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Vg9Vd2 T cells expanded with
vitamin C combined with
HMBPP in vitro inhibit
intracellular Mycobacterium
tuberculosis growth
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Juan Liang1, Teng Pan2, Shaoxiang Lin2, Xiuju Liu2,
Zhenwen Zhou2* and Guoliang Zhang1*

1National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research
Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and
Technology, Shenzhen, China, 2Longgang Maternity and Child Institute of Shantou University Medical
College, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
Background: Mycobacterium tuberculosis (Mtb) presents a significant global

health threat, and the existing treatments have notable limitations. Vg9Vd2 T

cells activated by HMBPP can inhibit the growth of intracellular Mtb. Additionally,

vitamin C (VC) promotes the differentiation and proliferation of related T cells.

However, it remains uncertain whether VC can enhance the expansion of Vg9Vd2
T cells within PBMCs activated by HMBPP and rIL-2, and the underlying

mechanism of the inhibitory effect of the expanded T cells on intracellular Mtb

has not been elucidated.

Methods: Venous blood was collected from healthy individuals, and PBMCs were

subsequently isolated. In vitro, Vg9Vd2 T cells were selectively expanded with

HMBPP, rIL-2, and VC. Flow cytometry was utilized to analyze the purities and

phenotypes of Vg9Vd2 T cells, while cell counts were performed to determine the

total number of viable cells. Magnetic bead sorting was employed to purify

Vg9Vd2 T cells. Mtb strains were cultured, and macrophage infection models

derived from THP1 cells were established. Co-culture experiments were

conducted with Mtb-infected macrophages and Vg9Vd2 T cells, and the

number of intracellular bacteria was quantified through CFU counting. The

levels of cytokines were measured using the CBA method and flow cytometry.

Statistical analysis was carried out using GraphPad Prism and SPSS software.

Results: VC (70 mM) significantly enhances the expansion of Vg9Vd2 T cells within

PBMCs during primary HMBPP activation in the presence of rIL-2, with higher

induction rates and total cell proliferation. By day 14 of induction, Vg9Vd2 T cells

expanded with HMBPP, VC, and rIL-2 exhibited the central memory (10-20%) and

the effector memory phenotypes (75-90%). Furthermore, these expanded T cells

effectively inhibited the growth of intracellular virulent Mtb strain (H37Rv) in a

cell-contact-dependent manner. The inhibitory effect was associated with an

up-regulated production of TNF-a and IFN-g, and a down-regulated expression

of IL-10 and IL-17A during Mtb infection.
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Conclusion: This study demonstrates that VC enhances the proliferative

expansion of Vg9Vd2 T cells in PBMCs primarily stimulated with HMBPP and

rIL-2. The expanded Vg9Vd2 T cells are capable of effectively inhibiting the

growth of virulent H37Rv strain, likely through the secretion of TNF-a and IFN-g.
These findings provide a novel direction for tuberculosis treatment research.
KEYWORDS

Mycobacterium tuberculosis, Vg9Vd2 T cells, HMBPP, vitamin C, induction rate, effector
function, inhibition
GRAPHICAL ABSTRACT
1 Introduction

Mycobacterium tuberculosis (Mtb), an ancient and highly

successful intracellular pathogen, can cause various forms of

tuberculosis, such as pulmonary, intestinal, and cerebral

tuberculosis. Among these manifestations, pulmonary tuberculosis

(TB) is the most widespread. It is recognized as a chronic infectious
02
disease, and its situation is exacerbated by the rising incidence of co-

infections and the emergence of drug resistance (Bourzac, 2014).

The standard treatment for TB typically exceeds six months, and

prolonged antibiotic use frequently leads to the development of

multidrug-resistant tuberculosis (MDR-TB) (Bendre et al., 2021;

Singh and Chibale, 2021). Furthermore, such treatments may

significantly compromise the patient’s immune defenses (Bagcchi,
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2023). Therefore, there is an urgent need to develop safe and

effective therapeutic strategies for the management of tuberculosis.

Human gd T cells, a subset of non-classical T cells, play a pivotal

role in both innate and adaptive immune responses against

infections, including those caused by Mtb and other pathogens

(Shen et al., 2002; Yuan et al., 2009). These cells are divided into two

main subpopulations: Vd1 T cells, primarily located in mucosal

tissues, and Vd2 T cells, which are predominantly found in

peripheral blood but can migrate to various sites. Research has

demonstrated that the Vg9Vd2 T-cell subset is particularly crucial

for inhibiting Mtb infection. This subset, unique to primates

(including humans and non-human primates), constitutes 65–

90% of total circulating human gd T cells and expresses a

Vg9Vd2-encoded T-cell receptor (TCR) (Chen, 2013).

Vg9Vd2 T cells recognize isoprenoid metabolites, including

isopentenyl pyrophosphate (IPP) and (E)-4-hydroxy-3-methyl-

but-2-enyl pyrophosphate (HMBPP), which was collectively

termed phosphoantigens (Belmant et al., 1999). IPP is synthesized

through two major pathways: the classical mevalonate (MVP)

pathway and the alternative non-mevalonate (MEP) pathway.

While IPP functions as an intermediate metabolite in both

pathways, HMBPP is exclusively synthesized in the MEP pathway

by specific microbes, including Mycobacterium tuberculosis and

Listeria monocytogenes (Hintz et al., 2001). Under physiological

conditions, Vg9Vd2 T cells can differentiate between pathogen-

derived and host-derived prenyl pyrophosphates. The mevalonate

pathway is prevalent in most eukaryotes, archaea, certain

eubacteria, and the cytosol of plants. In contrast, the non-

mevalonate pathway, also referred to as the 2-C-methyl-D-

erythritol 4-phosphate (MEP) pathway, is present in most

eubacteria, apicomplexan protozoa, cyanobacteria, and the

chloroplasts of plants (Puan et al., 2007).

As an intermediate product of the MEP pathway and a microbe-

specific metabolite, HMBPP is recognized as the most potent

activator of Vg9Vd2 T cells, demonstrating an activity level that is

1000 fold higher in vitro compared to other physiological

compounds (Hintz et al., 2001; Eberl et al., 2003; Reichenberg

et al., 2003). Studies have demonstrated that HMBPP-specific

Vg9Vd2 T cells can inhibit intracellular growth of Bacillus

Calmette-Guérin (BCG) (Worku and Hoft, 2003), which depends

on the production of HMBPP through a microbial-specific

isoprenoid pathway (Puan et al., 2007). Chen ZW’s group

demonstrated that transfer of Vg9Vd2 T cells to rhesus monkeys

infected with BCG significantly enhances the anti-Mtb response

(Shen et al., 2002). However, although HMBPP can activate

Vg9Vd2 T cells in vitro, the induction rate reaches only 40-60%

by the 14th day, even with the addition of rIL-2.

Vitamin C (L-ascorbic acid) is an essential nutrient for humans,

serving as a potent antioxidant and a cofactor for a family of

biosynthetic and gene regulatory enzymes. Extensive research has

shown that vitamin C not only exhibits direct cytotoxicity toward

tumor cells but also plays a critical role in supporting the cellular

functions of both the innate and adaptive immune systems (Xu et al.,

2021). Specifically, vitamin C enhances epithelial barrier function

against pathogens and promotes the oxidant scavenging activity of
Frontiers in Cellular and Infection Microbiology 03
the skin, thereby offering protection against environmental oxidative

stress (Valacchi et al., 2015). Additionally, VC can facilitate the

clearance of spent neutrophils from infection sites, reducing

necrosis and potential tissue damage. The accumulation of VC in

neutrophils enhances phagocytosis activity, stimulates the generation

of reactive oxygen species, and promotes microbial killing (Boura

et al., 1989; Goldschmidt, 1991). Although the role of VC in

lymphocytes is less well-defined, some studies suggests it promotes

the differentiation and proliferation of B cells, NK cells, regulatory T

cells (Tregs), and dendritic cells derived from both murine and

human hematopoietic progenitor cells (Anderson et al., 1980;

Manning et al., 2013; Xu et al., 2021). VC deficiency is associated

with impaired immunity and increased susceptibility to infections

(Goldschmidt et al., 1988; Goldschmidt, 1991). Conversely, infections

significantly deplete VC levels due to heightened inflammatory

responses and increased metabolic demands. Furthermore, VC

supplementation has been shown to prevent and treat respiratory

and systemic infections (Carr and Maggini, 2017).

Kouakanou et al. demonstrated that VC enhances the

proliferative expansion and effector function of purified human

Vg9Vd2 T cells, as well as 14-day-expanded Vg9Vd2 T-cell lines

restimulated with zoledronate (ZOL) or synthetic phosphoantigens

(pAgs) (Kouakanou et al., 2020). Furthermore, VC was found to

increase the proliferation of Vg9Vd2 T cells within Peripheral blood

mononuclear cells (PBMCs) selectively activated with Zol, which

subsequently enhanced the tumor-killing activity of these gd cells

expanded in vitro (Xu et al., 2021). Specifically, VC reduced

apoptosis in Vg9Vd2 T cells and increased cytokine production

during both primary activation and subsequent pAg restimulation,

and also augmented oxidative respiration and glycolysis in gd T cells

during pAg restimulation (Kouakanou et al., 2020).

In this study, we investigated whether VC could significantly

enhance the proliferative expansion of Vg9Vd2 T cells within

PBMCs primarily activated with HMBPP and rIL-2. Furthermore,

we explored the ability and underlying mechanism of Vg9Vd2 T

cells expanded in vitro with HMBPP, VC, and rIL-2 to inhibit the

growth of intracellular Mtb. This research provides valuable

theoretical insights for the development of novel Mtb vaccines.
2 Materials and methods

2.1 Venous blood collection, PBMC
isolation and ethics

Healthy individuals aged 20 to 40 years were recruited for this

study after obtaining informed consent. Prior to blood collection,

participants underwent routine blood tests to confirm that all blood

parameters were within normal ranges and to exclude symptoms

such as fever, cold or diarrhea. Additionally, participants were

screened for infectious diseases (e.g., HIV, HBV, HCV) and

underlying conditions (e.g., hypertension, diabetes). A total of 50–

100 ml of venous blood was collected from each participant and

stored in blood collection bags. PBMCs were isolated using the

Ficoll-Paque density gradient centrifugation method (Brosseron
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et al., 2015). If immediate separation was not feasible, blood samples

were stored at 4°C for no longer than 6 hours.

The study protocol was approved by the Regional Ethics

Committee of Shenzhen Third People’s Hospital (Approval ID:

SZLY2021049). All participants provided written informed consent

in accordance with the Declaration of Helsinki.
2.2 Ex vivo selective expansion of Vg9Vd2 T
cells by HMBPP, rIL-2 and VC in PBMC
cultures

Freshly isolated PBMCs were cultured at a density of 3.0 × 106

cells/ml in RPMI 1640 medium (Gibco, C11875500BT)

supplemented with 10% FBS (Gibco,10099-141) and 1%

penicillin-streptomycin (PS) (Gibco, 15140122) and varying

concentrations of HMBPP (50nM, 100nM and 200nM) (Sigma,

95098), 100 IU/ml rIL-2 (Beijing Four Rings Bio-Pharm Co.

S10970016), and, where indicated, 70 µM L-ascorbic acid (VC)

(Sigma, A4403). On day 3, the medium and cytokines were

refreshed, excluding HMBPP. Cells were collected using 1× PBS

(Gibco, C10010500BT), centrifuged at 600–800 rpm for 7 minutes,

and resuspended in fresh medium to achieve a density of 2.0-2.5 ×

106 cells/ml. On day 5, the medium was replaced again, maintaining

a centrifugal force of 800 rpm and a cell density of 2.0 × 106 cells/ml.

From day 7 onwards, the medium was changed every 2–3 days,

maintaining a cell density of 1.0-2.0 × 106 cells/ml. Cells were

cultured for a total of 14–21 days, with the total cell count and

Vg9Vd2 T-cell purity recorded at each medium change.
2.3 Flow cytometry and cell counts

Induced Vɣ9Vd2 T cells were stained with fluorochrome-

conjugated monoclonal antibodies targeting CD3-APC-H7 (SK7,

560176), CD3-APC-CY7 (SK7, 341110), TCRVd2-PE (B6, 555739),

TCRVd2-FITC (B6, 555738), CD27-APC (M-T271, 558664),

CD45RA-FITC(HI100, 555488), CD4-PE-CY7 (SK3, 557852),

CD4-PerCP (L200, 550631), CD8-APC (RPA-T8, 555369), IFN-g-
APC (4S.B3, 551385), and TNF-a-PE-Cy7(MAb11, 557647) (all

from BD Biosciences). The staining protocol followed our previous

study (Liu et al., 2016). Briefly, expanded cells were harvested,

washed with PBS, and stained with surface antibodies for 30

minutes at 4°C in the dark. For intracellular cytokine staining,

cells were treated with Brefeldin A (BFA, eBioscience,00-4506-51),

monensin (BD, 554714), and ionomycin for 6 hours prior to

staining. Cells were fixed and permeabilized using BD fixation/

permeabilization solution (BD, 554714) and stained with

intracellular cytokine antibodies. After staining, cells were washed

twice with PBS and resuspended in PBS for flow cytometer analysis.

If immediate analysis was not possible, cells were fixed with 4%

paraformaldehyde and analyzed as soon as possible.

Vɣ9Vd2 T-cell ratio within total T cells was analyzed using anti-

human CD3-APC-H7, TCR Vd2-PE, CD27-APC and CD45RA-

FITC to identify the cell subtypes (Meraviglia et al., 2010). For TNF-
Frontiers in Cellular and Infection Microbiology 04
a and IFN-g staining, antibodies against CD3-APC-Cy7, TCRVd2-
PE, TNF-a-PE-Cy7 and IFN-g-APC were used. The absolute

number of viable Vg9Vd2 T cells were quantified using the Cell-

Meter K2 after excluding dead cells.
2.4 Magnetic bead sorting of Vɣ9Vd2 T
cells

After 14 to19 days of induction, Vɣ9Vd2 T cells with a purity

exceeding 70% were purified using anti-human TCR Vd2-PE
antibody and anti-PE magnetic beads (Miltenyi Biotec, 130-048-

801). Briefly, cells were collected, washed with PBS and stained with

anti-human TCR Vd2-PE antibody at a ratio of 107 cells to 10 µL

antibody. After incubation at 4°C for 15 minutes, cells were washed

and incubated with anti-PE microbeads for an additional 15

minutes. Cells were then resuspended in sorting buffer (Miltenyi

Biotec, 130-091-222) supplemented with 0.5% bovine serum

albumin (BSA) stock solution (Miltenyi Biotec, 130-091-376) and

sorted using a magnetic column. The purified Vɣ9Vd2 T-cell

population exhibited over 98% viability, as confirmed by flow

cytometry. In some cases, anti-human TCRg/d microBeads

(Miltenyi Biotec, 130-050-701) were used to prevent overlap with

mCherry or PE fluorescence.
2.5 Bacterial strains and culture conditions

The wild-type Mtb strain (H37Rv, virulent strain) and the

avirulent strain expressing mCherry fluorescence (H37Ra-

mCherry) were cultured at 37°C in Middlebrook 7H9 broth or

7H10 agar supplemented with 10% (vol/vol) oleic acid–albumin–

dextrose–catalase (OADC, BD, 211886), 0.5% glycerol and 0.05%

(v/v) tyloxapol. Bacterial cultures required approximately 14–21

days to reach the logarithmic growth phase or form visible colonies

on agar plates.
2.6 Induction of human primary
macrophage and Mtb infection

PBMCs from healthy donors were counted and seeded in 10-cm

cell culture dishes at a density of 2-3× 106 cells/ml in RPMI 1640

medium supplemented with 10% FBS, 1% PS and HEPES.

Macrophage differentiation was induced by adding macrophage

colony-stimulating factor (M-CSF, R&D Systems, 216-MC-025) at

a final concentration of 10 ng/ml for 7 days. Half of the medium was

replaced every 3–4 days, maintaining the same M-CSF

concentration. On day 7, non-adherent cells were removed, and

adherent cells were washed twice with 1× PBS. Cells were detached

using 0.05% trypsin (0.5–1 ml/dish) at 37°C incubator for 10-

15min, with gentle shaking every 2–3 minutes. The cells were

repeatedly pipetted up and down using a 3-ml Pasteur pipette

until the complete detachment was achieved. Cells were collected,

centrifuged at 1500 rpm, washed with PBS, and counted.
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A portion of the cells was stained to assess the induction

efficiency and purity of macrophages by measuring the

percentage of CD14-positive cells (CD14+). For infection

experiments, 2 × 105 cells were seeded in a 24-well plate. After

adherence, macrophages were infected with H37Ra-mCherry strain

at multiplicities of infection (MOIs) of 10 and 20. Following a 4-

hour adsorption period, infected macrophages were co-incubated

with purified Vɣ9Vd2 T cells. After 48 h, cells were trypsinized, and

the infection rate was determined by flow cytometry as the

percentage of red fluorescent macrophages relative to the total

macrophages population.
2.7 THP-1-derived macrophages
differentiation and Mtb infection

THP-1 cells (ATCC) were cultured in RPMI 1640 medium

supplemented with 10% FBS, 1% HEPES and 1% PS. For

differentiation, THP-1 cells were seeded at 4.0×105 cells/ml

(2.0×105 cells/well in 24-well plates) and treated with 50 ng/ml

phorbol 12-myristate 13-acetate (PMA, P-8139, Sigma) for 24h.

The medium was then replaced with PMA-free medium, and cells

were allowed to recover for an additional 24h. On day 3, THP-1-

derived macrophages were infected with the H37Ra-mCherry strain

at a MOI of 10. The proportion of fluorescent cells, indicating the

infection rate, was assessed by flow cytometry at 48 h and 72 h post-

infection. For quantitative analysis, THP-1-derived macrophages

were infected with the H37Rv strain at MOI of 10, and bacterial

loads were determined by serial dilution and colony-forming unit

(CFU) counting.
2.8 Co-culture of Mtb-infected
macrophages and Vɣ9Vd2 T cells, CFU
counting

Co-culture experiments were performed under two conditions:

(1) direct contact between Vg9Vd2 T cells (effector cells) and Mtb-

infected macrophages (target cells), and (2) indirect contact using

0.4-µm transwell chambers (Corning, Cat. 3470), allowing only

supernatant exchange. Six experimental groups were established:

(1) uninfected THP-1-derived macrophages (THP1), (2) H37Rv-

infected THP-1-derived macrophages (Mtb-THP1), (3) H37Rv-

infected THP-1-derived macrophages co-cultured with Vg9Vd2 T

cells (THP-Mtb+rT), (4) uninfected THP-1-derived macrophages

co-cultured with Vg9Vd2 T cells (THP+rT), (5) indirect co-culture

of uninfected THP-1-derived macrophages with Vg9Vd2 T cells

(THP+rT-trans), and (6) indirect co-culture of H37Rv-infected

THP-1-derived macrophages with Vg9Vd2 T cells (THP-Mtb

+rT-trans).

After 4 h of H37Rv infection, non-adherent bacteria were

removed by washing twice with 1× PBS. Vg9Vd2 T cells were

added at an effector-to-target ratio of 10:1. At 48 and 72 h post-

infection, supernatants were collected and stored at −80°C. Cells

were lysed with 0.1% SDS, and intracellular bacteria were quantified
Frontiers in Cellular and Infection Microbiology 05
by serial dilution and CFU counting on 7H10 agar plates. Colonies

were enumerated after 14–21 days of incubation.
2.9 Measuring cytokine production by CBA
method

Following macrophages infected with Mtb, macrophages were

co - cultured with purified Vg9Vd2 T cells for 48 h and 72 h

respectively. Cell culture supernatants were then collected for

subsequent analysis. A 50 ml aliquot of each supernatant was

transferred into separate tubes and stored at -80°C for further

analysis. The levels of inflammatory factors and cytokines

associated with Vɣ9Vd2T cell function in the supernatants of the

six cell infection groups (as described in the Method 8) were

quantified using the Cytometric Bead Array (CBA) technique.

Specifically, the LEGENDplex™ multi-analyte flow assay kit

(human CD8/NK panel,13-plex, Cat. No.740267, BioLegend) was

employed to detect the concentrations of 13 factors, including IL-2,

IL-4, IL-17A, IL-6, IL-10, TNF-a, IFN-g, Fas, FasL, granzyme A

(GrzA), granzyme B (GrzB), perforin (PRF) and granulysin

(GNLY). All experimental procedures were performed in strict

compliance with the manufacturer’s instructions. Following the

completion of the assay, C0-C8 standard curves for each factor

were generated to validate the multiplexed concentration

measurements. These curves confirmed that R2 value for each

cytokine standard curve exceeded 0.99 (Supplementary Figure

S3). Using the standard curve derived from known protein

concentrations, the concentrations of the 13 factors in the

supernatants of the test samples were accurately determined.
2.10 Statistical analysis

Statistical analyses were performed using GraphPad Prism

(version 8.0.1). Comparisons between groups were performed

using a paired two-tailed Student’s t-test or one-way ANOVA

followed by Bonferroni correction for multiple comparisons.

Pearson correlation analysis was conducted using SPSS (version

13.0). A p-value < 0.05 was considered statistically significant. All

data are available from the corresponding author upon

reasonable request.
3 Results

3.1 Vitamin C enhances the induction and
expansion of high-purity Vg9Vd2 T cells
from healthy human PBMCs during HMBPP
primary activation

Previous studies have demonstrated that human PBMCs can

differentiate into a substantial population of Vg9Vd2 T cells upon

HMBPP induction in vitro (Dunne et al., 2010). To further

investigate this phenomenon, we established an optimized
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experimental platform for the robust proliferation of HMBPP-

activated Vg9Vd2 T cells. In this study, PBMCs were treated with

varying concentrations of HMBPP (50 nM, 100 nM, and 200 nM) to

induce of Vg9Vd2 T cell differentiation, supplemented with rIL-2 to

expand HMBPP-specific Vg9Vd2 T cells. The gating strategy is

illustrated in Figure 1A. Consistent with prior reports, we observed

that the 200nM concentration resulted in reduced cell proliferation,

whereas the 50 nM and 100 nM concentrations effectively promoted

the differentiation and proliferation of Vg9Vd2 T cells, leading to a

stable increase in both cell purity (≥90%) and total cell numbers

(Figures 1B, C, p < 0.05). Based on these findings, we selected the 50

nM HMBPP concentration for subsequent functional experiments.

It has been reported that vitamin C enhances the host immune

response. Specially, under the stimulation of ZOL or other

artificially synthesized pAgs, VC promotes the proliferation and

effector functions of purified Vg9Vd2 T cells, as well as the

restimulation of 14-day-expanded gd T cells (Kouakanou et al.,

2020). We hypothesized that vitamin C could similarly enhance the

proliferation and effector function of gd T cells in PBMCs

stimulated with primary HMBPP. To test this hypothesis, we

compared the induction efficiency of Vg9Vd2 T cells using two

protocols: (1) HMBPP+rIL-2 and (2) HMBPP+VC (50nM) +rIL-2.

Our results demonstrated that the HMBPP, VC, and rIL-2 protocol

significantly outperformed the traditional HMBPP+rIL-2 method

in terms of induction purity (p < 0.01) and cell proliferation rate (p

< 0.001, Figures 1D, E).

In the presence of VC, the induction ratio of Vg9Vd2 T cells

reached 30-40% by day 7 and exceeded 70% by day 14, with a peak

induction ratio of 75.2 ± 3.1% on day 17. In contrast, the traditional

method exhibited a decline after day 14, reaching only 45.3 ± 2.8%

by day 17 (Figure 1D, p < 0.01). Furthermore, VC significantly

accelerated total cell counts over the induction period, with cell

numbers on day 14 being 2–4 times higher than those in the

HMBPP+rIL-2 group (Figure 1E, p < 0.01). These findings

suggest that vitamin C not only enhances the induction efficiency

of Vg9Vd2 T cells but also sustains their proliferation over an

extended period.
3.2 Phenotypic characterization of Vg9Vd2
T cells expanded with HMBPP, VC, and
rIL-2

To further characterize the expanded Vg9Vd2 T cells, we

analyzed their phenotypic profiles using flow cytometry.

Comparing the gd T cell phenotypes in initial PBMCs and those

after 14 days of induction, we found that the expanded Vg9Vd2 T

cells were predominantly composed of effector memory T cell (EM,

CD45RA-CD27-, 75-90%) and central memory T cells (CM,

CD45RA-CD27+, 10-20%) (Figures 2A, B). Terminally

differentiated cells (TM, CD45RA+CD27-) and naive cells (Prim,

CD45RA+CD27+) accounted for ≤5% and ≤1%, respectively

(Figure 2B). These results indicate that the HMBPP + vitamin C

+ rIL-2 protocol preferentially induces a memory phenotype in
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Vg9Vd2 T cells, which may enhance their functional capacity

against intracellular pathogens.
3.3 Vg9Vd2 T cells expanded with HMBPP,
VC, and rIL-2 inhibit intracellular Mtb
growth

Previous studies have demonstrated that BCG-specific or

HMBPP-specific Vg9Vd2 T cells can reduce the viability of BCG

or Mtb (Dieli et al., 2000; Spencer et al., 2013; Yang et al., 2019).

However, these cells were typically expanded using BCG, HMBPP

combined with IL-2, IL-12 or IL-15. In this study, we investigated

whether Vg9Vd2 T cells expanded with HMBPP, VC, and rIL-2

could inhibit the growth of intracellular Mtb.

Primary macrophages were infected with the attenuated

H37Ra-mCherry strain, and after 7 days of PBMC induction,

CD14-positive macrophages exceeded 95% purity (Supplementary

Figure S1B). Macrophages were infected with MOIs of 10 and 20,

and unbound bacteria were removed after 4 hours of adsorption.

Vg9Vd2 T cells, isolated using magnetic bead sorting

(Supplementary Figure S1A), were co-cultured with infected

macrophages at an effector-to-target ratio of 10:1. Flow cytometry

analysis revealed that the infection rates were 35.5% (MOI = 10)

and 54.3% (MOI = 20) at 48h and 72h post-infection, respectively.

The addition of Vg9Vd2 T cells significantly reduced these rates to

13.5% and 16%, respectively (p < 0.001), suggesting their potent

inhibitory effect on intracellular Mtb growth (Supplementary

Figure S1C).

Similar experiments using THP-1-derived macrophages

confirmed these findings. Similar experiments using THP-1-

derived macrophages confirmed these findings. Confocal

microscopy revealed that Vg9Vd2 T cells aggregated around

H37Ra-infected macrophages (Supplementary Figure S2A), and

flow cytometry showed a significant decrease in H37Ra infection

rates (Supplementary Figure S2B). To assess the effect on virulent

strain, THP-1-derived macrophages were infected with H37Rv

strain (MOI=10) and co-cultured with purified Vg9Vd2 T cells. A

transwell system was used to separate effector and target cells.

Results indicated that direct contact between Vg9Vd2 T cells and

macrophages significantly inhibited the growth of intracellular Mtb

(Figures 3A, B, p < 0.001), whereas indirect contact had minimal

effect (Figures 3A, C). The inhibitory effect was more pronounced at

72h compared to 48h (Figure 3D, p < 0.01), suggesting a time-

dependent enhancement of Vg9Vd2 T cell-mediated anti-

mycobacterial activity.
3.4 Vg9Vd2 T cells expanded with HMBPP,
VC, and rIL-2 downregulated IL-10, but
upregulated TNF- a during Mtb infection

To further elucidate the immunomodulatory effects of

Vg9Vd2 T cells , we investigated their impact on the
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inflammatory response during Mtb infection. Previous studies

have reported a significant increase in the serum levels of the

inflammatory factor IL-6 in tuberculosis patients (Qiu et al.,

2008; Coulter et al., 2017). Therefore, we aimed to determine

whether Vg9Vd2 T cells could modulate macrophage-mediated

inflammatory response.

We quantified the expression of inflammatory factors in the

supernatant ofMtb-infected THP-1-derived macrophages using CBA

assay. Standard curves were constructed for each cytokine to ensure
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accurate quantification (Supplementary Figure S3). Our results

demonstrated that Mtb infection significantly upregulated the

expression of both IL-6 and IL-10 in THP-1-derived macrophages.

Direct co-culture with Vg9Vd2 T cells downregulated IL-10 levels (p

< 0.01) but had no significant effect on IL-6 levels (Figures 4A, B). In

contrast, indirect co-culture with Vg9Vd2 T cells upregulated IL-6

levels (p < 0.05) without affecting IL-10 levels, with IL-6 levels

significantly higher in the indirect contact group compared to the

direct contact group (Figures 4A, B, p < 0.01)).
FIGURE 1

Comparison of the proliferation of Vg9Vd2 T cells induced and expanded with or without VC in combination with HMBPP and rIL-2 in vitro. Healthy
donor PBMCs were activated with varying concentrations of HMBPP (50 nM, 100 nM, 200 nM) for three days, supplemented simultaneously with rIL-
2. The culture medium was refreshed every 2–3 days, after which HMBPP was removed. Cells were harvested to evaluate the induction rate by flow
cytometry and to quantify total cell numbers using an automated cell counter. Induced cells were stained with surface-specific antibodies to
determine the proportion of Vg9Vd2 T cells within the CD3+ T cell population. (A) Representative gating strategy and flow cytometry plots of Vg9Vd2
T cells in PBMCs. (B) Induction rates of Vg9Vd2 T cells and (C) total number of proliferating cells activated by varying concentrations of HMBPP (200
nM, 100 nM and 50 nM) in the presence of rIL-2. Data are presented as mean ± SEM from two independent experiments pooled from 2 healthy
dornors. (D) Induction ratio of Vg9Vd2 T cells in PBMCs and (E) total number of proliferating cells activated and expanded with HMBPP (50 nM) and
rIL-2, with or without VC (70 mM). Data are presented as mean ± SEM from three independent experiments pooled from 7 healthy dornors. Statistical
analyses were performed using one-way ANOVA followed by Bonferroni multiple comparison test. **P<0.01, ***P<0.001, ****P<0.0001.
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TNF-a, a crucial pro-inflammatory cytokine secreted by

activated macrophages, T cells, and NK cells. TNF-a not only

promotes the inflammatory response but also enhances the

proliferation and cytotoxic functions of T cells. Our experiment

indicated that TNF-a levels were significantly upregulated in the

presence of Vg9Vd2 T cells, particularly in direct co-culture group

(Figure 4C, p < 0.0001)). These findings suggest that Vg9Vd2 T cells

exert distinct immunomodulatory effects depending on their

interaction mode with infected macrophages, potentially

enhancing anti-mycobacterial immunity through TNF-a
upregulation and IL-10 downregulation.
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3.5 Vg9Vd2 T cells expanded with HMBPP,
VC, and rIL-2 suppresses intracellular Mtb
growth via downregulation of IL-17A and
upregulation of IFN-g

To further elucidate the mechanisms underlying the anti-

mycobacterial activity of Vg9Vd2 T cells, we investigated the

effector molecules involved in their inhibitory effects on

intracellular Mtb growth. Using the CBA assay, we quantified the

expression of cytokines associated with the differentiation and

activation of Vg9Vd2 T cell subpopulations.
FIGURE 2

Differentiation subsets of Vg9Vd2 T cells induced in vitro by VC in combination with HMBPP and rIL-2. Healthy donor PBMCs were activated and
expanded with HMBPP, VC, and rIL-2 for 14 days. The phenotypic characterization of Vg9Vd2 T cells was performed by staining with surface
antibodies, including anti-CD3-APC-H7, anti-TCRd2-PE, anti-CD45RA-FITC and anti-CD27-APC. (A) Representative flow cytometry plots illustrating
the gating strategy and the subsets of Vg9Vd2 T cell in PBMCs at day 0 and day 14. (B) Comparison of the proportion of different Vg9Vd2 T cell
subsets at day 0 and day 14 of induction. Subsets were defined as follows: terminally differentiated cells (CD45RA+CD27−), naive cells (Prim,
CD45RA+CD27+), effector memory T cells (EM, CD45RA−CD27−) and central memory cells (CM, CD45RA−CD27+). Representative data are from three
independent experiments, each performed using PBMCs from a healthy donor (n=3). Statistical analyses were conducted using one-way ANOVA
followed by Bonferroni multiple comparison test. ****P<0.0001.
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IL-4, a marker for T cell subpopulations differentiation, was

minimally expressed by Vg9Vd2 T cells, however, with no

significant difference observed upon exposure to conditioned

medium from Mtb-infected macrophages (Figure 4A). In

contrast, Vg9Vd2 T cells expanded with this protocol

significantly downregulated the expression of IL-17A

during inhibition of intracellular Mtb growth (Figure 4B).

This observed downregulation of IL-17A was independent of

direct cell-to-cell contact, indicating a cytokine-mediated

regulatory mechanism.

Additionally, the Vg9Vd2 T cells expanded with HMBPP, VC,

and rIL-2 significantly upregulated the levels of IFN-g (p < 0.001), a

key cytokine known to potentiate anti-mycobacterial immunity.

Notably, the IFN-g level was strictly dependent on direct cell

contact, as indirect co-culture conditions using Transwell systems

failed to elicit significant IFN-g upregulation (p > 0.05, Figure 4C).

Collectively, these findings indicate that IFN-g mediates the direct

anti-mycobacterial effector function of Vg9Vd2 T cells, while IL-

17A downregulation may contribute to dampening excessive

inflammation during Mtb infection.
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3.6 Vg9Vd2 T cells expanded with HMBPP,
VC, and rIL-2 do not increase direct
cytotoxicity-related factor expression
during Mtb infection

The effector functions of Vɣ9Vd2 T cells against tumor cells or

infected cells are commonly mediated by direct cytotoxicity

mechanisms. To investigate whether these mechanisms are

involved in the anti-mycobacterial activity of Vg9Vd2 T cells, we

respectively analyzed the expression of cytotoxicity-related factors,

including granzyme A (GrzA), granzyme B (GrzB), perforin (PRF),

and granulysin (GNLY), in cell supernatants collected at 48 h and

72 h post-infection using a CBA assay.

No statistically significant upregulation of granzyme A,

granzyme B, perforin, or granulysin was observed in the direct

co-culture group during Mtb infection (Figures 5A–D). In the

indirect cell contact group, granzyme A, granzyme B, and

granulysin levels were significantly downregulated at 48 hours (p

< 0.05), with no significant changes observed at 72 hours

(Figures 5A–D). Although perforin showed a trend toward
FIGURE 3

Vg9Vd2 T cells expanded with HMBPP, VC, and rIL-2 efficiently inhibit the growth of intracellular Mtb. THP-1-derived macrophages were infected
with virulent H37Rv strain at MOI of 10 for 4h. Subsequently, Vg9Vd2 T cells expanded using HMBPP, VC, and rIL-2 were added to the culture
medium at an effector-to-target cell ratio of 10:1. The Vg9Vd2 T cells were either placed in direct contact with Mtb-infected macrophages or
separated using 0.4mM transwell chambers for indirect contact. At 48h and 72h post-infection, co-cultured cells were harvested and lysed with 0.1%
SDS to analyze the intracellular Mtb infection rate. (A) Comparison of colony growth on agar plates of intracellular Mtb in Mtb-infected THP-1
macrophages. Comparison of the direct contact group and the indirect contact group at (B) 48h and (C) 72h post-infection. (D) Inhibition rates of
Vg9Vd2 T cells on Mtb growth at 48h and 72h post-infection, using T cells expanded with HMBPP, VC, and rIL-2. Ctrol: Mtb-infected THP-1-derived
macrophages. +rT: direct contact group of Mtb-infected THP-1-derived macrophages with Vg9Vd2 T cells, +rT-trans: indirect contact group of Mtb-
infected THP-1-derived macrophages with Vg9Vd2 T cells. Data are presented as mean ± SEM from three independent experiments using PBMCs
pooled from 8 healthy donors. Statistical analyses were performed using t-test and one-way ANOVA followed by Bonferroni multiple comparison
test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ns, no significant.
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FIGURE 4

Vg9Vd2 T cells expanded with HMBPP, VC, and rIL-2 downregulate IL-10 levels but upregulate TNF- a expression during mycobacterial infection.
Supernatants from six cell infection groups were collected to quantify inflammatory cytokine levels using a cytometric bead array. These groups
included: THP-1-derived macrophages (THP1), Mtb-infected macrophages (Mtb-THP1), direct contact group of THP-1-derived macrophages with
Vg9Vd2 T cells (THP+rT), direct contact group of Mtb-infected THP-1-derived macrophages with Vg9Vd2 T cells (THP-Mtb+rT), indirect contact
group of THP-1-derived macrophages with Vg9Vd2 T cells using transwell chambers (THP+rT-trans), and indirect contact group of Mtb-infected
THP-1-derived macrophages with Vg9Vd2 T cells using transwell chambers (THP-Mtb+rT-trans). Representative expression levels of (A) IL-6,
(B) IL-10 and (C) TNF-a in the six experimental groups at 48h and 72h post-infection. Data are presented as mean ± SEM from three independent
experiments pooled from 6 healthy donors. Statistical analyses were performed using one-way ANOVA followed by the Bonferroni multiple
comparison test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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FIGURE 5

Vg9Vd2 T cells expanded with HMBPP, VC, and rIL-2 do not increase the expression of direct cytotoxicity-related factors during inhibition of
intracellular mycobacterial infection. Using the CBA, the supernatants from the six cell-infection groups were collected to quantify the levels of
cytotoxicity-related factors, including granzyme A (GrzA), granzyme B (GrzB), perforin (PRF), and granulysin (GNLY). The expression levels of (A)
GrzA, (B) GrzB, (C) PRF and (D) GNLY were assessed in the six groups at 48 and 72h post- infection. The groups included: THP-1-derived
macrophages (THP1), Mtb-infected macrophages (Mtb-THP1), direct contact group of THP-1-derived macrophages with Vg9Vd2 T cells (THP+rT),
direct contact group of Mtb-infected THP-1-derived macrophages with Vg9Vd2 T cells (THP-Mtb+rT), indirect contact group of THP-1-derived
macrophages with Vg9Vd2 T cells using transwell chambers (THP+rT-trans), and indirect contact group of Mtb-infected THP-1-derived
macrophages with Vg9Vd2 T cells using transwell chambers (THP-Mtb+rT-trans). Data are presented as mean ± SEM from three independent
experiments pooled from 6 healthy donors. Statistical analyses were performed using one-way ANOVA followed by Bonferroni multiple comparison
test, with significance defined as *P<0.05, **P<0.01.
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downregulation (p > 0.05), the difference was not statistically

significant during Mtb infection (Figures 5A–D). Collectively,

these findings indicate that the anti-mycobacterial activity of

Vg9Vd2 T cells expanded with HMBPP, VC, and rIL-2 may be

not primarily mediated by direct cytotoxicity mechanisms.
3.7 TNF-a and IFN-g pathways mediate
intracellular Mtb growth inhibition by
Vg9Vd2 T cells expanded with HMBPP,
VC, and rIL-2

Using intracellular cytokine staining and flow cytometry, we

analyzed the intracellular expression of TNF-a and IFN-g in

Vg9Vd2 T cells expanded with HMBPP, VC, and rIL-2 during

Mtb infection. The gating strategy for intracellular cytokine analysis

is shown in Figure 6A. Our results indicated thatVg9Vd2 T cells

significantly upregulated the expression of TNF-a and IFN-g
during Mtb infection, particularly under direct cell-to-cell contact

conditions (Figures 6B, C, p < 0.001). These findings indicate that

the TNF-a and IFN-g signaling pathways are critical mediators of

the anti- mycobacterial activity exerted by Vg9Vd2 T cells expanded

with HMBPP, VC, and rIL-2.
4 Discussion

Vitamin C, a potent antioxidant and a cofactor for enzymes

such as histone demethylases and methylcytosine dioxygenases (Xu

et al., 2021), exists in two redox states: the reduced active form

(ascorbic acid) and the oxidized form (dehydroascorbic acid, DHA).

At micromolar concentrations, VC neutralizes reactive oxygen

species (ROS), protecting cells from oxidative stress (Corti et al.,

2010). At high concentrations, VC induces ROS-mediated cell death

in tumor cells, which exhibit high expression of GLUT1, a

transporter facilitating DHA uptake. Furthermore, VC modulates

multiple pathways involved in immune cell activation and

differentiation. For instance, it promotes the development of

double-positive T cells from the hematopoietic progenitors and

enhances T cell maturation, processes dependent on its antioxidant

activity (Manning et al., 2013; Huijskens et al., 2014; Oyarce et al.,

2018). VC also stabilizes the regulatory function of induced CD8+

regulatory T cells (Tregs) through FOXP3 demethylation (Iamsawat

et al., 2019) and enhances dendritic cell maturation and antigen

presentation via the NF-kB and TET-dependent epigenetic

regulation (Morante-Palacios et al., 2022). Additionally, VC

supports NK cell development from hematopoietic progenitor

cells and regulates the methylation status of KIR genes on human

NK cells (Wu et al., 2020). Recent studies highlight its role in

promoting plasma cell differentiation and enhancing antibody

responses throughTET2/3-mediated epigenetic remodeling (Qi

et al., 2020; Chen et al., 2022).

VC also enhances the functionality of human gdT cells. It

increases Ca2+ influx in Zol-expanded gdT cell lines upon anti-
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CD3 antibody stimulation (Kabelitz et al., 2024) and improves

cytokine production, cell cycle progression and metabolic activity

(Kouakanou et al., 2020). In our study, VC (70mM) significantly

boosted the induction rate of Vg9Vd2 T cells to 70% by day 14, with

total cell numbers markedly higher than in VC-free cultures

(Figures 1D, E). These findings suggest that VC enhances the

proliferation of Vg9Vd2 T cells in healthy PBMCs activated by

primary HMBPP and rIL-2 after 12–14 days. Kouakanou et al.

demonstrated that VC rescues gd T cells from activation-induced

cell death during restimulation with pAg (Janssen et al., 1991;

Kouakanou et al., 2020).

Although Xu et al. reported that VC enhances Vg9Vd2 T cell

proliferation in Zol-stimulated PBMCs and improves immune

effector functions, including proliferation, differentiation and

cancer cell killing, they did not observe increased Vg9Vd2 T cell

expansion in PBMCs primary stimulated by HMBPP (Xu et al.,

2021). We speculate that this discrepancy may be attributed to their

shorter observation period (8 days). In this study, we extended the

induction period to over 14 days and demonstrated that VC

significantly enhances the expansion of Vg9Vd2 T cells in PBMCs

primarily stimulated by HMBPP.

Moreover, Vg9Vd2 T cells expanded with HMBPP, VC, and

rIL-2 exhibit effector memory phenotypes by day 15 of induction,

with 75-90% of these cells expressing the CD45RA−CD27− effector

memory phenotype. This phenotype is notably decreased in cases of

active TB and TB/HIV coinfection (Gioia et al., 2002). Additionally,

10-20% of these cells display the CD45RA−CD27+ central memory

phenotype. In macaques, a robust memory-type response of

Vg9Vd2 T cells was observed as early as four days after BCG re-

infection, with the magnitude of this expansion being 2–9 times

greater than that during primary BCG infection (Shen et al., 2002).

Furthermore, emerging research suggests that VC enhances the

functional efficacy of expanded Vg9Vd2 T cells, potentially through

mechanisms such as promoting nuclear translocation of NF-kB and

NFAT, altering transcriptional profile, enhancing cytotoxic activity,

and improving the efficiency of lentiviral transduction (Kabelitz

et al., 2024).

On the other hand, Vg9Vd2 T cells expanded with HMBPP

stimulation areMtb-specifical Vg9Vd2 T cells and play a crucial role

in inhibiting intracellular mycobacterial growth. To explore this

further, we investigated whetherVg9Vd2 T cells expanded with

HMBPP, VC, and rIL-2 could inhibit the growth of intracellular

Mycobacterium tuberculosis. Our findings demonstrated that these

cells not only inhibit the growth of attenuated strain (H37Ra-

mcherry), but also efficiently suppress the growth of high-

virulence strain (H37Rv), with the inhibition dependent on cell-

to-cell contact. This aligns with previous reports by Daniel F. Hoft,

who found that only Vg9Vd2 T cells generated through repeated

stimulation with BCG-infected DC could directly inhibit

intracellular bacilli, achieving an inhibition rate of approximately

50-60% (Abate et al., 2016). Similarly, Chen ZW’s group reported

that Vg9Vd2 T cells expanded with HMBPP and IL-12 efficiently

inhibit intracellular BCG growth in human THP-1-induced

macrophages and autologous human monocyte-derived
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FIGURE 6

Intracellular expression of TNF- a and IFN-g is significantly increased inVg9Vd2 T cells expanded with HMBPP, VC, and rIL-2 during Mtb infection.
Purified Vg9Vd2 T expanded with HMBPP, VC, and rIL-2 were co-cultured with H37Rv-infeted macrophages for 48h. Six hours before cell collecting,
brefeldin A (BFA) and other protein transport inhibitors were added, followed by intracellular staining to assess the expression level of intracellular
cytokines. (A) Gating strategy of TNF- a and IFN-g expression in Vg9Vd2 T cells. Comparison of the expression levels of (B) TNF- a and (C) IFN-g in
Vg9Vd2 T cells expanded with HMBPP, VC, and rIL-2, either in direct co-culture with H37Rv-infected macrophages or in indirect contact with
H37Rv-infected macrophages. The groups included: Vg9Vd2 T cells alone cells (gT), direct contact group of THP-1-derived macrophages with
Vg9Vd2 T cells (THP+rT), direct contact group of Mtb-infected THP-1-derived macrophages with Vg9Vd2 T cells (THP-Mtb+rT), indirect contact
group of THP-1-derived macrophages with Vg9Vd2 T cells using transwell chambers (THP+rT-trans), and indirect contact group of Mtb-infected
THP-1-derived macrophages with Vg9Vd2 T cells using transwell chambers (THP-Mtb+rT-trans). Data are presented as mean ± SEM from three
independent experiments (n=6). Statistical analyses were performed using one-way ANOVA followed by Bonferroni multiple comparison test, with
significance defined as *P<0.05. ns, no significant.
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macrophages, although their study did not address the inhibitory

effects on highly virulent strain (Yang et al., 2019). In our study, we

observed that Vg9Vd2 T cells expanded with HMBPP, VC and rIL-2

have the ability to inhibit the virulent Mtb H37Rv strain, and the

inhibition ratio is about 40-60%. We speculate that VC may play a

critical role in this process through mechanisms that are yet to

be elucidated.

To investigate the mechanism underlying Vg9Vd2 T cell-

mediated inhibition of intracellularMtb growth, we analyzed the

expression of cytokines and cytotoxic factors in co-cultured

supernatants using CBA assay. The results showed that both

the pro-inflammatory factor IL-6 and the anti-inflammatory

factor IL-10 were significantly upregulated during Mtb

infection. However, the magnitude of IL-6 and IL-10 induction

was markedly weaker compared to infections with fast-growing

bacteria, such as Mycobacterium smegmatis (data not shown).

Interestingly, Vg9Vd2 T cells expanded with HMBPP, VC, and

rIL-2 downregulated IL-10 expression in direct co-culture

system while significantly upregulated of IL-6 in the indirect

co-culture conditions. This suggests that expanded Vg9Vd2 T

cells enhance, rather than suppress, the inflammatory response

during Mtb infection—a finding consistent with Liu et al.’s

report that Mtb employs a “diplomatic strategy” to establish

persistent intracellular infection by balancing bacterial

replication and modulating host inflammatory responses (Chai

et al., 2019).

The detection results further indicated that TNF-a was

significantly up-regulated in the co-culture system, originating

from both macrophages and Vg9Vd2 T cells regardless of

whether it was in the cell-contact group or the non-contact group

(Figure 4C). However, the significant increase in IFN-g levels

mainly depends on cell-to-cell contact during Mtb infection

(Figure 7C). Using flow cytometry, we measured TNF-a and

IFN-g levels in Vg9Vd2 T cells co-cultured with Mtb-infected

macrophages, and the results revealed a significant upregulation

of both cytokines in Vg9Vd2 T cells during Mtb infection

(Figure 6B). Vg9Vd2 T cells expanded with HMBPP, VC, and

rIL-2 significantly downregulated IL-17A expression, modulated

IFN-g levels and had no effect on IL-4 levels during the inhibition of

intracellular Mtb growth (Figures 7A–C).

Previous study has demonstrated thatMtb infection leads to a

significant increase in TNF-a levels in both alveolar cells and

alveolar macrophages (AMs). TNF-a has been suggested to play a

pivotal role in regulating AM proliferation and apoptosis during

Mtb infection (Shi et al., 2016). Furthermore, anti-TNF-a therapy

impairs the host defense against infection, particularly by

disrupting granulomas formation and maintenance (Athimni

et al., 2022). Expanded Vg2Vd2 T cells in macaques can

differentiate into effector cells, which exhibit the ability to

inhibit L. monocytogenes infection. This process is associated

with elevated levels of cytokines such as IFN-g, TNF-a, IL-4, IL-
17, and effector molecules like perforin (Frencher et al., 2014).

Our observation of TNF-a and IFN-g upregulation under direct
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co-culture conditions highlights the importance of cell-to-cell

contact in potentiating these pro-inflammatory cytokines. This is

consistent with the known role of TNF-a in inducing

macrophage autophagy and IFN-g in enhancing phagosome-

lysosome fusion, both critical for Mtb clearance (Yang et al.,

2019). These findings suggest that in vitro-expanded Vg9Vd2 T

cells may utilize TNF-a and IFN-g signaling pathways to enhance
the phagocytic activity of macrophages and suppress intracellular

bacterial growth.

IL-17A is primarily produced by Th17 cells and serves as an

early initiator of inflammatory responses. Previous studies have

shown that severe TB in juvenile rhesus monkeys downregulates

many genes in the blood but upregulates selected genes associated

with Th17 and Th1 responses in pulmonary tissues (Qiu et al.,

2008). Additionally, Th17-related cytokines contribute to the recall-

like expansion and effector function of HMBPP-specific Vg2Vd2 T

cells following Mtb infection or vaccination (Shen et al., 2015). The

dual production of IL-17 by multifunctional Th17 cells may

correlate with disease severity. Furthermore, circulating levels of

IL-17 and IFN-g are lower in active TB patients than in those with

latent TB infection, suggesting that IL-17 deficiency may either

predispose individuals to active TB or result from it (Coulter

et al., 2017).

Our results demonstrated that Vg9Vd2 T cells expanded with

HMBPP, VC, and rIL-2 did not significantly alter the expression

of granzyme A, granzyme B, perforin and granulysin during the

inhibition of intracellular Mtb infection. Previous studies have

demonstrated that the CD8+ CTL subset can more efficiently

eliminate intracellularMtb compared to other subsets through the

expression of granzyme B, granulysin, and perforin (Dieli et al.,

2001; Balin et al., 2018). Furthermore, we observed that the

expression levels of granzyme A, granzyme B, perforin and

granulysin in the indirect contact group were downregulated to

varying degrees at 48 h post-infection. Daniel F. Hoft et al. noted

that serum levels of granzyme A in TB patients were significantly

lower than those in individuals with latent TB infection. Purified

granzyme A alone has been shown to inhibit intracellular

mycobacteria, whereas the knockdown of granzyme A in

Vg9Vd2 T cells abolished these inhibitory effects (Spencer et al.,

2013). These findings collectively indicate that cytotoxic

molecules (e.g., granzyme A, granzyme B, perforin and

granulysin) may play critical roles in the anti-tuberculosis

immune response.

Moreover, granulysin has been demonstrated to eliminate Mtb

at concentrations higher than those typically found in serum,

suggested that additional serum components may also contribute

to Mtb eradication (Di Liberto et al., 2007). However, no obvious

changes in granulysin levels in Vg9Vd2 T cells were observed before

and afterMtb infection. We speculate that Vg9Vd2 T cells expanded

with HMBPP, VC, and rIL-2 may employ alternative mechanisms

to inhibit intracellular Mtb growth, such as enhancing the

phagocytic and clearance abilities of macrophages or activating

bypass signaling pathways. Given that Mtb is a slow-growing
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bacterium, with relatively limited antigen exposure, it elicits a weak

immune response in Vg9Vd2 T cells and does not significantly

activate apoptosis or direct killing pathways. This hypothesis

warrants further investigation and discussion.
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However, several limitations should be acknowledged. First, the

mechanisms underlying VC-mediated enhancement of Vg9Vd2 T

cell expansion and effector function remain incompletely

understood, requiring further mechanistic investigation.
FIGURE 7

Vg9Vd2 T cells expanded with HMBPP, VC, and rIL-2 downregulate IL-17A levels but upregulate IFN-g expression during mycobacterial infection. Using the
CBA, the supernatants from six experimental groups were collected to quantify cytokine levels primarily secreted by Vg9Vd2 T cells, including IL-4, IL-17A
and IFN-g. The expression levels of (A) IL-4, (B) IL-17A, (C) IFN -g were assessed in the six groups at 48h and 72h post-infection. The groups included: THP-
1-derived macrophages (THP1), Mtb-infected macrophages (Mtb-THP1), direct contact group of THP-1-derived macrophages with Vg9Vd2 T cells (THP+rT),
direct contact group of Mtb-infected THP-1-derived macrophages with Vg9Vd2 T cells (THP-Mtb+rT), indirect contact group of THP-1-derived macrophages
with Vg9Vd2 T cells using transwell chambers (THP+rT-trans), and indirect contact group of Mtb-infected THP-1-derived macrophages with Vg9Vd2 T cells
using transwell chambers (THP-Mtb+rT-trans). Data are presented as mean ± SEM from three independent experiments pooled from 6 healthy donors.
Statistical analyses were conducted using one-way ANOVA followed by Bonferroni multiple comparison test. *P<0.05, ***P<0.001, ****P<0.0001.
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Furthermore, the contributions of other cytokines (e.g., IL-22) and

immune cell subsets (e.g., NK cells) to this process were not

investigated and merited future exploration.

In conclusion, this study demonstrates that VC enhances the in

vitro expansion of Vg9Vd2 T cells primed with HMBPP from

healthy donor PBMCs. HMBPP/VC/rIL-2-expanded Vg9Vd2 T

cells inhibit intracellular Mtb growth via TNF-a/IFN-g signaling

pathways. The findings provide a novel immunotherapeutic

strategy for tuberculosis. Further optimization of expansion

protocols and in vivo validation in preclinical models are critical

steps toward clinical translation.
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et al. (2022). Epigenetic remodeling by vitamin C potentiates plasma cell differentiation.
Elife 11, e73754. doi: 10.7554/eLife.73754

Corti, A., Casini, A. F., and Pompella, A. (2010). Cellular pathways for transport and
efflux of ascorbate and dehydroascorbate. Arch. Biochem. Biophys. 500, 107–115.
doi: 10.1016/j.abb.2010.05.014

Coulter, F., Parrish, A., Manning, D., Kampmann, B., Mendy, J., Garand, M., et al.
(2017). IL-17 production from T helper 17, mucosal-associated invariant T, and gd
Cells in tuberculosis infection and disease. Front. Immunol. 8, 1252. doi: 10.3389/
fimmu.2017.01252

Dieli, F., Troye-Blomberg, M., Ivanyi, J., Fournié, J. J., Bonneville, M., Peyrat, M. A.,
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