OR251483	OR251480
Pestalotiopsis camelliae-japonicae	ZHKUCC 23-0827	OR258041	OR251484	OR251481
Pestalotiopsis camelliae-oleiferae	CSUFTCC 08*	OK493593	OK562368	OK507963
Pestalotiopsis cangshanensis	CGMCC 3.23544*	OP082426	OP185517	OP185510
Pestalotiopsis castanopsidis	CFCC 54430*	OK339732	OK358508	OK358493
Pestalotiopsis castanopsidis	CFCC 54384	OK339734	OK358510	OK358495
Pestalotiopsis chamaeropis	CBS 186.71*	KM199326	KM199391	KM199473
Pestalotiopsis chamaeropis	LC3609	KX894989	KX895320	KX895206
Pestalotiopsis chamaeropis	NTUPPMCC 21-054	OR125062	OR126308	OR126315
Pestalotiopsis changjiangensis	CFCC 54314*	OK339739	OK358515	OK358500
Pestalotiopsis changjiangensis	CFCC 52803	OK339741	OK358517	OK358502
Pestalotiopsis chaoyangensis	CFCC 55549*	OQ344763	OQ410584	OQ410582
Pestalotiopsis chaoyangensis	CFCC 58805	OQ344764	OQ410585	OQ410583
Pestalotiopsis chiangmaiensis	MFLUCC 22-0127*	OP497990	OP752137	OP753374
Pestalotiopsis chiaroscuro	BRIP 72970*	OK422510	OK423752	OK423753
Pestalotiopsis chinensis	MFLUCC 12-0273*	JX398995	_	-
Pestalotiopsis clavata	MFLUCC 12-0268*	NR120182	JX399025	JX399056
Pestalotiopsis colombiensis	CBS 118553*	KM199307	KM199421	KM199488
Pestalotiopsis cyclobalanopsidis	CFCC 54328*	OK339735	OK358511	OK358496
Pestalotiopsis cyclobalanopsidis	CFCC 55891	OK339736	OK358512	OK358497
Pestalotiopsis daliensis	CGMCC 3.23548*	OP082429	OP185518	OP185511
Pestalotiopsis dianellae	CBS 143421*	NR156664	MG386164	-
Pestalotiopsis digitalis	ICMP 5434*	KP781879	KP781883	-
Pestalotiopsis dilucida	LC3232*	KX894961	KX895293	KX895178
Pestalotiopsis dilucida	LC8184	KY464138	KY464158	KY464148
Pestalotiopsis diploclisiae	CBS 115587*	KM199320	KM199419	KM199486
Pestalotiopsis disseminata	CBS 118552	MH553986	MH554652	MH554410
Pestalotiopsis diversiseta	MFLUCC 12-0287*	NR120187	JX399040	JX399073
Pestalotiopsis doitungensis	MFLUCC 14-0090*	MK993573	MK975836	MK975831
Pestalotiopsis dracaenae	HGUP 4037*	MT596515	MT598645	MT598644
Pestalotiopsis dracaenae	MFLU 19-2757	MW114334	-	MW192201
Pestalotiopsis dracaenicola	MFLUCC 18-0913*	MN962731	MN962733	MN962732
Pestalotiopsis dracontomelonis	MFLUCC 10-0149*	NR168755	-	KP781880
Pestalotiopsis dracontomelonis	MFLUCC 22-0122	-	OP762672	OP753375
Pestalotiopsis eleutherococci	HMJAU 60189*	NR182556	-	-

Таха	Strains	GenBank accession number		
		ITS	tub2	tef1- α
Pestalotiopsis eleutherococci	HMJAU 60190	OL996127	OL898722	-
Pestalotiopsis endophytica	GUCC 21539	MZ477294	MZ868299	MZ868343
Pestalotiopsis endophytica	MFLUCC 18-0932*	NR172439	-	MW417119
Pestalotiopsis ericacearum	IFRDCC 2439*	KC537807	KC537821	KC537814
Pestalotiopsis etonensis	BRIP 66615*	MK966339	MK977634	MK977635
Pestalotiopsis ficicola	SAUCC230046*	OQ691974	OQ718749	OQ718691
Pestalotiopsis ficicola	SAUCC230042	OQ691972	OQ718747	OQ718689
Pestalotiopsis ficicrescens	GUCC 21556*	MZ477311	MZ868301	MZ868328
Pestalotiopsis foliicola	CFCC 54440*	ON007029	ON005057	ON005046
Pestalotiopsis formosana	NCYU 19-0353	MW114335	MW148260	MW192202
Pestalotiopsis formosana	NTUCC 17-009*	MH809381	MH809385	MH809389
Pestalotiopsis formosana	NTUCC 17-010/BCRC FU31632	MH809382	MH809386	MH809390
Pestalotiopsis formosana	NTUPPMCC 21-056	OR125064	OR126310	OR126317
Pestalotiopsis furcata	MFLUCC 12-0054*	NR120087	JQ683708	JQ683740
Pestalotiopsis furcata	LC6691	KX895030	KX895363	KX895248
Pestalotiopsis fusoidea	CGMCC 3.23545*	OP082427	OP185519	OP185512
Pestalotiopsis gibbosa	IFRD 411-014	KC537805	KC537819	KC537812
Pestalotiopsis gibbosa	NOF 3175*	LC311589	LC311590	LC311591
Pestalotiopsis grevilleae	CBS 114127*	KM199300	KM199407	KM199504
Pestalotiopsis guangdongensis	ZHKUCC 22-0016*	ON180762	ON221548	ON221520
Pestalotiopsis guangdongensis	ZHKUCC 22-0017	ON180763	ON221549	ON221521
Pestalotiopsis guangxiensis	CFCC 54308*	OK339737	OK358513	OK358498
Pestalotiopsis guizhouensis	CFCC 54803*	ON007035	ON005063	ON005052
Pestalotiopsis hainanensis	CNU060362	GQ869902	GQ869905	-
Pestalotiopsis hainanensis	PSHI2004Endo166*	DQ334863	DQ137861	-
Pestalotiopsis hawaiiensis	CBS 114491*	KM199339	KM199428	KM199514
Pestalotiopsis hispanica	CBS 115391*	NR161080	MH554640	MH554399
Pestalotiopsis hispanica	LS-1	OL441090	OL448307	OL448308
Pestalotiopsis hispanica	NTUPPMCC 18-162	OR125059	OR126305	OR126312
Pestalotiopsis hollandica	CBS 265.33*	KM199328	KM199388	KM199481
Pestalotiopsis humicola	CBS 336.97*	KM199317	KM199420	KM199484
Pestalotiopsis hunanensis	CSUFTCC 15*	OK493599	OK562374	OK507969
Pestalotiopsis hydei	MFLUCC 20-0135*	MW266063	MW251112	MW251113
Pestalotiopsis iberica	CAA 1004*	MW732248	MW759035	MW759038
Pestalotiopsis inflexa	MFLUCC 12-0270*	NR111789	JX399039	JX399072
Pestalotiopsis intermedia	MFLUCC 12-0259*	JX398993	JX399028	JX399059
Pestalotiopsis italiana	MFLUCC 12-0657*	KP781878	KP781882	KP781881

Таха	Strains	GenBank accession number		
		ITS	tub2	tef1- α
Pestalotiopsis jesteri	CBS 109350*	KM199380	KM199468	-
Pestalotiopsis jiangxiensis	LC4399*	KX895009	KX895341	KX895227
Pestalotiopsis jinchanghensis	SDBR-CMU518/KUNCC 24-18920	PQ521229	PQ560702	PQ529180
Pestalotiopsis jinchanghensis	LC6636*	KX895028	KX895361	KX895247
Pestalotiopsis jinchanghensis (=P. zhaoqingensis)	ZHKUCC 23-0825	OR233336	OR239062	OR239061
Pestalotiopsis kaki	KNU-PT-1804*	LC552953	LC552954	LC553555
Pestalotiopsis kandelicola	NCYUCC 19-0354	MT560723	MT563100	MT563102
Pestalotiopsis kenyana	CBS 442.67*	KM199302	KM199395	KM199502
Pestalotiopsis knightiae	CBS 114138*	KM199310	KM199408	KM199497
Pestalotiopsis krabiensis	MFLUCC 16-0260*	NR168199	MH412722	MH388395
Pestalotiopsis kunmingensis	PSHI2002Endo766*	AY373376	DQ333576	-
Pestalotiopsis leucadendri	CBS 121417*	MH553987	MH554654	MH554412
Pestalotiopsis licualacola	HGUP 4057*	KC492509	KC481683	KC481684
Pestalotiopsis lijiangensis	CFCC 50738*	KU860520	-	-
Pestalotiopsis lijiangensis	CFCC 50739	MH880834	-	-
Pestalotiopsis linearis	MFLUCC 12-0271*	NR120183	JX399027	JX399058
Pestalotiopsis linguae	ZHKUCC 22-0159 *	OP094104	OP186108	OP186110
Pestalotiopsis linguae	ZHKUCC 22-0160	OP094103	OP186107	OP186109
Pestalotiopsis lithocarpi	CFCC 55100*	OK339742	OK358518	OK358503
Pestalotiopsis lithocarpi	CFCC 55893	OK339743	OK358519	OK358504
Pestalotiopsis loeiana	MFLUCC 22-0123*	OP497988	OP713769	OP737881
Pestalotiopsis lushanensis	LC4344*	KX895005	KX895337	KX895223
Pestalotiopsis macadamiae	BRIP 63738b*	KX186588	KX186680	KX186621
Pestalotiopsis malayana	CBS 102220*	KM199306	KM199411	KM199482
Pestalotiopsis manyueyuanani	NTUPPMCC 18-165*	OR125060	OR126306	OR126313
Pestalotiopsis manyueyuanani	NTUPPMCC 22-012	OR125061	OR126307	OR126314
Pestalotiopsis menhaiensis	CGMCC 3.18250*	KU252272	KU252488	KU252401
Pestalotiopsis monochaeta	CBS 144.97*	NR147554	KM199386	KM199479
Pestalotiopsis montellica	MFLUCC 12-0279	JX399012	JX399043	JX399076
Pestalotiopsis nanjingensis	CSUFTCC 16*	OK493602	OK562377	OK507972
Pestalotiopsis nanningensis	CSUFTCC 10*	OK493596	OK562371	OK507966
Pestalotiopsis neolitseae	MFLU 18-2536	MW114336	MW148261	MW192203
Pestalotiopsis neolitseae	NTUCC 17-011*	MH809383	MH809387	MH809391
Pestalotiopsis novae-hollandiae	CBS 130973*	NR147557	KM199425	KM199511
Pestalotiopsis oryzae	CBS 353.69*	KM199299	KM199398	KM199496
Pestalotiopsis pallidotheae	MAFF 240993*	NR111022	LC311584	LC311585
Pestalotiopsis pandanicola	MFLUCC 16-0255*	MH388361	MH412723	MH388396

Таха	Strains	GenBank accession number		
		ITS	tub2	tef1- α
Pestalotiopsis papuana	CBS 331.96*	KM199321	KM199413	KM199491
Pestalotiopsis papuana	MFLU 19-2764	MW114337	MW296942	MW192204
Pestalotiopsis parva	CBS 265.37	KM199312	KM199404	KM199508
Pestalotiopsis phoebes	SAUCC230093*	OQ692028	OQ718803	OQ718745
Pestalotiopsis phoebes	SAUCC230092	OQ692027	OQ718802	OQ718744
Pestalotiopsis photinicola	GZCC 16-0028*	KY092404	KY047663	KY047662
Pestalotiopsis pini	MEAN 1092*	MT374680	MT374705	MT374693
Pestalotiopsis pini	CBS 127.80	MH553995	MH554664	MH554422
Pestalotiopsis pinicola	KUMCC 19-0183*	MN412636	MN417507	MN417509
Pestalotiopsis piraubensis	COAD 2165*	MH627381	MH643773	MH643774
Pestalotiopsis portugallica	CBS 393.48*	KM199335	KM199422	KM199510
Pestalotiopsis portugallica	NCYU 19-0352	MW114339	MW148263	MW192206
Pestalotiopsis pyrrosiae-linguae	ZHKUCC 23-0807*	OR199902	OR259258	OR259260
Pestalotiopsis pyrrosiae-linguae	ZHKUCC 23-0808	OR199903	OR259259	OR259261
Pestalotiopsis rhizophorae	MFLUCC 17-0416*	MK764283	MK764349	MK764327
Pestalotiopsis rhododendri	IFRDCC 2399*	KC537804	KC537818	KC537811
Pestalotiopsis rhodomyrtus	HGUP 4230*	KF412648	KF412642	KF412645
Pestalotiopsis rosarioides	CGMCC 3.23549*	OP082430	OP185520	OP185513
Pestalotiopsis rosea	MFLUCC 12-0258*	JX399005	JX399036	JX399069
Pestalotiopsis sabal	ZHKUCC 22-0031	ON180769	ON221555	ON221527
Pestalotiopsis sabal	ZHKUCC 22-0035*	ON180775	ON221561	ON221533
Pestalotiopsis scoparia	CBS 176.25*	KM199330	KM199393	KM199478
Pestalotiopsis scoparia	CBS 296.58	MH554026	MH554703	MH554461
Pestalotiopsis sequoiae	MFLUCC 13-0399*	KX572339	-	-
Pestalotiopsis shaanxiensis	CFCC 54958*	ON007026	ON005054	ON005043
Pestalotiopsis shoreae	MFLUCC 12-0314*	KJ503811	KJ503814	KJ503817
Pestalotiopsis sichuanensis	CGMCC 3.18244*	KX146689	KX146807	KX146748
Pestalotiopsis silvicola	CFCC 55296*	ON007032	ON005060	ON005049
Pestalotiopsis smilacicola	MFLUCC 22-0124	OP497989	OP762674	OP737879
Pestalotiopsis smilacicola	MFLUCC 22-0125*	OP497991	OP762673	OP753376
Pestalotiopsis sonneratiae	CFCC 57394*	ON114184	ON086816	ON086812
Pestalotiopsis sonneratiae	CFCC 57395	ON114185	ON086817	ON086813
Pestalotiopsis spatholobi	SAUCC231201*	OQ692023	OQ718798	OQ718740
Pestalotiopsis spatholobi	SAUCC231203	OQ692024	OQ718799	OQ718741
Pestalotiopsis spathulata	CBS 356.86*	KM199338	KM199423	KM199513
Pestalotiopsis spathuliappendiculata	CBS 144035*	MH554172	MH554845	MH554607
Pestalotiopsis suae	CGMCC 3.23546*	OP082428	OP185521	OP185514

Таха	Strains	GenBank acce	ession number	
		ITS	tub2	tef1- α
Pestalotiopsis telopeae	CBS 114161*	KM199296	KM199403	KM199500
Pestalotiopsis terricola	CBS 141.69*	NR161084	MH554680	MH554438
Pestalotiopsis thailandica	MFLUCC 17-1616*	NR164471	MK764352	MK764330
Pestalotiopsis trachycarpicola	IFRDCC 2440*	NR120109	JQ845945	JQ845946
Pestalotiopsis trachycarpicola	MFLU 18-2524	MW114340	MW148264	MW192207
Pestalotiopsis trachycarpicola	NTUCC 18-004/BCRC FU31445	MT322019	MT321821	MT321920
Pestalotiopsis trachycarpicola	NTUPPMCC 18-160	OR125058	OR126304	OR126311
Pestalotiopsis trachycarpicola	NTUPPMCC 21-055	OR125063	OR126309	OR126316
Pestalotiopsis tumida	CFCC 55158*	OK560610	OM158174	OL814524
Pestalotiopsis unicolor	MFLUCC 120275	JX398998	JX399029	JX399063
Pestalotiopsis unicolor	MFLUCC 12-0276*	JX398999	JX399030	-
Pestalotiopsis verruculosa	MFLUCC 12-0274*	NR120185	_	JX399061
Pestalotiopsis yanglingensis	LC4553*	KX895012	KX895345	KX895231
Pestalotiopsis yanglingensis	NTUCC 18-005/BCRC FU31446	MT322020	MT321822	MT321921
Pestalotiopsis yunnanensis	HMAS 96359*	AY373375	-	-
Pestalotiopsis yunnanensis	PSHI2002Endo8171	AY526872	-	-

The newly generated sequences are indicated in bold. The synonymized taxon is indicated in blue. The ex-type strains are represented as "+" and missing sequences are represented as "-".

TABLE 3 GenBank accession numbers of *Pseudopestalotiopsis* strains used in phylogenetic analysis.

Таха	Chusing	GenBank acce	GenBank accession number		
	Strains	ITS	tub2	tef1-α	
Pestalotiopsis linearis	MFLUCC 12-0271*	JX398992	JX399027	JX399058	
Pestalotiopsis trachycarpicola	IFRDCC 2240*	NR_120109	JQ845945	JQ845946	
Pseudopestalotiopsis ampullacea	LC6618*	KX895025	KX895358	KX895244	
Pseudopestalotiopsis annellata	NTUCC 17-030*	MT322087	MT321889	MT321988	
Pseudopestalotiopsis avicenniae	MFLUCC 17-0434*	MK764287	MK764353	MK764331	
Pseudopestalotiopsis camelliae-sinesis	LC3490*	KX894985	KX895316	KX895202	
Pseudopestalotiopsis celtidis	GUCC 21599*	OL423535	OL439010	OL439012	
Pseudopestalotiopsis chinensis	LC3011*	KX894937	KX895269	KX895154	
Pseudopestalotiopsis cocos	CBS 272.29*	KM199378	KM199467	KM199553	
Pseudopestalotiopsis curvatispora	MFLUCC 17-1722*	MK764288	MK764354	MK764332	
Pseudopestalotiopsis dawaina	MM14 F0015*	LC324750	LC324751	LC324752	
Pseudopestalotiopsis elaeidis	CBS 413.62*	MH554044	MH554720	MH554479	
Pseudopestalotiopsis gilvanii	INPA 2913*	MN385951	MN385954	MN385957	
Pseudopestalotiopsis gilvanii	INPA 2914	MN385952	MN385955	MN385958	
Pseudopestalotiopsis ignota	NN 42909*	KU500020	-	KU500016	
Pseudopestalotiopsis indica	CBS 459.78*	KM199381	KM199470	KM199560	

		GenBank accession number			
Таха	Strains	ITS	tub2	tef1- α	
Pseudopestalotiopsis indocalami	GUCC 21600*	OL423536	OL439011	OL439013	
Pseudopestalotiopsis iteae	SDBR-CMU514/KUNCC 24-18921*	PQ521230	PQ560703	PQ529181	
Pseudopestalotiopsis iteae	SDBR-CMU519/KUNCC 24-18922	PQ521231	PQ560704	PQ529182	
Pseudopestalotiopsis iteae	SDBR-CMU520/KUNCC 24-18923	PQ521232	PQ560705	PQ529183	
Pseudopestalotiopsis iteae	SDBR-CMU521/KUNCC 24-18924	PQ521233	PQ560706	PQ529184	
Pseudopestalotiopsis iteae	SDBR-CMU522/KUNCC 24-18925	PQ521234	PQ560707	PQ529185	
Pseudopestalotiopsis iteae	SDBR-CMU523/KUNCC 24-18926	PQ521235	PQ560708	PQ529186	
Pseudopestalotiopsis iteae	SDBR-CMU524/KUNCC 24-18927	PQ521236	PQ560709	PQ529187	
Pseudopestalotiopsis iteae (as Ps. theae)	NTUCC 18-067	MT322086	MT321888	MT321987	
Pseudopestalotiopsis ixorae	NTUCC 17-001.1*	MG816316	MG816326	MG816336	
Pseudopestalotiopsis kawthaungina	MM14 F0083*	LC324753	LC324754	LC324755	
Pseudopestalotiopsis kubahensis	UMAS-KUB-P20*	KT006749	-	-	
Pseudopestalotiopsis myanmarina	NBRC 112264*	LC114025	LC114045	LC114065	
Pseudopestalotiopsis rhizophorae	MFLUCC 17-1560*	MK764291	MK764357	MK764335	
Pseudopestalotiopsis simitheae	MFLUCC 12-0121*	KJ503812	KJ503815	KJ503818	
Pseudopestalotiopsis solicola	CBS 386.97*	NR_161086	MH554715	MH554474	
Pseudopestalotiopsis sp.	SD012	JQ683720	JQ683704	JQ683736	
Pseudopestalotiopsis sp.	NBRC112267	LC114030	LC114050	LC114070	
Pseudopestalotiopsis sp.	NBRC112268	LC114031	LC114051	LC114071	
Pseudopestalotiopsis sp.	NBRC112258	LC114036	LC114056	LC114076	
Pseudopestalotiopsis sp.	NBRC112259	LC114039	LC114059	LC114079	
Pseudopestalotiopsis sp.	MAFF 238515	LC114040	LC114060	LC114080	
Pseudopestalotiopsis taiwanensis	NTUCC 17-002.1*	MG816319	MG816329	MG816339	
Pseudopestalotiopsis thailandica	MFLUCC 17-1724*	MK764292	MK764358	MK764336	
Pseudopestalotiopsis theae	MFLUCC 12-0055*	JQ683727	JQ683711	JQ683743	
Pseudopestalotiopsis theae	MFLUCC 22-0128	OP497993	OP752136	OP753377	
Pseudopestalotiopsis theae	SC011	JQ683726	JQ683710	JQ683742	
Pseudopestalotiopsis vietnamensis	NBRC 112252*	LC114034	LC114054	LC114074	

The newly generated sequences are indicated in bold and the new species are in red. The synonymized taxon is indicated in blue. The ex-type strains are represented as "+" and missing sequences are represented as "-".

Neopestalotiopsis cubana (CBS 114178) and N. protearum (ZHKUCC 23-0825) (Figure 2). The aligned dataset consisted of a total 1,959 characters with gaps (ITS: 1–604 bp, *tub2*: 605–1399 bp, *tef1-α*: 1400–1959 bp). The best-scoring RAxML tree was selected to represent the relationships among taxa, with a final likelihood value of -19,588.100995. The matrix contained 1,090 distinct alignment patterns, with 23.02% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.238520, C = 0.293691, G = 0.214954, and T = 0.252835; substitution rates were AC = 1.093468, AG = 2.897598, AT = 1.166594, CG = 1.024049, CT = 4.038506, and GT = 1.000000; gamma

distribution shape parameter $\alpha = 0.338893$, Tree-Length = 2.486656. For BI, the best-fitting model of each locus and the final average standard deviation of split frequencies are shown in Table 4. Similar tree topologies were acquired from ML and BYPP analyses. In the phylogenetic tree (Figure 2), the new strain, SDBR-CMU518, clustered together with *Pestalotiopsis jinchanghensis* and *P. zhaoqingensis* (86% ML and 1.00 BYPP; Figure 2).

Analysis 3: the combined sequence dataset of ITS, tub2, and $tef1-\alpha$ comprised 44 *Pseudopestalotiopsis* strains and two outgroup taxa, *Pestalotiopsis linearis* (MFLUCC 12-0271) and *P. trachycarpicola* (IFRDCC 2240) (Figure 3). The aligned dataset

The new isolates are indicated in red and the ex-type strains are in bold. The synonymized taxon is indicated in blue. The tree is rooted with Pestalotiopsis diversiseta (MFLUCC 12-0287) and P. spathulata (CBS 356.86).

consisted of a total 1,848 characters with gaps (ITS: 1-550 bp, tef1α: 551–1067 bp, *tub2*: 1068–1848 bp). The best-scoring RAxML tree was selected to represent the relationships among taxa, with a final likelihood value of -6,642.700192. The matrix contained 554 distinct alignment patterns, with 16.44% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.243417, C = 0.274291, G = 0.213172, and T = 0.269120; substitution rates were

AC = 1.025029, AG = 2.296252, AT = 1.005669, CG = 0.871957, CT = 3.231208, and GT = 1.000000; gamma distribution shape parameter α = 0.306881, Tree-Length = 0.625052. For BI analysis, the best-fitting model of each locus and the final average standard deviation of split frequencies are shown in Table 4. Similar tree topologies were acquired by ML and BYPP analyses. The phylogenetic tree showed that Pseudopestalotiopsis iteae (SDBR-

Phylogram constructed by maximum likelihood (ML) analyses of combined ITS, tub2, and tef1- α sequence dataset of Pestalotiopsis. Bootstrap support valued for ML and Bayesian posterior probabilities (BYPP) equal to or greater than 70% and 0.90 are shown above the nodes as ML/BYPP. The new isolates are indicated in red and the ex-type strains are in bold. The synonymized taxon is indicated in blue. The tree is rooted with Neopestalotiopsis cubana (CBS 114178) and N. protearum (ZHKUCC 23-0825)

Phylogram constructed by maximum likelihood (ML) analyses of combined ITS, tub2, and $tef1-\alpha$ sequence dataset of *Pseudopestalotiopsis*. Bootstrap support valued for ML and Bayesian posterior probabilities (BYPP) equal to or greater than 70% and 0.90 are shown above the nodes as ML/BYPP. The new isolates are indicated in red and the ex-type strains are in bold. The synonymized taxon is indicated in blue. The tree is rooted with *Pestalotiopsis* (MFLUCC 12-0271) and *P. trachycarpicola* (IFRDCC 2240).

CMU514, SDBR-CMU519, SDBR-CMU520, SDBR-CMU521, SDBR-CMU522, SDBR-CMU523, and SDBR-CMU524) grouped with *Ps. theae* strain NTUCC 18-067 (70% ML and 0.92 BYPP) and formed a distinct subclade basal to the ex-epitype of *Ps. theae* (MFLUCC 12-0055) (Figure 3).

3.2 Taxonomy

Neopestalotiopsis chrysea (Maharachch. & K.D. Hyde) Maharachch., K.D. Hyde & Crous, *Stud. Mycol.* 79: 138 (2014) (Figure 4). \equiv Pestalotiopsis chrysea Maharachch. and K.D. Hyde, Fungal Divers. 56(1): 107 (2012).

= Neopestalotiopsis umbrinospora (Maharachch. and K.D. Hyde) Maharachch., K.D. Hyde & Crous, *Stud. Mycol.* 79: 149 (2014).

Typification: CHINA, Guangxi Province, Shangsi, Shiwandashan, Wangle, dead leaves of unidentified plant, 2 January 1997, W.P. Wu (HMAS042855, holotype; MFLU 12-0411, isotype, ex-type culture NN042855 = MFLUCC 12-0261).

Description of the new collection: *Endophytic* on healthy roots of *Itea riparia*. Sexual morph: Undetermined. Asexual morph: *Conidiomata* up to 600 µm diameter, globose to subglobose,

TABLE 4 The best-fit substitution model and the average standard deviation of split frequencies resulting from the Bayesian inference (BI) analysis. .

Analysis	Average standard deviation of split frequencies	Model			
		ITS	tub2	tef1-α	
1. Neopestalotiopsis	0.009969	HKY+I+G	GTR+I+G	HKY+G	
2. Pestalotiopsis	0.009998	GTR+I+G	HKY+I+G	GTR+I+G	
3. Pseudopestalotiopsis	0.009889	HKY+G	HKY+G	GTR+I+G	

(D–F) Conidiophores, conidiogenous cells and conidia. (G) Conidia. Scale bars: (B, C) 500 μm, (D–F) 5 μm, and (G) 10 μm.

solitary to aggregated, black, semi-immersed on PDA, releasing globose, brown to black, slimy conidial masses. Conidiophores up to 65 μ m long \times 2–3 μ m wide, hyaline, brown septa, branched. Conidiogenous cells $6-22 \times 1.5-3 \ \mu m \ (\bar{x} = 15.5 \times 2 \ \mu m, \ n = 10),$ discrete, holoblastic, subcylindrical to lageniform, hyaline, smoothwalled. Conidia 18.5–27.5 × 4–6 μ m ($\bar{x} = 22 \times 5 \mu$ m, n = 30), fusiform to elongated fusiform, or ellipsoid, narrower towards the basal cells, straight to slightly curved, 4-septate; basal cell $3-7 \ \mu m$ long, subcylindrical to obconic, hyaline to pale brown, thin and smooth-walled; three median cells 12-16 µm long, sometimes hyaline to pale brown, one median cell when immature, pale brown to dark brown, with thick and darker brown septa, versicolored, second cell from base 4-4.5 µm, pale to light brown; third cell 4-4.5 µm, darker brown to olivaceous; fourth cell 4-4.5 µm, pale brown to olivaceous; apical cell 3-5 µm long, hyaline, obconic to conic; with two to three apical appendages, arising from

the apical crest, filiform, unbranched, 24–30 μ m long; with a single basal appendage, filiform, unbranched, centric, 3–6 μ m long.

Culture characteristics: *Colonies* on PDA reached at 7 cm diameter after 5 days at 25°C, irregular form, raised elevation, crenate edge, whitish, with sparse aerial mycelium on surface, yellowish to pale brown in reverse. Sporulation on PDA at 25°C after 30 days, with numerous black fruiting bodies.

Material examined: THAILAND, Chiang Mai Province, Mae Rim District, on healthy roots of *Itea riparia (Iteaceae*), 10 July 2023, J. Monkai, IT107 (CMUB 40073), living culture, SDBR-CMU516 = KUNCC 24-18917, dried culture permanently preserved in a metabolically inactive state, CMUB 40073.

GenBank number: PQ521226 (ITS), PQ560699 (*tub2*), and PQ529177 (*tef1-* α).

Habitats and host: Dead and living tissue of *Carya illinoinensis*, *Itea riparia*, *Vaccinium ashei*, and unidentified plants

(Maharachchikumbura et al., 2012; 2014; Shi et al., 2017; Wu et al., 2021; this study).

Distribution: China (Anhui, Fujian, Guangxi and Hunan Provinces) and Thailand (Maharachchikumbura et al., 2012; 2014; Shi et al., 2017; Wu et al., 2021; this study).

Notes: Based on the nucleotide BLAST search of ITS sequence, the new isolate of *Neopestalotiopsis chrysea* (SDBR-CMU516) showed the closest similarity with *Neopestalotiopsis* sp. 15 SSNM-2014 strain CBS 177.25 (100%), *Pestalotiopsis* sp. LH162 (100%), and *N. clavispora* strain YZM-1 (100%). Based on the nucleotide BLAST search of *tub2* sequence, *N. chrysea* (SDBR-CMU516) showed the closest similarity with *Neopestalotiopsis* sp. strain LC3480 (99.35%), *N. asiatica* isolate JGGH5 (99.35%), and *N. chrysea* isolate LSCKS81 (99.35%). Based on the nucleotide BLAST search of *tef1-α* sequence, *N. chrysea* (SDBR-CMU516) showed the closest similarity with *Pestalotiopsis chrysea* strain MFLUCC12-0261 (99.59%), *Neopestalotiopsis* sp. strain LC3480 (99.59%), and *N. chrysea* strain FZXM038 (99.38%).

Our new strain (SDBR-CMU516) was phylogenetically close to *Neopestalotiopsis chrysea* and *N. umbrinospora* (Figure 1). The nucleotide comparison between our new strain (SDBR-CMU516) and *N. chrysea* (MFLUCC 12-0261, ex-type) showed 0.9% (4/430) and 0.4% (2/487) bp difference in *tub2* and *tef1-α* (whereas those in ITS are identical). The nucleotide comparison between our new strain (SDBR-CMU516) and *N. umbrinospora* (MFLUCC 12-0285, ex-type) showed 0.9% (4/430) and 0.8% (4/487) bp difference in *tub2* and *tef1-α* (whereas those in ITS are identical). The nucleotide comparison between *N. chrysea* (MFLUCC 12-0261, ex-type) and *N. umbrinospora* (MFLUCC 12-0261, ex-type) and *N. umbrinospora* (MFLUCC 12-0285, ex-type) showed 0.4% (2/487) in *tef1-α* (whereas those in ITS and *tub2* are identical).

Pestalotiopsis chrysea and P. umberspora were initially introduced by Maharachchikumbura et al. (2012), which transferred to Neopestalotiopsis chrysea and N. umbrinospora based on morphology and molecular phylogeny (Maharachchikumbura et al., 2014). Neopestalotiopsis chrysea was described by their distinct yellowish conidiogenous cells, conidia, and colony (Maharachchikumbura et al., 2012; 2014), whereas N. umbrinospora was characterized by its umber color of the median cells of the conidia (Maharachchikumbura et al., 2012; 2014). Both species were isolated from dead plant materials from Guangxi and Hunan China (Maharachchikumbura et al., 2012; 2014). Although there are only few base-pair differences between N. umbrinospora and N. chrysea, Maharachchikumbura et al. (2012; 2014) treated N. umbrinospora differently from the latter species due to its umber color and relatively wider conidia $(9-25 \times 6-8 \ \mu m \ vs. \ 20-$ 24 \times 5.5–7 µm), whereas our new strain (SDBR-CMU516) shares similar conidial shapes, color, and size to N. chrysea in producing darker brown to olivaceous conidia (18.5–27.5 \times 4–6 μm vs. 20–24 \times 5.5–7 μ m) with three-tubular apical appendages (24–30 μ m vs. 22–30 µm) (Maharachchikumbura et al., 2012; 2014). Therefore, we identified this strain as a new host record of N. chrysea on Itea based on morphological and phylogenetic lines of evidence. Furthermore, N. umbrinospora is synonymized under N. chrysea herein due to their conspecific relationship based on phylogenetic evidence coupled with the nucleotide pairwise comparison of the sufficient genes.

Neopestalotiopsis haikouensis Z.X. Zhang, J.W. Xia, and X.G. Zhang, *MycoKeys* 88: 181 (2022) (Figure 5).

= Neopestalotiopsis cercidicola W.S. Zhang and X.L. Fan, J. Fungi 10: 475 (2024).

= *Neopestalotiopsis terricola* W.L. Li and Jian K. Liu, *J. Fungi* 8: 1175 (2022).

Typification: CHINA, Hainan Province, Haikou City: East Harbour National Nature Reserve, on diseased leaves of *Ilex chinensis*, 23 May 2021, Z.X. Zhang (HSAUP212271, holotype), ex-type living culture: SAUCC212271.

Description of the new collection: Endophytic on healthy stems of Itea riparia. Sexual morph: Undetermined. Asexual morph: Conidiomata up to 500 µm diameter, pycnidial, globose to subglobose, solitary to aggregated, black, semi-immersed on PDA, releasing globose, brown to black, slimy conidial masses. Conidiophores up to 140 μ m long × 2–3.5 μ m wide, hyaline, dark brown septa, branched, sometimes giving rise to conidia. Conidiogenous cells 4–8.5 × 2.5–6 μ m ($\bar{x} = 7 \times 4 \mu$ m, n = 10), discrete, holoblastic, subcylindrical to ampulliform, hyaline, smooth-walled. Conidia 20–30 × 5–7 μ m ($\bar{x} = 25 \times 6 \mu$ m, n =30), fusiform to elongated fusiform, or ellipsoid, sometimes slightly wider in the upper median cells, straight to slightly curved, 4septate; basal cell 1-6 µm long, obconic to conic, hyaline, thin and smooth-walled; three median cells 13-18.5 µm long, pale brown when immature, pale brown to dark brown, darker at septa, versicolored, verruculose, second cell from base 4-6 µm, pale brown; third cell 4.5-5.5 µm, dark brown to olivaceous; fourth cell 3.5-6 µm, pale brown to olivaceous; apical cell 3.5-5 µm long, hyaline, subcylindrical to obconic; with two to three apical appendages (mostly three), arising from the apical crest, filiform, unbranched, 25-32.5 µm long; with a single basal appendages, filiform, unbranched, centric, 3-12 µm long.

Culture characteristics: *Colonies* on PDA reached at 7 cm diameter after 5 days at 25°C irregular form, raised elevation, crenate edge, whitish, cottony, with dense aerial mycelium on surface. Sporulation on PDA at 25°C after 30 days, with numerous black fruiting bodies.

Material examined: THAILAND, Chiang Mai Province, Mae Rim District, on living stems of *Itea riparia* (*Iteaceae*), 10 July 2023, J. Monkai, IT92 (CMUB40074), living culture, SDBR-CMU517 = KUNCC 24-18918, dried culture permanently preserved in a metabolically inactive state, CMUB40074.

GenBank number: PQ521227 (ITS), PQ560700 (*tub2*), and PQ529178 (*tef1-\alpha*).

Habitats and host: Dead and living tissue of *Castanea* mollissima, *Cercis chinensis*, *Ilex chinensis*, *Itea riparia*, *Paeonia* suffruticosa, and Olea europaea (Jiang et al., 2021; Li et al., 2022; Zhang et al., 2022; 2024; this study).

Distribution: China (Hainan, Sichuan and Yunnan Provinces) and Thailand (Jiang et al., 2021; Li et al., 2022; Zhang et al., 2022; 2024; this study).

Notes: Based on the nucleotide BLAST search of ITS sequence, the new isolate of *Neopestalotiopsis haikouensis* (SDBR-CMU517) showed the closest similarity with *N. saprophytica* (100%), *Hymenopleella hippophaeicola* isolate SF134_3_1 (100%), and

FIGURE 5

Neopestalotiopsis haikouensis (SDBR-CMU517). (A) Surface of colonies on PDA. (B, C) Conidiomata and conidia masses. (D–F) Conidiophores, conidiogenous cells, and conidia. (G) Conidia. Scale bars: (B, C) 500 μm, (D–F) 5 μm, and (G) 10 μm.

Pestalotiopsis microspora isolate WH55 (100%). Based on the nucleotide BLAST search of *tub2* sequence, *N. haikouensis* (SDBR-CMU517) showed the closest similarity with *Neopestalotiopsis* sp. strain PP026 (99.73%), *N. clavispora* isolate MCH21 (99.73%), and *N. clavispora* isolate SGP37 (99.73%). Based on the nucleotide BLAST search of *tef1-* α sequence, *N. haikouensis* (SDBR-CMU517) showed the closest similarity with *N. protearum* strain GBLZ16PE-007 (99.8%), *N. protearum* strain GUCC 23-0329 (99.8%), and *Neopestalotiopsis* sp. strain LC2945 (99.8%).

In the phylogenetic analyses (Figure 1), our new strain (SDBR-CMU517) clustered with *Neopestalotiopsis cercidicola*, *N. haikouensis*, and *N. terricola*. The nucleotide comparison among our new strain (SDBR-CMU517) and the ex-type strains of *N. cercidicola*, *N. haikouensis*, and *N. terricola* indicated low nucleotide difference (less than 1%) (Table 5). Zhang et al. (2022) introduced *N. haikouensis* as a leaf spot disease of *Ilex chinensis*. Lately, *N. terricola* and *N. cercidicola* were isolated as pathogens of *Paeonia suffruticosa* (Li et al., 2022) and *Cercis chinensis* (Zhang et al., 2024), respectively. Based on morphology, our new strain (SDBR-

CMU517) shares similar conidial color (pale brown) and size $(20-30 \times 5-7 \ \mu\text{m})$ to N. haikouensis $(16-22 \times 4.5-7 \ \mu\text{m})$ (Zhang et al., 2022) and N. cercidicola (17.5–23.5 \times 5.5–8.5 μ m) (Zhang et al., 2024) (Table 6), whereas the conidia of N. terricola is wider and darker in the middle cell (20–23 \times 8–9.5 μ m), compared to others (Li et al., 2022) (Table 6). Li et al. (2022) noted the variation of conidial color and size among strains of N. terricola depending on host substrates. The ex-type strain of N. terricola (CGMCC3.23553), which was isolated from diseased leaves of Paeonia suffruticosa, had darker and relatively wider conidia than other strains including the strain UESTCC 22.0034, isolated from infected olive leaves (see Figures 6 and 9 in Li et al., 2022), and two strains (CFCC 54337 and CFCC 54340) recovered from diseased leaves of Castanea mollissima (see Figure 17 in Jiang et al., 2021) (Table 6). Moreover, we could detect the varieties of conidial shape and size in our samples, which is shown in Figure 5G. Therefore, because of the morphological and phylogenetic consistencies, we synonymized N. terricola and N. cercidicola under N. haikouensis following the prior publication. Likewise, our new strain is reported as a new host

Compared strains	Gene region/locus			
	ITS	tub2	tef1- α	
The new strain (SDBR-CMU517) vs. N. haikouensis (SAUCC 212271)	0.2% (1/503)	0.3% (2/747)	Identical	
The new strain (SDBR-CMU517) vs. N. haikouensis (=N. terricola) (CGMCC 3.23553)	Identical	0.3% (2/727)	Identical	
The new strain (SDBR-CMU517) vs. N. haikouensis (=N. cercidicola) (CFCC 7063)	0.4% (2/494)	0.3% (2/632)	0.5% (2/444)	
N. haikouensis (SAUCC 212271) vs. N. haikouensis (=N. terricola) (CGMCC 3.23553)	Identical	0.1% (1/735)	Identical	
N. haikouensis (SAUCC 212271) vs. N. haikouensis (=N. cercidicola) (CFCC 7063)	0.4% (2/489)	0.3% (2/632)	0.2% (1/439)	
N. terricola (CGMCC 3.23553) vs. N. haikouensis (=N. cercidicola) (CFCC 7063)	0.2% (1/485)	0.5% (2/434)	0.3% (2/712)	

TABLE 5 Nucleotide differences among the closely related strains of Neopestalotiopsis haikouensis.

The data are represented by the number of different nucleotides/numbers of all nucleotides (% base-pair difference).

record of *N. haikouensis* on *Itea* and it is also a new geographical record in Thailand.

Neopestalotiopsis iteae Monkai, Phookamsak, Bhat & S. Lumyong, sp. nov. (Figure 6).

Index Fungorum number: IF902438.

Etymology: Refers to the host genus, *Itea* from which the holotype was collected.

Endophytic on healthy stems of *Itea japonica*. Sexual morph: Undetermined. Asexual morph: *Conidiomata* up to 400 μ m diameter, globose to subglobose, solitary to aggregated, black, raising above surface of PDA. *Conidiophores* up to 50 μ m long × 2–3 μ m wide, hyaline, dark brown septa, branched. *Conidiogenous cells* 4–9.5 × 2.5–4 μ m ($\bar{x} = 6 \times 3 \mu$ m, n = 10), discrete, holoblastic, subcylindrical to ampulliform, hyaline, smooth-walled. *Conidia* 17.5–26 × 4.5–6.5 μ m ($\bar{x} = 22.5 \times 5.5 \mu$ m, n = 30), fusiform, ellipsoid, straight, 4-septate; basal cell 4–5.5 μ m long, obconic to conic, hyaline, thin and smooth-walled; three median cells 12–17.5 μ m long, initially hyaline with brown septa, becoming brown to pale brown, with darker brown septa, slightly constricted at septa, with second cell from base 4–6.5 μ m, pale brown to olivaceous; third cell 3.5–6 μ m, brown to olivaceous; fourth cell 4–6 μ m, brown to olivaceous; apical cell 4.5–6 μ m long, hyaline, subcylindrical to obconic; with two to three apical appendages, not arising from the apical crest, but each inserted at a different locus in the upper half of the apical cell, filiform, unbranched, 8.5–14 μ m long; with a single basal appendages, filiform, unbranched, 4.5–6 μ m long.

Culture characteristics: *Colonies* on PDA reached at 7 cm diameter after 5 days at 25°C, circular form, flat elevation, undulage edge, whitish to gray, with dense aerial mycelium on surface. Sporulation on PDA at 25°C after 30 days, with numerous black fruiting bodies.

Material examined: THAILAND, Chiang Mai Province, Hang Dong District, on living stems of *Itea japonica (Iteaceae)*, 7 February 2023, J. Monkai, IT41 (CMUB40072, holotype), ex-type living culture, SDBR-CMU515 = KUNCC 24-18919, dried culture permanently preserved in a metabolically inactive state, CMUB40072.

GenBank number: PQ521228 (ITS), PQ560701 (*tub2*), and PQ529179 (*tef1-\alpha*).

Notes: Based on the nucleotide BLAST search of ITS sequence, *Neopestalotiopsis iteae* sp. nov. (SDBR-CMU515) showed the closest similarity with *N. clavispora* isolate MI003 (100%), *N. saprophytica* (100%), and *Pestalotiopsis maculans* isolate RM1.18A.01 (100%). Based on the nucleotide BLAST search of *tub2* sequence, *N. iteae* (SDBR-CMU515) showed the closest similarity with *N. piceana* (99.12%), *N. piceana* strain CBS 225.30 (99.12%), and *Neopestalotiopsis* sp. strain PP026 (99.12%). Based on the nucleotide BLAST search of *tef1-α* sequence, *N. iteae* (SDBR-CMU515) showed the closest similarity with *Neopestalotiopsis* sp. isolate YJ11-0708 (98.57%), *N. clavispora* isolate SGP35 (98.57%), and *N. clavispora* isolate MCH27 (98.57%).

Phylogenetically, *Neopestalotiopsis iteae* formed a stable clade sister to *N. cocoës* (0.91 BYPP; Figure 1). The nucleotide comparison between *N. iteae* (SDBR-CMU515) and *N. cocoës* (MFLUCC 15-0152, ex-type) showed 0.4% (2/520) and 2.4% (6/253) bp differences in ITS and *tef1-* α (where *tub2* sequence data of *N. cocoës* were not available for comparison). It should be noted that the *tef1-* α sequence data of *N. cocoës* are very short (approximately 200–300 bp). The low support between *N. iteae* and *N. cocoës* might be

TABLE 6 The comparison of conidial morphology and host between the closely related strains of Neopestalotiopsis haikouensis.

Strains	Conidial size	Host	References	
The new strain (SDBR-CMU517)	20–30 \times 5.3–7 μm (25 \times 6 $\mu m)$	Healthy stems of Itea riparia	This study	
N. haikouensis (SAUCC 212271)	16.0–22.0 × 4.5–7.0 μm (20.0 × 5.5 μm)	Diseased leaves of Ilex chinensis	Zhang et al. (2022)	
N. haikouensis (=N. terricola) (CGMCC 3.23553)	20-23 × 8-9.5 μm (21.5 × 8.5 μm)	Diseased branch of <i>Paeonia suffruticosa</i> and diseased leaf of <i>Olea europaea</i>	Li et al. (2022)	
N. haikouensis (=Neopestalotiopsis sp.1) (CFCC 54337)	19.1–24.7 \times 5.4–8.6 μm (21.6 \times 6.7 $\mu m)$	Leaf spots of Castanea mollissima	Jiang et al. (2021)	
N. haikouensis (=Neopestalotiopsis sp.2) (CFCC 54340)	21.4–26.2 × 5.1–8.7 μm (23.6 × 7 μm)	Leaf spots of Castanea mollissima	Jiang et al. (2021)	
N. haikouensis (=N. cercidicola) (CFCC 7063)	17.5–23.5 × 5.5–8.5 μm (20.7 × 6.9 μm)	Leaf spots of Cercis chinensis	Zhang et al. (2024)	

The new strain obtained in this study is indicated in black bold.

FIGURE 6

Neopestalotiopsis iteae (SDBR-CMU515, ex-type). (A) Surface of colonies on PDA. (B, C) Conidiomata. (D-F) Conidiophores, conidiogenous cells, and conidia. (G) Conidia. Scale bars: (B, C) 500 μm, (D-F) 5 μm, and (G) 10 μm.

coming from the uncompleted sequence data of N. cocoës. Morphologically, N. iteae can be distinguished from N. cocoës in having longer and narrower conidia (17.5-26 × 4.5-6.5 µm vs. 19- $22.5 \times 7.5-9.5 \,\mu$ m) and slightly constricted septa (Hyde et al., 2016). Based on the lines of evidence in morphology and phylogeny coupled with a significant nucleotide pairwise difference of tef1- α sequence, N. iteae was introduced as a novel species.

Pestalotiopsis jinchanghensis Liu, Hou, Raza and Cai, Scientific Reports 7 (no. 866): 8 (2017) (Figure 7).

= Pestalotiopsis zhaoqingensis H.J. Zhao and W. Dong, *Mycosphere* 14(1): 2238 (2023).

Typification: CHINA, Yunnan Province, Xishuangbanna, Jinchanghe, on leaves of Camellia sinensis, 20 April 2015, F. Liu, HMAS 247061 (holotype), ex-type living culture CGMCC 3.18158 (= LC6636).

Description of the new collection: Endophytic on healthy stems of Itea riparia. Sexual morph: Undetermined. Asexual morph: Conidiomata up to 600 µm diameter, pycnidial, globose to subglobose, solitary, black, semi-immersed on PDA, releasing globose, brown to black, slimy conidial masses. Conidiophores often reduced to conidiogenous cells. Conidiogenous cells 4-10 × 2.5–8.5 μ m ($\bar{x} = 7.5 \times 6.5 \mu$ m, n = 10), discrete, holoblastic, ampulliform to lageniform, hyaline, smooth-walled. Conidia 19- $27 \times 4-6 \ \mu m \ (\bar{x} = 23.5 \times 5 \ \mu m, \ n = 30)$, fusiform to elongated fusiform, straight to slightly curved, 4-septate; basal cell 3.5-4.5 µm long, obconic to conic, hyaline, thin and smooth-walled; three median cells 12-16.5 µm long, sometimes hyaline, two median cells when immature, brown to olivaceous, septa and periclinal walls darker than the rest of the cell, concolorous, wall rugose, second cell from base 4-5 µm; third cell 3.5-5.5 µm; fourth cell 4-5.5 µm;

FIGURE 7

Pestalotiopsis jinchanghensis (SDBR-CMU518). (A) Surface of colonies on PDA. (B, C) Conidiomata and conidia masses. (D–F) Conidiogenous cells with attached conidia. (G) Conidia. Scale bars: (B, C) 500 μm and (D–G) 10 μm.

apical cell 3.5–4.5 μ m long, hyaline, subcylindrical to obconic; with two to three tubular apical appendages, arising from the apical crest, filiform, unbranched, 14–27 μ m long; with 1(–2) tubular basal appendages, filiform, unbranched, centric, 5–11.5 μ m long.

Culture characteristics: *Colonies* on PDA reached at 7 cm diameter after 5 days at 25°C, irregular form, raised elevation, crenate edge, whitish, cottony, with dense aerial mycelium on surface. Sporulation on PDA at 25°C after 30 days, with few black fruiting bodies.

Material examined: THAILAND, Chiang Mai Province, Mae Rim District, on living stems of *Itea riparia* (*Iteaceae*), 10 July 2023, J. Monkai, IT86 (CMUB40075), living culture, SDBR-CMU518 = KUNCC 24-18920), dried culture permanently preserved in a metabolically inactive state, CMUB40075.

GenBank number: PQ521229 (ITS), PQ560702 (*tub2*), and PQ529180 (*tef1-* α).

Habitats and host: Dead and living tissue of *Camellia sinensis*, *Itea riparia*, and unidentified plants (Liu et al., 2017; Dong et al., 2023; this study).

Distribution: China (Yunnan and Guangdong Provinces) and Thailand (Liu et al., 2017; Dong et al., 2023; this study).

Notes: Based on the nucleotide BLAST search of ITS sequence, the new isolate of *Pestalotiopsis jinchanghensis* (SDBR-CMU518) showed the closest similarity with *Pestalotiopsis* sp. NJ-2022e strain SAUCC230044 (99.83%), *Pestalotiopsis* sp. strain JMB08_3B2 (99.67%), and *P. malayana* strain SAUCC230483 (99.66%). Based on the nucleotide BLAST search of *tub2* sequence, *P. jinchanghensis* (SDBR-CMU518) showed the closest similarity with *P. zhaoqingensis* strain ZHKUCC 23-0825 (99.87%), *P. jinchanghensis* strain LC8190 (99.87%), and *P. jinchanghensis* strain LC8191 (99.87%). Based on the nucleotide BLAST search of *tef1-α* sequence, *P. jinchanghensis* (SDBR-CMU518) showed the closest similarity with *P. jinchanghensis* strain LC8191 (99.79%), *P. jinchanghensis* strain LC6636 (99.79%), and *P. jinchanghensis* strain LC8190 (99.79%).

The combined phylogenetic tree indicated that our new strain (SDBR-CMU518) clustered in the same clade with *Pestalotiopsis jinchanghensis* and *P. zhaoqingensis* with 86% ML, 1.00 BYPP

statistical support (Figure 2). The nucleotide comparison between our new strain (SDBR-CMU518) and P. jinchanghensis (CGMCC 3.18158, ex-type) showed 0.2% (1/475) base-pair difference in tef1- α (whereas those in ITS and *tub2* are identical). The nucleotide comparison between our new strain (SDBR-CMU518) and P. zhaoqingensis (ZHKUCC 23-0825, ex-type) showed 1% (6/563), 0.1% (1/127), and 0.2% (1/447) bp differences in ITS, tef1-α, and tub2. In addition, the nucleotide comparison between P. jinchanghensis (CGMCC 3.18158, ex-type) and P. zhaoqingensis (ZHKUCC 23-0825, ex-type) showed 1.2% (6/500) and 0.2% (1/ 449) bp differences in ITS and *tef1-\alpha* (whereas those in *tub2* are identical). Pestalotiopsis jinchanghensis was identified as a disease on Camellia sinensis (Liu et al., 2017), and P. zhaoqingensis was isolated from dead unknown plants in China (Dong et al., 2023). Although there were relatively low nucleotide variations between P. jinchanghensis and P. zhaoqingensis, Dong et al. (2023) justified P. zhaoqingensis as distinct species based on morphology, wherein it produced comparatively shorter conidia (17-24 \times 4-8 μm vs. 22–32 \times 5.5–8.5 $\mu m)$ and branched apical appendages. Our new strain (SDBR-CMU518) mostly resembles P. jinchanghensis in having unbranched apical appendages (Liu et al., 2017). However, the conidial size of our new isolate showed to be overlapping with both P. jinchanghensis and P. zhaoqingensis $(19-27 \times 4-6 \ \mu m \ vs. \ 22-32 \times 5.5-8.5 \ \mu m \ vs. \ 17-24 \times 4-8 \ \mu m).$ Based on morphological and phylogenetic lines of evidence as well as an identical nucleotide pairwise, we treated the new strain as a new host record of P. jinchanghensis on Itea and the species is reported from Thailand for the first time, while P. zhaoqingensis is synonymized under P. jinchanghensis herein.

Pseudopestalotiopsis iteae Monkai, Phookamsak, Bhat & S. Lumyong, sp. nov. (Figure 8).

Index Fungorum number: IF902439.

Etymology: Refers to the host genus from which the holotype was collected, *Itea*.

Endophytic on healthy leaves and roots of Itea riparia. Sexual morph: Undetermined. Asexual morph: Conidiomata up to 500 µm diameter, globose to subglobose, solitary to aggregated, black, semiimmersed on PDA, releasing globose, brown to black, slimy conidial masses. Conidiophores $34-52 \times 1.5-3 \ \mu m \ (\bar{x} = 43 \times 2 \ \mu m, \ n = 10)$, hyaline, septate, branched. Conidiogenous cells 9.5–16.5 \times 2–4 μ m (\bar{x} = $12.5 \times 3 \mu m$, n = 10), discrete, holoblastic, subcylindrical to ampulliform, hyaline, smooth-walled. Conidia 20-27 \times 4.5-7 μm $(\bar{x} = 24 \times 6 \,\mu\text{m}, n = 30)$, fusiform to ellipsoid, straight to slightly curved in C-form or S-form, 4-septate; basal cell 3-4.5 µm long, obconic to conic, hyaline, thin and smooth-walled; three median cells 12-17 µm long, sometimes hyaline, one to three median cells when immature, brown to dark brown, with thick verruculose walls, constricted at septa, septa and periclinal walls darker than the rest of the cell, concolorous, second cell from base 4-5.5 µm; third cell 4-5.5 µm; fourth cell 4-6.5 µm; apical cell 4-5.5 µm long, hyaline, subcylindrical to obconic; with two to three tubular apical appendages (mostly three), arising from the upper portion of apical cell, filiform, unbranched, knobbed, 18-21 µm long; with a single basal appendages (mostly one), filiform, unbranched, slightly knobbed, 4-7 µm long.

Culture characteristics: *Colonies* on PDA reached 7 cm diameter after 5 days at 25°C, irregular form, umbonate elevation, crenate edge, whitish, cottony, with dense aerial mycelium on surface, pale brown to white in reverse, Sporulation on PDA at 25°C after 30 days, with numerous black fruiting bodies.

Material examined: THAILAND, Chiang Mai Province, Mae Rim District, on living leaves of Itea riparia (Iteaceae), 10 July 2023, J. Monkai, IT48 (CMUB40071, holotype), ex-type living culture, SDBR-CMU514 = KUNCC24-18921, dried culture permanently preserved in a metabolically inactive state, CMUB40071; ibid., on living leaves of Itea riparia (Iteaceae), 10 July 2023, J. Monkai, IT49, living culture, SDBR-CMU519 = KUNCC24-18922; ibid., on living leaves of Itea riparia (Iteaceae), 10 July 2023, J. Monkai, IT50, living culture, SDBR-CMU520 = KUNCC24-18923; ibid., on living leaves of Itea riparia (Iteaceae), 10 July 2023, J. Monkai, IT61, living culture, SDBR-CMU521 = KUNCC24-18924; ibid., on living leaves of Itea riparia (Iteaceae), 10 July 2023, J. Monkai, IT62, living culture, SDBR-CMU522 = KUNCC24-18925; ibid., on living leaves of Itea riparia (Iteaceae), 10 July 2023, J. Monkai, IT73, living culture, SDBR-CMU523 = KUNCC24-18926; ibid., on living roots of Itea riparia (Iteaceae), 10 July 2023, J. Monkai, IT99, living culture, SDBR-CMU524 = KUNCC24-18927.

GenBank number: SDBR-CMU514; PQ521230 (ITS), PQ560703 (*tub2*), PQ529181 (*tef1-\alpha*), SDBR-CMU519; PQ521231 (ITS), PQ560704 (*tub2*), PQ529182 (*tef1-\alpha*), SDBR-CMU520; PQ521232 (ITS), PQ560705 (*tub2*), PQ529183 (*tef1-\alpha*), SDBR-CMU521; PQ521233 (ITS), PQ560706 (*tub2*), PQ529184 (*tef1-\alpha*), SDBR-CMU522; PQ521234 (ITS), PQ560707 (*tub2*), PQ529185 (*tef1-\alpha*), SDBR-CMU523; PQ521235 (ITS), PQ560708 (*tub2*), PQ529186 (*tef1-\alpha*), SDBR-CMU524; PQ521236 (ITS), PQ560709 (*tub2*), PQ529187 (*tef1-\alpha*).

Notes: Based on the nucleotide BLAST search of ITS sequence, *Pseudopestalotiopsis iteae* sp. nov. (SDBR-CMU514) showed the closest similarity with *Pseudopestalotiopsis* sp. isolate ERS19.48.Le.D (99.63%), *Ps. theae* strain KU20018.104 (99.63%), and *Pestalotiopsis theae* isolate CPO/Pe (99.63%). Based on the nucleotide BLAST search of *tub2* sequence, *Ps. iteae* (SDBR-CMU514) showed the closest similarity with *Ps. theae* isolate TN07 (98.97%), *Ps. theae* strain GUCC 23-0406 (99.46%), and *Ps. theae* strain GUCC 23-0472 (99.86%). Based on the nucleotide BLAST search of *tef1-α* sequence, *Ps. iteae* (SDBR-CMU514) showed the closest similarity with *Ps. theae* strain GUCC 23-0406 (99.60%), *Pseudopestalotiopsis* sp. 2-KW-2016 strain: 10 (99.60%), and *Pseudopestalotiopsis* sp. 2-KW-2016 strain: 11 (99.39%).

Phylogenetic tree of combined ITS, *tub2*, and *tef1-* α sequence data revealed that *Pseudopestalotiopsis iteae* (SDBR-CMU514, SDBR-CMU519, SDBR-CMU520, SDBR-CMU521, SDBR-CMU522, SDBR-CMU523, and SDBR-CMU524) are clustered together with *Ps. theae* strain NTUCC 18-067, with significant support (70% ML, 0.92 BYPP), which are distant from the ex-epitype of *Ps. theae* (MFLUCC 12-0055) (Figure 3). The nucleotide comparison between *Ps. iteae* (SDBR-CMU514) and *Ps. theae* (MFLUCC 12-0055) showed 0.2% (1/491), 0.7% (3/426), and 1.8% (9/493) bp difference in ITS, *tub2*, and *tef1-* α (Table 7), respectively.

FIGURE 8

Pseudopestalotiopsis iteae [SDBR-CMU514, ex-type (A–I)], SDBR-CMU523 (J), and SDBR-CMU524 (K). (A) Surface of colonies on PDA. (B) Reverse of colonies on PDA. (C, D) Conidiomata and conidia masses. (E–G) Conidiophores, conidiogenous cells, and conidia. (H–K) Conidia. Scale bars: (C, D) 500 μm and (E–K) 5 μm.

Moreover, the nucleotide differences between the epitype of *Ps. theae* and other *Ps. iteae* strains are provided in Table 7. The morphological characteristics of *Ps. iteae* resemble those of *Ps. theae* in having brown concolorous median cells, constricted at septa with knobbed apical appendages (Maharachchchikumbura et al., 2013). However, *Ps. iteae* has narrower conidia (24×6 vs. $25.5 \times 7.6 \mu$ m) and shorter apical appendages ($18-21 \mu$ m vs. $22.5-31 \mu$ m) than *Ps. theae* (Maharachchikumbura et al., 2013). Thus, we introduced *Ps. iteae* as a new species based on the differences of nucleotide pairwise

comparison of the sufficient gene $(tef1-\alpha)$ and morphological characteristics.

We noticed that the conidial characteristics varied between the strains of *Pseudopestalotiopsis iteae*. Compared with the type strain, strain SDBR-CMU523 produced shorter conidia with pale brown color (21×5 vs. $24 \times 6 \mu$ m) and shorter appendages without knobbed tips (11–19 vs. 18– 21μ m) (Figure 8J), while the strain SDBR-CMU524 has relatively longer conidia that are not constricted at septa (26×5 vs. $24 \times 6 \mu$ m) and longer

Gene region/ locus	The epitype of Pseudopestalotiopsis theae (MFLUCC 12-0055) compared with Ps. iteae strains							
	NTUCC 18-067	SDBR-CMU514 (ex-type)	SDBR- CMU519	SDBR- CMU520	SDBR- CMU521	SDBR- CMU522	SDBR- CMU523	SDBR- CMU524
ITS	0/489 (0%)	1/491 (0.2%)	1/491 (0.2%)	1/491 (0.2%)	1/491 (0.2%)	1/491 (0.2%)	1/491 (0.2%)	1/491 (0.2%)
tub2	2/424 (0.4%)	1/415 (0.2%)	1/413 (0.2%)	9/414 (2.1%)	1/404 (0.2%)	8/413 (1.9%)	3/402 (0.7%)	3/403 (0.7%)
tef1-α	11/473 (2.3%)	9/493 (1.8%)	11/509 (2.2%)	8/506 (1.6%)	8/502 (1.6%)	8/492 (1.6%)	9/493 (1.8%)	9/490 (1.8%)

TABLE 7 Nucleotide differences between the epitype of Pseudopestalotiopsis theae and Ps. iteae strains.

The data represented by the number of different nucleotides/number of all nucleotides (% base-pair difference).

appendages (15–32 vs. 11–19 μ m) than the type strain (Figure 8K). In phylogeny, strain SDBR-CMU524 formed a separated branch to other strains of *Ps. iteae* (Figure 3). However, there are too few base-pair differences in ITS, *tub2*, and *tef1-* α (less than 1%) between the ex-type strain of *Ps. iteae* (SDBR-CMU514) and strain SDBR-CMU524. The strain SDBR-CMU524 isolated from healthy roots and other strains isolated from healthy leaves of *Itea* spp. should also be noted. It is indicated that *Ps. iteae* has also high intraspecific variation, similar to *Ps. theae*.

Pseudopestalotiopsis theae (\equiv Pestalotia theae) was originally isolated from *Camellia sinensis* in Taiwan, then Maharachchikumbura et al. (2013) designated the epitype of *Ps. theae* (MFLUCC 12-0055) from a sample collected from the same host in Thailand. Tsai et al. (2021) isolated a strain of *Ps. theae* (NTUCC 18-067) as a pathogen on *C. sinensis* in Taiwan, representing it as the reference strain. Our phylogeny demonstrated that this strain is not consistent with *Ps. theae* and their nucleotide variation of *tef1-α* is greater (2.3% bp difference) (Table 7), regarding it as *Ps. iteae*. Also, the ex-epitype strain of *Ps. theae* (MFLUCC 12-0055) is closely related with *Ps. theae* strain SC011 and *Ps. theae* strain MFLUCC 22-0128, which are from Thailand (Maharachchikumbura et al., 2013; 2014; Sun et al., 2023), and *Pseudopestalotiopsis* sp. strains NBRC112267 and NBRC112268, which are from Myanmar (Nozawa et al., 2017). Thus, these strains could be treated as *Ps. theae*.

Additionally, we examined the few nucleotide differences of *tub2* (less than 1%) between the ex-type of *Pseudopestalotiopsis iteae*, epitype of *Ps. theae*, and strain NTUCC 18-067. The *tub2* sequence data of those strains lacked the first 300–400 base-pair positions in the alignment of all *Pseudopestalotiopsis* taxa. This may be caused by the different primers used for PCR amplification of *tub2*, which are BT2A/ BT2B in those studies (Maharachchikumbura et al., 2013; Tsai et al., 2021), while a primer pair, T1/BT2B, was used in our study and other studies (i.e. Norphanphoun et al., 2019; Sun et al., 2023). To clarify this issue, we then amplified our strains with the BT2A/BT2B, and the results did not show any significant nucleotide variation. Thus, the epitype of *Ps. theae*, strain NTUCC 18-067, and other related strains should be further analyzed for *tub2* using T1/BT2B primers as it allows longer base-pair length (up to 800 bp).

4 Discussion

The nomenclature and classification of pestalotioid fungi are remarkably challenging. At the generic level, phylogenetic analyses of combined ITS, tub2, and tef1- α provide sufficient distinction between Neopestalotiopsis, Pestalotiopsis, and Pseudopestalotiopsis (Maharachchikumbura et al., 2014; 2016; Norphanphoun et al., 2019; Sun et al., 2023), whereas the morphological circumscriptions of these genera remain inconclusive (Liu et al., 2017). At the species level, the combination of multi-locus phylogeny, morphology, and ecology has been employed for determining the interspecific variation (Maharachchikumbura et al., 2014; 2016; Tsai et al., 2018; 2021; Chen et al., 2018; Gu et al., 2022). According to their phenotypic plasticity that largely relies on environmental conditions and poor resolution derived from phylogenetic reconstruction, standard criteria for species delineation are still uncertain (Xiong et al., 2022; Guterres et al., 2023; Hsu et al., 2024). Recent studies recovered several undetermined pestalotioid taxa, most of which were not assigned a species name (Jiang et al., 2021; Tsai et al., 2021; Guterres et al., 2023; Hsu et al., 2024; Wang et al., 2024). During our taxonomic investigation of endophytic fungi associated with Itea spp., five Pestalotiopsis-like species were characterized using morphology, nucleotide pairwise comparison, and phylogenetic evidence. Two new species (Neopestalotiopsis iteae and Pseudopestalotiopis iteae) and three hitherto known species (Pestalotiopsis jinchanghensis, N. chrysea, and N. haikouensis) were reported for the first time on this host plant and were discussed accordingly.

The novel species, Neopestalotiopsis iteae, is phylogenetically adjacent to N. cocoës (Figure 1), but it produces constricted septate and longer conidia than the latter species. We also detected a significant nucleotide difference in $tef1-\alpha$ sequence and thus reported it as a new species. Our study pointed out that the phylogenetic placement of N. iteae received poor support value (Figure 1). This phenomenon was also observed in previous studies in which the phylograms of Neopestalotiopsis had unstable topology and mostly contained weak support (Liu et al., 2017; Tsai et al., 2021; Hsu et al., 2024), whereas a new record of N. chrysea was assigned based on the evidence of phylogenetic analyses and nucleotide differences of the sufficient genes. The novel strain (SDBR-CMU516) shared a close phylogenetic relationship with N. chrysea and N. umbrinospora (Figure 1), and it has overlapped conidia and apical appendage characteristics with N. chrysea, whereas N. umbrinospora produces umber-colored and comparatively wider conidia. Owing to the low nucleotide difference of ITS, *tub2*, and *tef1-\alpha* sequences (below 1%) found among these strains, we synonymized N. umbrinospora under N. chrysea. Another new record of Neopestalotiopsis was described; the

strain SDBR-CMU517 was phylogenetically located in the same clade with *N. cercidicola*, *N. terricola*, and *N. haikouensis* (Figure 1). The nucleotide comparison of ITS, *tub2*, and *tef1-* α sequence among those strains was insignificant (lower than 1%) (Table 5). Moreover, the strains of *N. terricola* showed high variation of conidial dimensions and color intensities on different host substrates (Table 6). We also observed this phenotypic variation of conidia in the new strain (Figure 5G). Therefore, we designated our strain as *N. haikouensis* and synonymized *N. terricola* and *N. cercidicola* under *N. haikouensis* based on phylogenetic and morphological congruency.

Moreover, a new isolate of *Pestalotiopsis* was reported; the strain SDBR-CMU518 has a close phylogenetic relationship with *P. jinchanghensis* and *P. zhaoqingensis* (Figure 2). The conidial morphology of this isolate is more similar to the ex-type of *P. jinchanghensis*, whose apical appendages are not branched, whereas *P. zhaoqingensis* has branched apical appendages and relatively shorter conidia. Based on their nucleotide differences being not significant (below 1.5%) coupled with phylogenetic data, we considered our new strain to belong to *P. jinchanghensis* and synonymized *P. zhaoqingensis* under *P. jinchanghensis*.

Another new species described in this study is *Pseudopestalotiopsis iteae*, which is characterized by the production of conidia with brown concolorous median cells, constricted at septa with spatulate apical appendage. The novel strains (SDBR-CMU514, SDBR-CMU519, SDBR-CMU520, SDBR-CMU521, SDBR-CMU522, SDBR-CMU523, and SDBR-CMU524) constitute a distinct clade and sister to *Ps. theae*. Furthermore, the nucleotide variation of *tef1-α* among the ex-type strains of *Ps. theae* and *Ps. iteae* was greater than 1.5% (Table 7), validating it as a new species based on the recommendation of Jeewon and Hyde (2016) and Chethana et al. (2021). Notably, some strains of *Ps. iteae* exhibited highly variable conidial shapes and sizes (Figures 8I-K), which were also observed in *Ps. theae* strains.

In summary, the three-locus phylogeny (ITS, *tub2*, and *tef1-\alpha*) does not provide a strong support for species boundaries of pestalotioid fungi. Hence, the morphological characteristics and nucleotide polymorphisms were herein applied to elucidate their interspecific differences. The morphological characteristics of pestalotioid fungi are always similar and difficult to distinguish from each other. Likewise, their morphological characteristics showed a high intraspecific variation under different conditions of fungal growth media, hosts, temperatures, and other environmental factors (personal observation). Thus, it is unreliable to define new pestaloioid species using host, culture, and morphological comparisons. The significant phenotypic and genetic variations among pestalotioid species and strains have been addressed in recent studies (Norphanphoun et al., 2019; Li et al., 2022; Sun et al., 2023; Koodalugodaarachchi et al., 2024), concurring with the present study. Our phylogeny also contained unclear phylogenetic lineages including Neopestalotiopsis chrysea, N. haikouensis, Pestalotiopsis jinchanghensis, Pseudopestalotiopsis theae, and Ps. iteae, representing them as cryptic species. Therefore, further collections and more cultures are required for the reevaluation of intra- and interspecific relationships among these species.

Moreover, additional informative loci, such as *rpb2*, and whole genome analysis are absolutely needed to evaluate the better taxonomic resolution of this fungal group.

The majority of pestalotioid taxa have been reported as plant pathogens (Maharachchikumbura et al., 2011; 2014; Peng et al., 2022; Giri and Pradhan, 2023; Hsu et al., 2024). Likewise, the species identified in this study-Neopestalotiopsis chrysea, N. haikouensis, and Pestalotiopsis jinchanghensis-were previously documented as causative agents of disease in significant plants (Liu et al., 2017; Shi et al., 2017; Jiang et al., 2021; Wu et al., 2021; Li et al., 2022; Zhang et al., 2022; 2024). Notably, some species exhibited distinct life modes including endophytes, saprobes, and phytopathogens. For example, N. chrysea was initially found as saprobes on unknown plants (Maharachchikumbura et al., 2012; 2014) and later reported as pathogens on blueberry and pecan in China (Shi et al., 2017; Wu et al., 2021). Pestalotiopsis jinchanghensis was introduced by Liu et al. (2017) as tea pathogen and was recently found as saprobes on unknown plants in China (Dong et al., 2023). Moreover, some species have a broad range of host association; for example, N. haikouensis could infect various plant taxa, such as Castanea mollissima, Cercis chinensis, Ilex chinensis, Paeonia suffruticosa, and Olea europaea (Jiang et al., 2021; Li et al., 2022; Zhang et al., 2022; 2024). These studies emphasize their abilities of lifestyle shift and host adaptation. Since we discovered endophytic pestalotioid fungi from Itea, further studies should be conducted to determine their pathogenicity as they may be a potential source of diseases.

To date, few fungi on the Itea species have been recorded (Farr et al., 2021), including only two pestalotioid species (Pestalotiopsis acacia on Itea chinensis var. oblonga from China and P. gracilis on I. oldhamii from Japan). Our study indicates that Itea contains a significant diversity of pestalotioid species. Moreover, we have observed that distinct pestalotioid species seem to prefer responsive tissues of Itea. Most strains of Pseudopestalotiopsis were found on leaves of I. riparia. Most Pestalotiopsis and Neopestalotiopsis species were found on stems of I. japonica and I. riparia. Only one species of Pseudopestalotiopsis and one Neopestalotiopsis species were found on roots of I. riparia. Our findings enhance the knowledge of taxonomic diversity of pestalotioid fungi in Thailand and highlight that Itea spp. could offer a high degree of undetermined fungal diversity. Since Itea is a significant source of rare sugar such as D-allulose, future studies are needed to examine the new endophytic fungal strains for the biosynthesis of rare sugar and other secondary metabolites. This would provide useful applications for these novel microbial resources in the pharmaceutical and food industries as well as in sustainable agriculture.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/ ITS: PQ521226, PQ521227, PQ521228, PQ521229,

PQ521230, PQ521231, PQ521232, PQ521233, PQ521234, PQ521235, PQ521236; tub2: PQ560699, PQ560700, PQ560701, PQ560702, PQ560703, PQ560704, PQ560705, PQ560706, PQ560707, PQ560708, PQ560709; *tef1-α*: PQ529177, PQ529178, PQ529179, PQ529180, PQ529181, PQ529182, PQ529183, PQ529184, PQ529185, PQ529186, PQ529187.

Author contributions

JM: Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Project administration, Writing – original draft, Writing – review & editing. RP: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Writing – original draft, Writing – review & editing. DB: Investigation, Writing – original draft, Writing – review & editing. TE: Investigation, Methodology, Writing – review & editing. JX: Funding acquisition, Supervision, Writing – review & editing. SL: Conceptualization, Funding acquisition, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This study was supported by the CMU Proactive Researcher program, Chiang Mai University, Chiang Mai, Thailand (grant number 814/2567).

Acknowledgments

Jutamart Monkai gratefully acknowledges Chiang Mai University for providing financial support and laboratory facilities. The authors extend their gratitude to the Biology Experimental Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences for providing the facilities of molecular laboratory. Assist. Prof. Dr. Verasak Sahachaisaree is thanked for his valuable help with sample collection. Dr. Shaun Pennycook is thanked

References

Ayers, B. J., Hollinshead, J., Saville, A. W., Nakagawa, S., Adachi, I., Kato, A., et al. (2014). Iteamine, the first alkaloid isolated from *Itea virginica* L. inflorescence. *Phytochemistry* 100, 126–131. doi: 10.1016/j.phytochem.2014.01.012

Carbone, I., and Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* 91, 553–556. doi: 10.1080/00275514.1999.12061051

Chen, Y., Zeng, L., Shu, N., Jiang, M., Wang, H., Huang, Y., et al. (2018). *Pestalotiopsis*-like species causing gray blight disease on *Camellia sinensis* in China. *Plant Dis.* 102, 98–106. doi: 10.1094/PDIS-02-19-0264-RE

Chethana, K. T., Manawasinghe, I. S., Hurdeal, V. G., Bhunjun, C. S., Appadoo, M. A., Gentekaki, E., et al. (2021). What are fungal species and how to delineate them? *Fungal Divers.* 109, 1–25. doi: 10.1007/s13225-021-00483-9

Diogo, E., Gonçalves, C. I., Silva, A. C., Valente, C., Bragança, H., and Phillips, A. J. (2021). Five new species of *Neopestalotiopsis* associated with diseased *Eucalyptus* spp. in Portugal. *Mycol. Progr.* 20, 1441–1456. doi: 10.1007/s11557-021-01741-5

for the nomenclatural review. Rungtiwa Phookamsak sincerely acknowledges the Introducing Talents Start-up Fund of Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Revitalization Talent Support Program "Young Talent" Project (grant no. YNWR-QNBJ-2020-120), Yunnan Revitalization Talent Support Program: High-end Foreign Expert Project, Independent Research of Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences (grant no. Y537731261), and Yunnan Provincial Department of Human Resources and Social Security, Yunnan Province Foreign Expert Project (project no. 202505AO120002). Jianchu Xu thanks Yunnan Department of Sciences and Technology of China (grant nos. 202302AE090023 and 202303AP140001). D. Jayarama Bhat gratefully acknowledges the financial support provided under the Distinguished Scientist Fellowship Programme (DSFP) at King Saud University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Dong, W., Hyde, K. D., Jeewon, R., Liao, C. F., Zhao, H. J., Kularathnage, N. D., et al. (2023). Mycosphere notes 449–468: Saprobic and endophytic fungi in China, Thailand, and Uzbekistan. *Mycosphere* 14, 2208–2262. doi: 10.5943/mycosphere/14/1/26

Farr, D. F., Rossman, A. Y., and Castlebury, L. A. (2021). United states national fungus collections fungus-host dataset. Ag. Data Commons. doi: 10.15482/USDA.ADC/1524414

Feng, Y., Jian, J., Cheng, L., Luo, G., and Yang, W. (2024). Two new compounds isolated from the *Itea omeiensis* and their anti-oxidant activities. *Chem. Biodivers.* 21, e202301881. doi: 10.1002/cbdv.202301881

Fiorenza, A., Gusella, G., Aiello, D., Polizzi, G., and Voglmayr, H. (2022). *Neopestalotiopsis siciliana* sp. nov. and *N. rosae* causing stem lesion and dieback on avocado plants in Italy. *J. Fungi.* 8, 562. doi: 10.3390/jof8060562

Gao, Y., Zhong, T., Wanasinghe, D. N., Eungwanichayapant, P. D., Jayawardena, R. S., Hyde, K. D., et al. (2024). *Phlyctema yunnanensis* (Dermateaceae, Helotiales), a novel species from herbaceous plants in grassland ecosystems of Yunnan, China. *Stud. Fungi.* 9, e019. doi: 10.48130/sif-0024-0020

Giri, S., and Pradhan, P. (2023). Notes on phytopathogenic fungi reported from Sikkim, India and their broad inter-taxa affinities to plant hosts as inferred from data mining. *Stud. Fungi.* 8, 8. doi: 10.48130/SIF-2023-0008

Glass, N. L., and Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Appl. Environ. Microbiol.* 61, 1323–1330. doi: 10.1128/aem.61.4.1323-1330.1995

Gu, R., Bao, D. F., Shen, H. W., Su, X. J., Li, Y. X., and Luo, Z. L. (2022). Endophytic *Pestalotiopsis* species associated with *Rhododendron* in Cangshan Mountain, Yunnan Province, China. *Front. Microbiol.* 13. doi: 10.3389/fmicb.2022.1016782

Guterres, D. C., Silva, M. A., Martins, M. D., Azevedo, D. M. Q., Lisboa, D. O., Pinho, D. B., et al. (2023). Leaf spot caused by *Neopestalotiopsis* species on Arecaceae in Brazil. *Australas. Plant Pathol.* 52, 47–62. doi: 10.1007/s13313-022-00893-6

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp. Ser.* 41, 95–98. doi: 10.14601/Phytopathol_Mediterr-14998u1.29

Hsu, S. Y., Xu, Y. C., Lin, Y. C., Chuang, W. Y., Lin, S. R., Stadler, M., et al. (2024). [amp]]#xFEFF; Hidden diversity of *Pestalotiopsis* and *Neopestalotiopsis* (Amphisphaeriales, Sporocadaceae) species allied with the stromata of entomopathogenic fungi in Taiwan. *MycoKeys* 101, 275. doi: 10.3897/ mycokeys.101.113090

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics* 17, 754–755. doi: 10.1093/bioinformatics/17.8.754

Hyde, K. D., Hongsanan, S., Jeewon, R., Bhat, D. J., Mckenzie, E. H. C., Jones, E. B. G., et al. (2016). Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* 80, 1–270. doi: 10.1007/s13225-016-0373-x

Jeewon, R., and Hyde, K. D. (2016). Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. *Mycosphere* 7, 1669–1677. doi: 10.5943/mycosphere/7/11/4

Jiang, N., Fan, X., and Tian, C. (2021). Identification and characterization of leafinhabiting fungi from *Castanea* plantations in China. J. Fungi. 7, 64. doi: 10.3390/ jof7010064

Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Brief. Bioinform.* 20, 1160–1166. doi: 10.1093/bib/bbx108

Koodalugodaarachchi, V., Chethana, K. T., Jayawardena, R. S., Bundhun, D., Aluthmuhandiram, J. V., Suwannarach, N., et al. (2024). New records of *Pestalotioid* species associated with leaf spot disease on *Camellia sinensis* from northern Thailand. *Phytotaxa* 647, 91–114. doi: 10.11646/phytotaxa.647.1.5

Lang, T. Q., Luo, G. Y., Pu, W. C., Wang, Z. W., Wang, J., Tian, X. L., et al. (2022). Three new 3-formyl-2-arylbenzofurans from *Itea yunnanensis* and their antihepatocellular carcinoma effects. *Nat. Prod. Res.* 36, 1205–1214. doi: 10.1080/ 14786419.2020.1867130

Li, W. L., Dissanayake, A. J., Zhang, T., Maharachchikumbura, S. S., and Liu, J. K. (2022). Identification and pathogenicity of pestalotiod fungi associated with woody oil plants in Sichuan province, China. J. Fungi. 8, 1175. doi: 10.3390/jof8111175

Liu, F., Hou, L., Raza, M., and Cai, L. (2017). *Pestalotiopsis* and allied genera from *Camellia*, with description of 11 new species from China. *Sci. Rep.* 7, 866. doi: 10.1038/ s41598-017-00972-5

Luo, G., Zhou, M., Liu, Y., Ye, Q., Gu, J., Huang, T., et al. (2014). 3-Formyl-2arylbenzofurans from the aerial parts of *Itea ilicifolia*. *Phytochem. Lett.* 10, 19–22. doi: 10.1016/j.phytol.2014.06.019

Maharachchikumbura, S. S., Chukeatirote, E., Guo, L. D., Crous, P. W., Mckenzie, E. H., and Hyde, K. D. (2013). *Pestalotiopsis* species associated with *Camellia sinensis* (tea). *Mycotaxon* 123, 47–61. doi: 10.5248/123.47

Maharachchikumbura, S. S., Guo, L. D., Cai, L., Chukeatirote, E., Wu, W. P., Sun, X., et al. (2012). A multi-locus backbone tree for *Pestalotiopsis*, with a polyphasic characterization of 14 new species. *Fungal Divers*. 56, 95–129. doi: 10.1007/s13225-012-0198-1

Maharachchikumbura, S. S., Guo, L. D., Chukeatirote, E., Bahkali, A. H., and Hyde, K. D. (2011). *Pestalotiopsis*—morphology, phylogeny, biochemistry and diversity. *Fungal Divers.* 50, 167–187. doi: 10.1007/s13225-011-0125-x

Maharachchikumbura, S. S., Guo, L. D., Liu, Z. Y., and Hyde, K. D. (2016). *Pseudopestalotiopsis ignota* and *Ps. camelliae* spp. nov. associated with grey blight disease of tea in China. *Mycol. Prog.* 15, 1–7. doi: 10.1007/s11557-016-1162-3

Maharachchikumbura, S. S., Hyde, K. D., Groenewald, J. Z., Xu, J., and Crous, P. W. (2014). *Pestalotiopsis* revisited. *Stud. Mycol.* 79, 121–186. doi: 10.1016/j.simyco.2014.09.005

Mattoo, A. J., and Nonzom, S. (2022). Investigating diverse methods for inducing sporulation in endophytic fungi. *Stud. Fungi.* 7, 1–10. doi: 10.48130/SIF-2022-0016

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). "Creating the CIPRES Science Gateway for inference of large phylogenetic trees," in 2010 gateway computing environments workshop (GCE) (New Orleans, LA, USA: IEEE (Institute of Electrical and Electronics Engineers)), 1–8. doi: 10.1109/GCE.2010.5676129

Monteiro, P., Gonçalves, M. F., Pinto, G., Silva, B., Martín-García, J., Diez, J. J., et al. (2022). Three novel species of fungi associated with pine species showing needle blight-like disease symptoms. *Eur. J. Plant Pathol.* 162, 183–202. doi: 10.1007/s10658-021-02395-5

Norphanphoun, C., Jayawardena, R. S., Chen, Y., Wen, T. C., Meepol, W., and Hyde, K. D. (2019). Morphological and phylogenetic characterization of novel pestalotioid species associated with mangroves in Thailand. *Mycosphere* 10, 531–578. doi: 10.5943/mycosphere/10/1/9

Nozawa, S., Ando, K., Phay, N., and Watanabe, K. (2018). *Pseudopestalotiopsis dawaina* sp. nov. and *Ps. kawthaungina* sp. nov.: two new species from Myanmar. *Mycol. Prog.* 17, 865–870. doi: 10.1007/s11557-018-1398-1

Nozawa, S., Yamaguchi, K., Le, T. H. Y., Van Hop, D., Phay, N., Ando, K., et al. (2017). Identification of two new species and a sexual morph from the genus *Pseudopestalotiopsis. Mycoscience* 58, 328–337. doi: 10.1007/BF02464139

Nylander, J. A. (2004). MrModeltest 2. Program Distributed by the Author (Uppsala, Sweden: Department of Systematic Zoology; Evolutionary Biology Centre, Uppsala University).

O'Donnell, K., and Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. *Mol. Phylogenet. Evol.* 7, 103–116. doi: 10.1006/mpev.1996.0376

O'Donnell, K., Kistler, H. C., Cigelnik, E., and Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. *Proc. Natl. Acad. Sci.* 95, 2044–2049. doi: 10.1073/pnas.95.5.2044

Palwe, S. D., Borde, M. Y., and Sonawane, H. B. (2021). Endophytic fungi: a source of potential anticancer compounds. *Stud. Fungi.* 6, 188–203. doi: 10.1016/j.crphar.2021.100050

Peng, C., Crous, P. W., Jiang, N., Fan, X. L., Liang, Y. M., and Tian, C. M. (2022). Diversity of sporocadaceae (pestalotioid fungi) from *rosa* in China. *Pers.: Mol. Phylogeny. Evol. Fungi.* 49, 201–260. doi: 10.3767/persoonia.2022.49.07

POWO (2024). Plants of the World Online (Kew: Royal Botanic Gardens). Available at: http://www.plantsoftheworldonline.org/ (Accessed November 01, 2024).

Prasannath, K., Shivas, R. G., Galea, V. J., and Akinsanmi, O. A. (2021). *Neopestalotiopsis* species associated with flower diseases of *Macadamia integrifolia* in Australia. J. Fungi. 7, 771. doi: 10.3390/jof7090771

Rambaut, A., and Drummond, A. J. (2012). *FigTree: Tree Figure Drawing Tool* (Edinburgh, UK: Institute of Evolutionary Biology, University of Edinburgh).

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. *Syst. Biol.* 67, 901–904. doi: 10.1093/sysbio/syy032

Razaghi, P., Raza, M., Han, S. L., Ma, Z. Y., Cai, L., Zhao, P., et al. (2024). Sporocadaceae revisited. *Stud. Mycol.* 109, 155–272. doi: 10.3114/sim.2024.109.03

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 61, 539–542. doi: 10.1093/sysbio/sys029

Shi, L. B., Li, Y., Fei, N. Y., Fu, J. F., and Yan, X. R. (2017). First report of *Neopestalotiopsis chrysea* causing twig dieback of rabbiteye blueberry (*Vaccinium ashei*) in China. *Plant Dis.* 101, 506–506. doi: 10.1094/PDIS-09-16-1282-PDN

Song, Z. Q., and Zhang, B. Y. (2024). [amp]]#xFEFF; Taxonomic notes on the genus Itea (Iteaceae). PhytoKeys 239, 59. doi: 10.3897/phytokeys.239.117851

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and postanalysis of large phylogenies. *Bioinformatics* 30, 1312–1313. doi: 10.1093/ bioinformatics/btu033

Strobel, G., Yang, X., Sears, J., Kramer, R., Sidhu, R. S., and Hess, W. M. (1996). Taxol from *Pestalotiopsis microspora*, an endophytic fungus of *Taxus wallachiana*. *Microbiology* 142, 435–440. doi: 10.1099/13500872-142-2-435

Sun, Y. R., Jayawardena, R. S., Sun, J. E., and Wang, Y. (2023). Pestalotioid species associated with medicinal plants in southwest China and Thailand. *Microbiol. Spectr.* 11, e03987–e03922. doi: 10.1128/spectrum.03987-22

Tsai, I., Chung, C. L., Lin, S. R., Hung, T. H., Shen, T. L., Hu, C. Y., et al. (2021). Cryptic diversity, molecular systematics, and pathogenicity of genus *Pestalotiopsis* and allied genera causing gray blight disease of tea in Taiwan, with a description of a new *Pseudopestalotiopsis* species. *Plant Dis.* 105, 425–443. doi: 10.1094/PDIS-05-20-1134-RE

Tsai, I., Maharachchikumbura, S. S., Hyde, K. D., and Ariyawansa, H. A. (2018). Molecular phylogeny, morphology and pathogenicity of *Pseudopestalotiopsis* species on *Ixora* in Taiwan. *Mycol. Prog.* 17, 941–952. doi: 10.1007/s11557-018-1404-7

Wang, Y., Tsui, K. M., Chen, S., and You, C. (2024). [amp]]#xFEFF; Diversity, pathogenicity and two new species of pestalotioid fungi (Amphisphaeriales) associated with Chinese Yew in Guangxi, China. *MycoKeys* 102, 201. doi: 10.3897/mycokeys.102.113696

White, T. J., Bruns, T., Lee, S. J. W. T., and Taylor, J. W. (1990). "Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics," in *PCR protocols: a guide to methods and applications*, vol. 18. Eds. M. A. Innes, D. H. Gelfand, J. J. Sninsky and T. J. White (Academic Press, San Diego, CA, USA), 315–322.

Wu, F., Kong, W. L., Zhang, Y., Wu, T. Y., Sun, X. R., and Wu, X. Q. (2021). First report of leaf spot disease caused by *Neopestalotiopsis chrysea* on *Carya illinoinensis* in China. *Plant Dis.* 105, 221. doi: 10.1094/PDIS-05-20-1125-PDN

Wu, C., Wang, Y., and Yang, Y. (2022). *Pestalotiopsis* diversity: Species, dispositions, secondary metabolites, and bioactivities. *Molecules* 27, 8088. doi: 10.3390/molecules27228088

Xiong, Y. R., Manawasinghe, I. S., Maharachchikumbura, S. S. N., Lu, L., Dong, Z. Y., Xiang, M. M., et al. (2022). Pestalotioid species associated with palm species from Southern China. *Curr. Res. Environ. Appl. Mycol.* 12, 285–321. doi: 10.5943/cream/12/1/18

Xu, J., Ebada, S. S., and Proksch, P. (2010). *Pestalotiopsis* a highly creative genus: chemistry and bioactivity of secondary metabolites. *Fungal Divers.* 44, 15–31. doi: 10.1007/s13225-010-0055-z

Zeng, Y., Dou, D., Zhang, Y., Zhang, L., and Sun, Y. (2015). Rare sugars and antioxidants in *Itea virginica, Itea oblonga* Hand.-Mazz., and *Itea yunnanensis* Franch leaves. *Int. J. Food Prop.* 18, 2549–2560. doi: 10.1080/10942912.2014.917099

Zhang, W., Li, Y., Lin, L., Jia, A., and Fan, X. (2024). Updating the species diversity of pestalotioid fungi: four new species of *Neopestalotiopsis* and *Pestalotiopsis*. J. Fungi. 10, 475. doi: 10.3390/jof10070475

Zhang, Z., Liu, R., Liu, S., Mu, T., Zhang, X., and Xia, J. (2022). [amp]]#xFEFF; Morphological and phylogenetic analyses reveal two new species of Sporocadaceae from Hainan, China. *MycoKeys* 88, 171. doi: 10.3897/mycokeys.88.82229

Zhaxybayeva, O., and Gogarten, J. P. (2002). Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. *BMC Genomics* 3, 1–15. doi: 10.1186/1471-2164-3-4

Zheng, X., Liu, X., Li, X., Quan, C., Li, P., Chang, X., et al. (2023). *Pestalotiopsis* species associated with blueberry leaf spots and stem cankers in Sichuan province of China. *Plant Dis.* 107, 149–156. doi: 10.1094/PDIS-07-21-1550-RE