
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Blake Billmyre,
University of Georgia, United States

REVIEWED BY

Sabulal Baby,
Jawaharlal Nehru Tropical Botanic Garden
and Research Institute, India
Prashant R. Desai,
University of Wisconsin-Madison,
United States

*CORRESPONDENCE

Itthayakorn Promputtha

itthayakorn.p@cmu.ac.th

Kalani K. Hapuarachchi

kalanifirst@yahoo.com

RECEIVED 27 November 2024

ACCEPTED 28 May 2025
PUBLISHED 18 July 2025

CITATION

Karunarathna SC, Patabendige NM,
Hapuarachchi KK and Promputtha I (2025)
Exploring the health benefits of
Ganoderma: antimicrobial properties
and mechanisms of action.
Front. Cell. Infect. Microbiol. 15:1535246.
doi: 10.3389/fcimb.2025.1535246

COPYRIGHT

© 2025 Karunarathna, Patabendige,
Hapuarachchi and Promputtha. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 18 July 2025

DOI 10.3389/fcimb.2025.1535246
Exploring the health benefits of
Ganoderma: antimicrobial
properties and mechanisms
of action
Samantha C. Karunarathna1, Nimesha M. Patabendige2,
Kalani K. Hapuarachchi3* and Itthayakorn Promputtha4,5,6*

1Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biology and
Food Engineering, Qujing Normal University, Qujing, Yunnan, China, 2School of Medical, Molecular
and Forensic Sciences, Murdoch University, Murdoch, WA, Australia, 3College of Biodiversity
Conservation, Southwest Forestry University, Kunming, China, 4Department of Biology, Faculty of
Science, Chiang Mai University, Chiang Mai, Thailand, 5Environmental Science Research Center
(ESRC), Chiang Mai University, Chiang Mai, Thailand, 6Natural Extracts and Innovative Products for
Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang
Mai, Thailand
Ganoderma, a well-known medicinal mushroom, has garnered attention for its

broad therapeutic properties, particularly its potent antimicrobial activities. This

review focuses on the mechanisms of action and bioactive compounds

responsible for the ability of Ganoderma to inhibit various pathogenic

microorganisms. The polysaccharides, triterpenoids, proteins, and phenolic

compounds in Ganoderma exhibit strong antimicrobial effects by targeting

bacterial cell walls, disrupting membrane integrity, and inhibiting key microbial

enzymes. These compounds are effective against a wide range of bacteria,

including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa,

and various fungi. Triterpenoids, specifically, have demonstrated efficacy in

modulating immune responses, further enhancing the body’s defense

mechanisms against infections. Furthermore, the role of Ganoderma in

preventing biofilm formation and combating antibiotic-resistant strains

highlights its potential as a natural antimicrobial agent. While in vitro and in

vivo studies strongly support the antimicrobial properties of Ganoderma, future

resety -50arch should focus on large-scale clinical trials to confirm its efficacy

and explore its synergistic effects with conventional antibiotics. Establishing

standardized dosages and exploring the molecular pathways of its

antimicrobial actions will be key to incorporating Ganoderma into clinical

practice for infection control.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1535246/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1535246/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1535246/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1535246/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2025.1535246&domain=pdf&date_stamp=2025-07-18
mailto:itthayakorn.p@cmu.ac.th
mailto:kalanifirst@yahoo.com
https://doi.org/10.3389/fcimb.2025.1535246
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2025.1535246
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Karunarathna et al. 10.3389/fcimb.2025.1535246
1 Introduction

Ganoderma is a genus of medicinal mushrooms used for

thousands of years in traditional East Asian medicine. Revered for

its numerous therapeutic benefits, Ganoderma has gained significant

attention in modern scientific research due to its bioactive

compounds exhibiting various pharmacological activities

(Karunarathna et al., 2024a). Among these activities, its

antimicrobial properties stand out as an area of growing interest,

particularly in an era where antimicrobial resistance (AMR) poses a

significant global health threat (Pandey et al., 2020). Understanding

the mechanisms by which Ganoderma exerts its antimicrobial effects

is critical for developing novel therapies that harness its bioactive

compounds to combat various infectious diseases (Mousavi et al.,

2023; Karunarathna et al., 2024b). The antimicrobial properties of

Ganoderma are attributed primarily to its rich content of bioactive

compounds such as polysaccharides, triterpenoids, phenolic

compounds, proteins, and peptides (Ahmad, 2019; Cadar et al.,

2023). These compounds have been shown to work synergistically

to inhibit the growth of various pathogenic microorganisms,

including bacteria, fungi, and viruses. Historically, Ganoderma has

been used in traditional medicine to treat infections, improve

immune function, and promote overall health. These traditional

uses are being validated by scientific research, which has provided

evidence for Ganoderma’s effectiveness in inhibiting microbial

growth and enhancing immune responses to infections.

One of the most studied bioactive compounds in Ganoderma is

polysaccharides, particularly b-glucans, which are known to modulate

immune responses and exhibit strong antimicrobial effects.

Polysaccharides have been shown to activate macrophages and other

immune cells, enhancing the ability of the body to detect and eliminate

microbial pathogens. Triterpenoids, another significant class of

compounds in Ganoderma, have demonstrated the ability to disrupt

microbial cell walls and inhibit the replication of pathogens,

particularly bacteria and fungi (Liu et al., 2022). In addition to these,

phenolic compounds and polyketides of farnesyl quonines types and

peptides isolated from Ganoderma also play crucial roles in its

antimicrobial activity by scavenging free radicals, reducing oxidative

stress, and enhancing the body’s natural defense mechanisms (Basnet

et al., 2017). The antimicrobial properties of Ganoderma have been

documented in various in vitro and in vivo studies, which have

explored its efficacy against a wide range of pathogens. For instance,

Ganoderma has potent inhibitory effects on Gram-positive and Gram-

negative bacteria, including Staphylococcus aureus, Escherichia coli, and

Pseudomonas aeruginosa. Moreover, it has shown antifungal activity

against Candida albicans, a common cause of fungal infections in

immunocompromised individuals (Ahmad et al., 2024). Furthermore,

emerging studies have investigated its potential antiviral activity, with

some evidence suggesting that Ganoderma extracts may inhibit the

replication of viruses such as herpes simplex virus (HSV) and influenza

virus (Seo and Choi, 2021). These findings suggest that Ganoderma

could be a valuable natural alternative or adjunct to conventional

antimicrobial therapies, particularly in the context of rising antibiotic

resistance. The mechanisms through which Ganoderma exerts its

antimicrobial effects are complex and multifaceted. Disruption of
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microbial cell walls, inhibition of nucleic acid synthesis, and

modulation of immune responses are among the primary

mechanisms identified in current research. Ganoderma bioactive

compounds interact with microbial cells, weakening their structural

integrity and preventing proliferation. Moreover, Ganoderma’s ability

to modulate the host’s immune system enhances its antimicrobial

efficacy, as it not only directly inhibits pathogens but also strengthens

the body’s natural defenses against infections (Gao et al., 2005). Despite

the promising antimicrobial potential ofGanoderma, several challenges

remain. One major limitation is the variability in the composition of

bioactive compounds across different Ganoderma species and even

within the same species depending on environmental factors and

cultivation methods. This variability makes it difficult to standardize

extracts for clinical use. In addition, while in vitro and animal studies

have provided valuable insights, more human clinical trials are needed

to confirm the safety and efficacy of Ganoderma as an antimicrobial

agent. Future research should focus on identifying the compounds

responsible for antimicrobial effects of Ganoderma and developing

standardized formulations for therapeutic use.Ganoderma represents a

promising natural source of antimicrobial agents with potential

applications in treating various infections. Its ability to modulate the

immune system and directly inhibit microbial growth makes it an

attractive candidate for developing novel antimicrobial therapies.

However, further research is necessary to fully understand its

mechanisms of action and overcome the challenges associated with

its variability and standardization. As antibiotic resistance continues to

rise globally, exploring natural alternatives such as Ganoderma is

becoming increasingly important. This review aims to provide a

comprehensive overview of the antimicrobial properties of

Ganoderma, focusing on recent advances in understanding its

bioactive compounds, mechanisms of action, and potential

therapeutic applications, particularly in the context of rising AMR.

The novelty of this work lies in synthesizing recent findings and

highlighting emerging insights into the role of Ganoderma as a

promising natural antimicrobial agent.
2 Ganoderma bioactive compounds

Ganoderma species produce a variety of bioactive compounds

with significant health benefits, including polysaccharides,

triterpenoids, proteins, peptides, and phenolic compounds, each

contributing uniquely to their therapeutic potential. This section

provides a brief overview of these compounds, highlighting their

structures, functions, and mechanisms of action. Detailed

phytochemical and bioactivity profiles of Ganoderma have been

extensively reviewed (Baby et al., 2015; Blundell et al., 2023).

Among the most studied bioactive compounds are the

polysaccharides, particularly b-glucans from G. lucidum. These

complex carbohydrates, characterized by b-D-glucose linkages,

are categorized by molecular weight and solubility, factors that

influence their biological activities (Karunarathna et al., 2024a). b-
glucans are known to modulate the immune system by activating

macrophages and natural killer cells, enhancing the immune

response of the host (Chen et al., 2023). They also impact cellular
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signaling pathways, regulating cytokine production and inhibiting

tumor growth (Zhang et al., 2023). The structural features of

Ganoderma polysaccharides, such as branching patterns and

molecular configurations, play a critical role in determining their

therapeutic efficacy (Wu et al., 2025).

Triterpenoids, another major class of Ganoderma bioactive

compounds, include ganoderic and lucidenic acids. These

compounds, with their multi-ring structures and diverse functional

groups, contribute to a wide range of biological activities (Raza et al.,

2024; Pan et al., 2025). Triterpenoids have shown potent

immunomodulatory effects by modulating cytokine production and

enhancing the activity of immune cells like T cells and macrophages

(Jin et al., 2025; Lucius, 2025). They also demonstrate broad-spectrum

antimicrobial activity by disrupting microbial cell membranes and

interfering with enzymatic processes critical for pathogen survival

(Ahmad et al., 2024; Wang et al., 2017; Ewunkem et al., 2024; Liang

et al., 2024). Phenolic compounds in Ganoderma, such as flavonoids,

phenolic acids, and polyphenols, are well-known for their antioxidant

properties. They reduce oxidative stress by neutralizing free radicals

and reactive oxygen species (ROS). Their antioxidant effects are

largely due to their electron-donating ability, stabilizing free radicals

and preventing cellular damage and inflammation (Kebaili et al.,

2021; Plosca et al., 2025). In addition to their antioxidative functions,

phenolic compounds also exert antimicrobial activity by disrupting

microbial cell structures and inhibiting key enzymatic functions

necessary for pathogen survival (Ras ̌eta et al., 2023). The

multifunctional roles of these compounds underscore their

significance in maintaining health and preventing disease.
3 Mechanisms of antimicrobial action

Ganoderma species possess many bioactive compounds that

exhibit significant antimicrobial activities. The mechanisms by

which these compounds act against pathogens are multifaceted,

involving direct effects on microbial structures and functions and

modulation of the host immune system (Figure 1).
3.1 Disruption of microbial cell walls

One of the primary antimicrobial mechanisms of Ganoderma

bioactive compounds is the disruption of microbial cell walls.

Triterpenoids, such as ganoderic acids found in Ganoderma

lucidum, interact with the lipid components of bacterial and

fungal cell membranes, leading to increased permeability and cell

lysis. This disruption compromises the integrity of the microbial cell

wall, causing leakage of cellular contents and, ultimately, cell death

(Ewunkem et al., 2024; Ojha, 2025).
3.2 Inhibition of nucleic acid synthesis

Ganoderma bioactive compounds also inhibit microbial

proliferation by interfering with nucleic acid synthesis.
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Polysaccharides extracted from Ganoderma species have been

reported to inhibit DNA and RNA synthesis in pathogenic

microbes. They achieve this by binding to nucleic acids or key

enzymes involved in replication and transcription processes,

thereby hindering microbial growth and replication. This

inhibition of genetic material synthesis is crucial in preventing the

spread and survival of the pathogen (Sułkowska-Ziaja et al., 2022;

Liang et al., 2024).
3.3 Immune modulation

Ganoderma compounds enhance the immune response of the

body, providing an indirect mechanism to combat infections.

Polysaccharides, especially beta-glucans, are known to modulate

the immune system by activating macrophages, dendritic cells, and

natural killer cells (Zhang et al., 2023; Zhong et al., 2024).

This activation increases cytokine and antibody production,

bolstering the body’s ability to fight microbial invaders. The

immunomodulatory effects of Ganoderma not only enhance the

innate immune response but also promote adaptive immunity. By

stimulating immune cell proliferation and differentiation, these

compounds help establish long-term immunity against specific

pathogens (Seweryn et al., 2021; Zhong et al., 2023). This dual

action makes Ganoderma an effective agent in preventing and

managing infections.
3.4 Oxidative stress regulation

Oxidative stress plays a significant role in the pathogenesis of

many microbial infections. Phenolic compounds of Ganoderma

exhibit strong antioxidant properties, which help balance ROS

within microbial cells (Zahmoul et al., 2024; Plosca et al., 2025).

By inducing oxidative stress beyond the tolerance levels of

microbes, these compounds can lead to cellular damage and

death of the pathogens. Conversely, in host cells, Ganoderma

antioxidants protect against oxidative damage caused by

infections. They scavenge excess ROS, reducing inflammation and

preventing tissue damage (Ahmad et al., 2024; Chen et al., 2024).

This protective effect supports the healing process and restores

normal cellular functions.
4 Synergistic effects of compounds

The antimicrobial efficacy of Ganoderma species, particularly G.

lucidum, is not solely attributed to individual bioactive compounds.

Instead, the interactions between various compounds—such as

polysaccharides, triterpenoids, proteins, peptides, and phenolic

compounds—create synergistic effects that significantly enhance

their therapeutic potential. Synergy refers to the increased

effectiveness when these compounds work together, often producing

results greater than the sum of their actions.
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4.1 Interaction between different bioactive
compounds

Polysaccharides and triterpenoids are two of the most studied

bioactive compounds in Ganoderma. Polysaccharides are known

for their immunomodulatory properties, while triterpenoids have

potent antimicrobial and anti-inflammatory activities. Combined,

these two compounds demonstrate enhanced immunomodulatory

effects, stimulating the body’s immune system to fight off infections

more effectively (Gao et al., 2005). For example, while triterpenoids

may directly disrupt microbial cell membranes, polysaccharides

boost the production of immune cells like macrophages and natural

killer (NK) cells, leading to a synergistic antimicrobial action

(Seweryn et al., 2021; Zhong et al., 2023).

4.1.1 Proteins and peptides with triterpenoids
Proteins and peptides in Ganoderma also exhibit antimicrobial

properties, particularly against bacteria and fungi. When these are

used with triterpenoids, the compounds together demonstrate

enhanced efficacy. The peptides may disrupt microbial

membranes, while triterpenoids inhibit nucleic acid synthesis,

thereby preventing microbial replication. This dual mechanism

increases the effectiveness of the antimicrobial response, especially
Frontiers in Cellular and Infection Microbiology 04
in pathogens resistant to single-compound treatments (Cör Andrejč

et al., 2022; Cadar et al., 2023).

4.1.2 Phenolic compounds and polysaccharides
Phenolic compounds in Ganoderma contribute significantly to

its antioxidant activity, reducing oxidative stress within cells. When

combined with polysaccharides, these phenolic compounds

enhance the immune response and improve the organism’s

overall resistance to microbial infections. The phenolic

compounds neutralize ROS, while polysaccharides improve

immune cell signaling. This combination leads to a more efficient

and sustained immune response to pathogens, particularly in cases

of chronic infections (Seweryn et al., 2021; Chen et al., 2024).
4.2 Enhanced antimicrobial activity

Research shows that combining polysaccharides and

triterpenoids from Ganoderma results in enhanced antibacterial

activity. For example, studies on E. coli and S. aureus have shown

that combining these two compounds leads to stronger inhibition of

bacterial growth compared to their individual effects. The synergy is

observed in the disruption of bacterial cell walls by triterpenoids
FIGURE 1

Potential antimicrobial properties of Ganoderma (Ahmad et al., 2024).
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and the enhancement of immune responses by polysaccharides,

which work together to eliminate bacterial infections more

efficiently (Ahmad et al., 2024).

4.2.1 Synergistic effects against fungal infections
In the case of fungal infections, particularly C. albicans,

combining polysaccharides with phenolic compounds has been

shown to enhance antifungal activity. This combination disrupts

fungal cell walls while simultaneously inducing oxidative stress within

the fungal cells. The phenolic compounds reduce ROS accumulation,

which damages fungal cells, and the polysaccharides enhance the

immune response, creating a powerful antifungal effect. The result is a

more effective inhibition of C. albicans growth and biofilm formation,

critical for fungal survival and virulence (Roychoudhury et al., 2024).

4.2.2 Viral infections
Emerging research also suggests that the synergistic effects of

polysaccharides and triterpenoids in Ganoderma may extend to

viral infections. For instance, in studies on the HSV, a combination

of these compounds has demonstrated the ability to inhibit viral

replication more effectively than when either compound is used

alone. Polysaccharides stimulate immune responses, such as

activating macrophages and NK cells, while triterpenoids interfere

with viral entry into host cells, resulting in enhanced antiviral

activity (Eo et al., 2000; Bharadwaj et al., 2019).
5 Research on specific
microorganisms

Ganoderma species, particularly G. lucidum, have gained

recognition for their potent antimicrobial properties against

various pathogens. The bioactive compounds in Ganoderma

exhibit broad-spectrum activity against bacteria, fungi, and

viruses, making it a promising natural remedy in combating

infections. Below is a detailed review of research focusing on the

effects of Ganoderma on specific microorganisms. GTs are the most

common antimicrobial and antiparasitic compounds reported from

Ganoderma sp. Farnesyl quinone, a polyketide type, is the second

most common antimicrobial and antiparasitic compound from

Ganoderma sp. Quinones are known to be oxidized derivatives of

aromatic compounds and are often readily made from reactive

aromatic compounds with electron-donating substituents such as

catechols and phenols. Besides GTs, polypeptides, small peptides

such as ganodermin, polysaccharides such as sacchachitin, and

chitosan also possess antimicrobial and antiparasitic properties

(Mothana et al., 2000; Wang and Ng, 2006; Sanodiya et al., 2009;

Chuang et al., 2013). Extracts from fruiting bodies, both wild and

cultivated, and mycelia from fermentation broth are used for the

isolation of antimicrobial and antiparasitic bioactive compounds.

Literature divulges that, most commonly, ethanol (EtoAc) is used to

prepare crude extract; sometimes, some researchers prefer other

solvents such as chloroform (CHCl3), EtOH, and acetone (Isaka

et al., 2016). In addition, our review reveals that hexane and ether

are poorly used for the preparation of extract from Ganoderma sp.
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Moreover, some techniques such as microwave, ultrasound, and

enzyme treatments can facilitate the breakdown of the cell wall

(Ferreira et al., 2015). Solvents like MeOH, EtOH, CH2Cl2, CHCl3,

and aqueous—both cold and hot—are used for further purification

and isolation. Techniques such as thin-layer chromatography

(TLC), high-performance liquid chromatography (HPLC), and

column chromatography (CC) are used to facilitate the

purification and isolation process (Huie and Di, 2004).
5.1 Bacterial infections

Several studies have demonstrated the efficacy of Ganoderma

bioactive compounds against pathogenic bacteria, including both

Gram-positive and Gram-negative strains. Key compounds, such as

triterpenoids, polysaccharides, and peptides, have shown significant

antibacterial effects (Figure 2). Ganoderma has been reported as an

important source of antimicrobial bioactive compounds. Terpenes,

terpenoids, and polyketides of farnesyl quonine types are the major

secondary metabolites produced by Ganoderma sp. In Ganoderma

species, more than 316 terpenes have been reported, with the

majority of compounds from G. lucidum (Xia et al., 2014).
5.1.1 Ganoderma extracts and fermentation
broths

The methanol extract ofG. lucidum showed antibacterial activity

against E. coli, Salmonella typhimurium, and Bacillus subtilis

[minimum inhibitory concentration (MIC): 1 mg/well], with

bioactive polyphenols, flavonoids, quinones, and terpenes

identified (Sheena et al., 2003). Among 23 Yemeni Basidiomycetes,

Agaricus sp., Coriolopsis caperata, Ganoderma colossus, Ganoderma

resinaceum, Phellorinia herculea, and Tulostoma obesum exhibited

potent antibacterial effects, while G. resinaceum, Inonotus

ochroporus, Phellinus rimosus, and P. herculea displayed strong

antioxidant activity (Al-Fatimi et al., 2005). G. lucidum butanol

extracts inhibited microbial growth and disrupted fungal spore

formation, suggesting potential for antimicrobial tea formulations

(Rofuli et al., 2005). Ganoderma applanatum, Tricholoma crassum,

and Trametes corrugata showed peak antibacterial activity

(terpenoids and polysaccharides) after 16 days of fermentation

(Bhattacharyya et al., 2006). Ganoderma spp. (e.g., G. carnosum)

exhibited static, heat-stable effects against pathogens like E. coli and

C. albicans (Yamac and Bilgili, 2006). Furthermore, chitosan from

Ganoderma tsugae outperformed doxycycline against Actinobacillus

actinomycetemcomitans, retaining 56.58% activity after 18 days,

highlighting dental applications (Chen et al., 2007). G. lucidum

aqueous extracts (from Persia americana logs) showed stronger

antibacterial effects than methanol extracts (Ofodile and Bikomo,

2008), while its chloroform extracts inhibited Gram-positive and

Gram-negative bacteria via sterols and triterpenoid acids (Keypour

et al., 2008). In addition, G. applanatum methanol extracts (rich in

palmitic acid) selectively inhibited Gram-negative bacteria

(Moradali et al., 2008).

G. applanatum exhibited antimicrobial activity against E. coli, S.

aureus, C. albicans, Mycobacterium smegmatis, and Sporothrix
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schenckii, highlighting its therapeutic potential (Barranco et al.,

2010). G. lucidum methanol, ethanol, and aqueous extracts showed

potent activity against pathogens like Listeria monocytogenes and

methicillin-resistant S. aureus (MRSA), with methanol being the

most effective solvent (Aneeshia and Sornaraj, 2010). G.

applanatum methanol extract displayed strong DPPH scavenging

(82.80%), while G. lucidum chloroform extract had notable

antioxidant and antibacterial effects, linked to high phenol

content (Karaman et al., 2010). G. lucidum inhibited spore

germination of Alternaria brassicicola, suggesting its potential as a

biocontrol agent (Chen and Huang, 2010). Methanol, acetone,

chloroform, and aqueous extracts of G. lucidum mycelia inhibited

Gram-positive and Gram-negative bacteria (100 mg/mL), with

Gram-positive strains more susceptible (Kamble et al., 2011).

Furthermore, in Pakistan, Lahore isolates of G. lucidum (G-1, G-

3, and G-5) inhibited Xanthomonas spp., while G-2 and G-4 were

effective against E. coli and Pseudomonas spp., respectively (Nasim

and Ali, 2011). G. lucidum aqueous extract (200 mg) showed a 31-

mm inhibition zone against S. typhi and S. aureus, while its

methanolic extract was most antifungal (30 mm against Mucor

indicus) (Sekaran et al., 2011). Ethyl acetate extracts of Ganoderma

praelongum sesquiterpenoids were highly active against MRSA

(MIC: 0.390–6.25 mg/mL), unlike ineffective polysaccharides

(Ameri et al., 2011). Ganoderma carnosum dichloromethane

extracts strongly inhibited S. aureus and Micrococcus luteus

(Srivastava and Sharma, 2011). Ganoderma formosanum

polysaccharides (d-mannose, d-galactose, and d-glucose)
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enhanced macrophage activity (TNF-a, nitric oxide, and

phagocytosis) and protected mice against L. monocytogenes

(Wang et al., 2011).

G. lucidum ethyl acetate extracts showed the strongest

antibacterial activity (containing carbohydrates, saponins, and

terpenoids), being most effective against Corynebacterium

pyogenes, B. subtilis, and Klebsiella pneumoniae though less potent

than AmpicloxR (Shamaki et al., 2012). Water extracts inhibited P.

aeruginosa, Proteus vulgaris, and Enterococcus faecalis but not L.

monocytogenes, while hexane/dichloromethane/ethyl acetate

showed limited antimicrobial isolation potential (Kamra and

Bhatt, 2012). In Central India, G. lucidum aqueous extracts

enhanced synthetic antibiotics against S. aureus, K. pneumoniae,

Bacillus cereus, and P. aeruginosa (Karwa and Rai, 2012). Acetone

extracts showed the strongest activity against P. aeruginosa (33 mm

zone) and the weakest against S. aureus/K. pneumoniae (7 mm),

with MICs of 4–35 mg/mL (Mehta and Jandaik, 2012). G. lucidum

spore and G. applanatum polysaccharides inhibited S. aureus, B.

cereus, and Salmonella enteritidis, suggesting potential as food

supplements (Klaus et al., 2012). Comparative studies showed

that G. lucidum had the largest inhibition zones against E. coli/

Klebsiella sp., though less than standard antibiotics (Krishnaveni

and Manikandan, 2014). Solvent choice significantly impacted

activity: benzene extracts best inhibited E. coli/Neisseria

meningitidis (Shikongo, 2012), while methanol extracts surpassed

ampicillin/streptomycin against S. aureus/B. cereus (MIC: 0.0125–

0.75 mg/mL) (Heleno et al., 2013). Diethyl ether/chloroform
FIGURE 2

Structures of bioactive compounds from Ganoderma species with antimicrobial and antiparasitic effects (Basnet et al., 2017).
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extracts showed strong antagonistic effects (Nithya et al., 2013).

Traditional Namibian uses were validated as Ganoderma spp.

showed potent Gram-positive/negative activity (Shikongo et al.,

2013). The anti-S. aureus activity of G. applanatum was linked to

soluble saponins/phenols (Nagaraj et al., 2013). G. lucidum,

Pleurotus spp., and Agaricus bisporus demonstrated broad

therapeutic potential (Mondal, 2013).

G. lucidum extracts showed significant antimicrobial activity

against P. aeruginosa, E. coli, S. aureus, Proteus mirabilis, and K.

pneumoniae. Aqueous extracts produced 11.0- to 14.0-mm

inhibition zones, with bioactive tannins, phenolics, flavonoids,

and saponins identified (Fakoya et al., 2013). HPTLC analysis

revealed six flavonoids and four phenolics, with methanol extracts

most effective against K. pneumoniae (24 ± 0.666 mm), while Gram-

negative bacteria showed greater susceptibility than Gram-positive

S. aureus (Sakthivigneswari and Dharmaraj, 2013). G. praelongum

(0.3%) combined with Glycyrrhiza glabra (2.5%) in topical gels

significantly inhibited MRSA and enhanced wound healing (Ameri

et al., 2013). G. tsugaemethanol extracts were most active against E.

coli (20 ± 0.577 mm), with Gram-negatives more susceptible than

Gram-positives (Ganesan and Dharmaraj, 2013). G. applanatum

showed particular efficacy against Gram-positive bacteria (Pushpa

et al., 2013). G. lucidum ethanol extracts inhibited Helicobacter

pylori (MIC < 3 mg/mL) and S. aureus (MIC 10 mg/mL) but not E.

coli (Shang et al., 2013). G. lucidum methanol extracts were active

against E. coli, S. aureus, B. cereus, Enterobacter aerogenes, and P.

aeruginosa (Alves et al., 2013).

Recent studies have demonstrated significant antimicrobial

potential in various Ganoderma species. Ganoderma boninense

methanol extracts exhibited strong activity against foodborne

pathogens E. coli and S. aureus, with GC-MS analysis identifying

dodecanoic acid and octadecanoic acid as key bioactive compounds

(Ismail et al., 2014). Comparative research on G. lucidum strains

revealed distinct bioactive profiles, with Serbian specimens showing

higher sugar content and anticancer properties, while Chinese

varieties contained more organic acids and demonstrated superior

antioxidant capacity—both strains displayed antimicrobial effects

that occasionally surpassed standard drugs (Stojković et al., 2014).

The extraction method significantly influenced activity, as G.

lucidum methanolic extracts (500 µg/disc) produced the largest

inhibition zones (13.04 mm) against S. aureus and P. aeruginosa

(Djide et al., 2014). Chloroform extracts showed notable efficacy

against S. typhi (18 mm) and C. albicans (17 mm), with analytical

techniques confirming triterpenoids and polysaccharides as active

components (Gowrie et al., 2014). Optimized fermentation

protocols yielded extracts with antioxidant activity exceeding

ascorbic acid and antimicrobial effects against Shigella dysenteriae,

E. faecalis, and K. pneumoniae (Paliya et al., 2014). Additional

studies confirmed variable but promising activity of G. lucidum

against P. aeruginosa, E. coli, E. faecalis, S. aureus, and C. albicans,

with ethanol and chloroform extracts proving most effective (Avcı

et al., 2014).

Comparative studies of mushroom species revealed that G.

tsugae had the highest dry weight (16.1 g/100 g), while A.

bisporus contained superior protein (32.0 mg/g) and glucose (13.2
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mg/g) content. A. bisporus acetone extracts showed antimicrobial

activity against E. coli (13 mm) and P. aeruginosa (14 mm), whereas

G. tsugae displayed stronger antibacterial effects in DMSO extracts

(Dharmaraj et al., 2014). Nigerian studies of G. lucidum ethanolic

extracts identified steroids, triterpenoids, and glycosides with

activity against E. coli (12 mm), K. pneumoniae (12 mm), P.

mirabilis (13 mm), and Streptococcus spp. (14 mm) at 1,000 mg/

mL (Etim et al., 2014). Ganoderma sp. DKR1 contained saponins,

tannins, and terpenoids, with ethyl acetate extracts active against

Micrococcus sp., S. aureus, and Salmonella sp., while chloroform

extracts inhibited E. faecalis and Candida sp (Rajesh and

Dhanasekaran, 2014). G. lucidum acetone extracts (50 µg/mL)

showed potent antibacterial activity (31.60 ± 0.10 mm) against six

bacterial species and antifungal effects at 1,000 mg/mL (Singh et al.,

2014). With rising drug resistance, G. lucidum methanolic extracts

containing carbohydrates, triterpenoids, and phenolics

demonstrated strong antibacterial effects (Shah et al., 2014). G.

lucidum spore powder inhibited Prevotella intermedia (MIC 3.62

mcg/mL) in 65% of periodontal samples (Nayak et al., 2015).

Ganoderma australe exhibited antimicrobial and antioxidant

activity from alkaloids, while G. applanatum and Flammulina

velutipes showed medium-dependent effects enhanced by wine

yeast (Liew et al., 2015; Fidler et al., 2015). Ganoderma mycelium

extracts outperformed fruiting bodies with lower MIC values

against pathogens (Sharma et al., 2015). G. lucidum-enriched soap

demonstrated antibacterial activity against S. aureus and

antioxidant capacity (IC50 1.53 mg/mL) (Hayati et al., 2020). G.

resinaceum methanol extracts showed significant antioxidant and

antimicrobial potential (Zengin et al., 2015), corroborated by other

studies (Hoque et al., 2015; Kirar et al., 2015). G. applanatum

methanolic extracts inhibited S. typhi (3.21 mm ZOI) and P.

mirabilis (3.02 mm ZOI), containing phenolics (20.81 mg/100 g)

and flavonoids (23.89 mg/100 g), with nutritional analysis revealing

222.08 Kcal/100 g and 42.72% carbohydrates (Dandapat

et al., 2016).

Recent studies have demonstrated significant antimicrobial and

antioxidant properties in various Ganoderma species. G. lucidum

showed strongest inhibition against Candida glabrata (25 ± 1 mm)

compared to C. albicans and B. subtilis (10 ± 1 mm), with its

methanolic extract exhibiting exceptional DPPH radical scavenging

activity (IC50 = 3.82 ± 0.04 mg/mL) attributed to phenolic

compounds (Celık et al., 2014). Ethanol mycelial extracts of

Ganoderma species, particularly G. lucidum BEOFB 433,

displayed both antibacterial effects and antifungal activity against

Aspergillus glaucus and Trichoderma viride (Ćilerdžić et al., 2016a).

Ganoderma pfeifferi volatile oil, containing 73.6% 1-octen-3-ol,

showed strong antimicrobial activity against S. aureus and C.

albicans along with significant antioxidant capacity (Al-Fatimi

et al., 2016), while G. lucidum fermentation broths demonstrated

39.67% antioxidant activity, with strain BEOFB 432 being

particularly effective (Ćilerdžić et al., 2016b). Kenyan G. lucidum

extracts exhibited activity against MRSA and common bacteria (up

to 10.0 mm inhibition), highlighting its antimicrobial potential

(Reid et al., 2016; Sande and Baraza, 2019). Ganoderma tropicum

showed promise as a biocide and corrosion inhibitor against sulfate-
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reducing bacteria in industrial applications (Stanley et al., 2016).

Comparative studies of eight mushroom species revealed that G.

applanatum, Laetiporus sulphureus, F. velutipes, Trametes

versicolor, Hericium coralloides, and Agaricus campestris had

significant antimicrobial activity against B. subtilis ATCC 6633,

while G. lucidum and Pleurotus eryngii showed no effects

(Nicolcioiu et al., 2017). However, G. lucidum culture broth

demonstrated antibacterial activity against Staphylococcus

epidermidis and P. aeruginosa, suggesting potential for cosmetic

and nutraceutical applications (Sarnthima et al., 2017).

GC-MS analysis of G. lucidum mycelia and fruiting bodies

revealed that the mycelial aqueous extract possessed the highest

anti-Candida activity (against C. albicans and C. glabrata biofilms)

and ascorbic acid content, suggesting biofilm prevention potential.

Chemometric analysis showed variability in volatile organic

compounds between extracts (Bhardwaj et al . , 2017).

Antimicrobial testing of G. lucidum (GL) showed MICs of 200–

400 µg/mL against S. aureus, E. faecalis, L. monocytogenes, K.

pneumoniae, P. aeruginosa, E. coli, and Candida spp. While non-

cytotoxic to NIH3T3 cells, GL showed genotoxicity (2.71-fold

genetic damage at 5 mg/mL) (Ergun, 2017). G. lucidum ethanol

extracts showed superior antibacterial activity (lower MICs against

S. aureus, M. luteus, B. terom, and B. subtilis), while water extracts

had higher DPPH scavenging (56.22% vs. 20.67%) (Wang et al.,

2017). Philippine G. applanatum and G. lucidum ethanol extracts

inhibited S. aureus (6.55 ± 0.23 mm to 7.43 ± 0.29 mm zones) with

MIC50 values of 1,250–10,000 mg/mL (Gaylan et al., 2018). G.

lucidum extract inhibited MDR Mycobacterium tuberculosis

(complete inhibition at 25%–50% concentration) (Erawati et al.,

2018). Bangladeshi G. lucidum exhibited antioxidant activity (IC50

89.05 µg/mL), cytotoxicity (LC50 142.49 µg/mL), and antibacterial

effects against antibiotic-resistant strains (Islam et al., 2018).

Antimicrobial peptides from G. lucidum fruiting bodies (GLF)

and mycelium (GLM) showed activity against E. coli and S. typhi

via ROS and protein leakage mechanisms (Mishra et al., 2018a). G.

lucidum-based Kombucha beverage achieved 22.8 g/L acidity by day

2, with strong antioxidant/antibacterial activity (especially against S.

epidermidis and R. equi), though the vacuum-dried form was less

potent (Sknepnek et al., 2018).

Australian G. lucidum extracts demonstrated significant

wound-healing properties, with ethanol/methanol-extracted

triterpenes and water-extracted polysaccharides (50 mg/mL)

showing antimicrobial activity against S. aureus (including

MRSA), B. cereus, S. pyogenes, and E. coli. Alkali-extracted

compounds were effective against P. aeruginosa (Montalbano,

2018). In food preservation, sausages with 0.5% G. lucidum

powder maintained lower lipid oxidation and microbial levels

while matching sensory acceptabil i ty of conventional

preservatives (Ghobadi et al., 2018). Ganoderma lipsiense extract

specifically inhibited P. aeruginosa (via phenolic compounds like

caffeic acid) but not E. coli or S. aureus (Costa et al., 2019). Turkish

G. lucidum exhibited high antioxidant potential (TAS/TOS/OSI

assays) and antimicrobial activity against nine pathogens (Celal,

2019). Ethanol extracts (20 g/mL) showed the strongest activity
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against S. aureus, P. aeruginosa, and Fusarium sp (Tamilselvan and

Rajesh, 2019). Serbian Ganoderma species revealed species-specific

efficacy: G. resinaceum chloroform extract against P. aeruginosa, G.

pfeifferi water extract against E. coli/S. aureus, and G. lucidum

showing antiviral potential (Rasěta et al., 2023). South Jakarta G.

lucidum ethanol extract only affected S. aureus, with no dose-

dependent improvement (Noverita and Ritchie, 2020). GC-MS

analysis of Nigerian G. lucidum identified 48 bioactive

compounds (including BHA), with methanol extracts showing the

strongest antibacterial effects (except against resistant P.

aeruginosa) (Anyakorah et al., 2020). Kenyan studies confirmed

G. lucidum and Termitomyces letestui activity against MRSA and S.

pyogenes (Anyimba, 2020). Methanol extracts from Yeast Wine

Media completely inhibited fungal growth (500–1,000 ppm) and

showed superior activity against Xanthomonas oryzae/Ralstonia

solanacearum, with higher antioxidant capacity (Suansia and

John, 2021). Finally, G. lucidum methanol extracts exhibited

potent antibacterial effects against MDR E. coli and P. aeruginosa

(19.3 ± 0.4 mm zones, MBC 266 ± 23.6) (Radhika, 2021).

Comparative analysis of G. lucidum mycelium and spores

against P. intermedia from periodontitis patients revealed mean

MIC values of 5.64 mcg/mL (mycelium) and 3.62 mcg/mL (spores),

demonstrating comparable antimicrobial efficacy for adjunct

periodontal therapy (Nayak et al., 2021). Mexican G. curtisii

strains exhibited notable biological activities, including tumor cell

line inhibition (GI50 ≤50 µg/mL), anti-S. aureus effects, and

antioxidant properties, with strain GH-16–023 showing

particularly low toxicity (Serrano-Márquez et al., 2021). Kenyan

G. lucidum extracts contained terpenoids, phenolics, and glycosides,

displaying significant activity against MRSA and Streptococcus

pyogenes, with the isolated compound Ergosta-5,7,22-triene-

3b,14a-diol showing potent antibacterial effects (Baraza et al.,

2021). G. lucidum spore powder aqueous extracts demonstrated

remarkable antibacterial activity with MIC values of 125 µg/mL (S.

aureus and E. coli), <2 µg/mL (E. faecalis), and 62.5 µg/mL (K.

pneumoniae) (Nayak et al., 2010a). Comparative studies of G.

boninense extracts revealed that chloroform-extracted mycelium

(GBMA) exhibited the strongest antibacterial activity, particularly

through chloroform-methanol-water extraction, suggesting novel

antimicrobial metabolites (Abdullah et al., 2020). Further analysis

of G. boninense fruiting bodies showed that ethyl acetate extracts

had broad-spectrum inhibition (especially against P. mirabilis),

while methanol extracts showed the lowest MIC (0.625 mg/mL)

against Coagulase-Negative Staphylococci, with LC-MS identifying

alkaloids, fatty acids, and glycosides as potential bioactive

compounds (Chan and Chong, 2020).

Medicinal polypores including G. adspersum, G. applanatum,

and G. australe yielded bioactive ergostane compounds (ergosta-

7,22-dien-3-one and ergosta-7,22-diene-3b-ol) through methanol/

ethyl acetate extractions, showing significant inhibition against S.

pyogenes but not Gram-negative bacteria, suggesting potential for

novel myco-medicines (Mayaka, 2020). In biofilm-related studies,

G. lucidum demonstrated notable anti-biofilm activity against

multidrug-resistant (MDR) Enterococcus strains, offering
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alternatives for challenging infections (Karaca et al., 2020).

Phytochemical analysis revealed that wild Ganoderma species

contained saponins and flavonoids, with G. lucidum showing the

highest cyanide content. Ethanolic extracts inhibited Salmonella

spp., E. coli, S. aureus, and Streptococcus spp., with G. applanatum

particularly effective against E. coli (19.50 mg/mL) and all species

showing similar MBC (~250 mg/mL) (Wood et al., 2021).

Optimized cultivation of Philippine G. lucidum on sawdust/PDA

yielded ethanol extracts (100–200 mg/mL) that outperformed

standard antibiotics in antibacterial tests, with fruiting bodies

showing superior antioxidant activity to mycelia (Subedi et al.,

2021). Nine Ganoderma species extracts, including G. tuberculosum

and G. tornatum, inhibited Clavibacter michiganensis (31.5–1,000

mg/mL), suggesting applications for tomato canker management

(Espinosa-Garcıá et al., 2021).

Comparative studies of medicinal mushrooms revealed that

Taiwanofungus camphoratus methanolic extracts showed strong

antimicrobial activity, while G. lucidum extracts displayed no

significant effects, with concerns about Penicillium expansum

developing tolerance (Kim et al. , 2022). G. boninense

demonstrated exceptional anti-MRSA activity (41.08 mm zone,

MIC 0.078 mg/mL) through membrane disruption, with LC-MS

identifying eight bioactive compounds (Chan and Chong, 2022).

Iraqi studies showed that G. lucidummethanol extract (200 mg/mL)

was most effective against UTI pathogens (K. pneumoniae, S.

aureus, and P. mirabilis), containing flavonoids, alkaloids,

phenols, and terpenoids (Shawkat and Aedan, 2022). Metabolite

profiling of six Ganoderma species identified G. pfeifferi as the

richest in phenolic acids (114.07 mg/100 g DW) and G. lucidum as

the richest in indole compounds, with all showing antioxidant and

enzyme inhibitory potential (Sułkowska-Ziaja et al., 2022). G.

lucidum methanol extract demonstrated dual anti-MRSA activity

in vitro and in vivo, reducing lung inflammation and LDH levels in

infected rats (Soliman et al., 2022). Moroccan studies revealed the

potent antimicrobial activity of G. lucidum extract (especially

against Epidermophyton floccosum) and high phenolic/flavonoid
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content (Erbiai et al., 2023). Further studies confirmed

antimicrobial (MIC 50 mg/mL against S. aureus/E. coli) and

antioxidant (85.9%–90.12% radical scavenging at 400 mg/mL)

properties of G. lucidum (Tehranian et al., 2023). Turkish

specimens showed 90.81% DPPH scavenging and notable anti-E.

faecalis activity (17.67 ± 0.47 mm zone), with GC-MS identifying

key fatty acids (Canpolat and Canpolat, 2023). Ganoderma

mbrekobenum methanol extracts showed strong anti-Bacillus (15-

to 18-mm zones) and anti-Fusarium activity, with 46 bioactive

compounds identified (El-Dein et al., 2023). Antifungal studies

demonstrated that G. lucidum pure extract achieved 100%

inhibition of Colletotrichum gloeosporioides and 94.4% against

Alternaria solani (Saludares et al., 2023). Comparative analysis

showed that G. lucidum surpassed G. neo-japonicum in protein

content (24.3 vs. 15.6 mg/g), phenolics (14.3 vs. 9.8 mg GAE/g), and

antioxidant capacity (FRAP 403.9 mmol Fe2+/g) (Ayimbila et al.,

2023). The extraction method significantly influenced bioactivity—

Soxhlet ethanol extracts showed strongest anticancer effects (MCF-

7 IC50 4.797 mg/mL) while UAE water extracts had the best anti-S.

aureus activity (20–23 mm) (Azahar et al., 2023).

5.1.2 Triterpenoids
Infectious diseases caused by bacteria, fungi, viruses, and

parasites remain a leading cause of global morbidity and mortality,

particularly in low- and middle-income countries. The rise of AMR,

emerging viral pathogens, and neglected tropical diseases underscores

the urgent need for new therapeutic agents. Ganoderma species,

especially through their triterpenoid-rich extracts, represent a

promising yet underutilized resource in addressing these critical

health challenges. Triterpenoids, particularly lanostane-type

compounds, are among the most bioactive secondary metabolites

in Ganoderma spp., exhibiting broad-spectrum antimicrobial and

antiviral activity (Table 1). Their multifaceted mechanisms include

membrane disruption, enzyme inhibition, and immunomodulation.

Early studies on G. applanatum identified three sterols and a

novel lanostanoid with potent antibacterial activity, showing Gram-
TABLE 1 Antimicrobial properties of triterpenoids in Ganoderma species.

Species Key compounds/
extracts

Key findings Activity indicator Disease relevance/
Target pathogens

References

Ganoderma
lucidum

Ganoderic acids GA-T
and GA-Me

Antibacterial and
antifungal activity

MIC: 150 µg/mL
(bacteria), 100 µg/
mL (fungi)

Potential use in treating dermatomycoses,
respiratory infections, and Gram-
positive sepsis

Shveta et al., 2013

Triterpenoid extract
from GLSP

Inhibits S. aureus and
E. coli

61.09% DPPH inhibition Relevance to skin and urinary tract
infections (UTIs)

Shen et al., 2020

Ethanolic extract
(lanostanoid ester)

Active against S.
aureus and B. subtilis

MIC 68.5 µM (S. aureus),
123.8 µM (B. subtilis)

Relevance to hospital-acquired infections Liu et al., 2014

G. applanatum Lanostanoids, sterols Broad antibacterial
spectrum

MIC: 0.003–2.0 mg/mL;
MBC: 0.06–4.0 mg/mL

Targets respiratory tract bacteria; potential
for topical wound infections

Smania et al., 1999

Lanostane triterpenoids Notable antimicrobial
effects

<60 mg/mL Relevance to cutaneous fungal infections Shi et al., 2022

G. casuarinicola Norlanostanes,
ganocasuarinone A

Active against
S. aureus and
M. tuberculosis

5 mg/mL (S. aureus), 25–
50 µg/mL
(M. tuberculosis)

Relevance to tuberculosis and Gram-
positive infections

Isaka et al., 2020
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positive specificity (MIC: 0.003–2.0 mg/mL; MBC: 0.06–4.0 mg/mL)

(Smania et al., 1999). Nigerian G. colossum yielded new

colossolactones including 23-hydroxycolossolactone E with

antimicrobial potential (Ofodile et al., 2005). Modified applanoxidic

acids from Ganoderma spp. maintained activity against E. coli, S.

aureus, C. albicans, and T. mentagrophytes (MIC: 1.0 to >2.0 mg/mL)

(Smania et al., 2006). Western Ghats Ganoderma sesquiterpenoids

surpassed standard antibiotics against bacteria and C. albicans, while

triterpenes showed weaker effects (Bhosle et al., 2010).

Colossolactones E and 23-hydroxycolossolactone E demonstrated

activity against B. subtilis and P. syringae (Ofodile et al., 2011),

with G. lucidum and G. mazandaran showing the lowest MICs (128

µl/mL) against B. subtilis and P. mirabilis (Ofodile et al., 2012).

Haryana G. lucidum yielded ganoderic acids (GA-T and GA-Me)

with MICs of 150 µg/mL (bacteria) and 100 µg/mL (fungi) (Shveta

et al., 2013). Ganoderma sp. BCC 16,642 produced ganoderic acids/

lanostanoids active against S. aureus and B. subtilis (Liu et al., 2014).

Ethyl acetate extracts of G. lucidum contained novel antimicrobial

triterpenoids (Liu et al., 2014), while its GA showed cytotoxicity and

antibacterial effects (Upadhyay et al., 2014). Two triterpenoids

(GLTA and GLTB) exhibited anti-EV71 activity by blocking viral

adsorption and RNA replication (Zhang et al., 2014). Ganoderma

triterpenoids inhibited S. aureus biofilms and E. coli (Basnet et al.,
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2017). Recent studies revealed that G. lucidum spore powder

triterpenoids had 61.09% DPPH inhibition (600 µg/mL) and anti-S.

aureus/E. coli activity (Shen et al., 2020). Ganoderma casuarinicola

norlanostanes showed anti-S. aureus (5 mg/mL) and anti-TB (25–50

µg/mL) effects (Isaka et al., 2020). G. applanatum yielded three new

antimicrobial lanostane triterpenoids (Shi et al., 2022). Given their

demonstrated efficacy against MDR bacteria (e.g., MRSA), biofilm-

producing strains, and even viruses, Ganoderma-derived

triterpenoids offer a compelling lead for drug discovery targeting

difficult-to-treat infections. Their ability to address current gaps in

antifungal and antiviral therapeutics, coupled with favorable safety

profiles in traditional use, reinforces their potential for clinical

translation. Table 2 provides an overview of the antibacterial

properties exhibited by various extracts of Ganoderma species.

5.1.3 Polysaccharides
Polysaccharides fromGanoderma species, particularlyG. lucidum,

offer compelling bioactivity that aligns with global efforts to combat

infectious diseases. As AMR and gastrointestinal infections continue

to rise globally, especially in immunocompromised populations and

developing regions, the need for non-antibiotic, immune-enhancing

alternatives becomes critical. Ganoderma-derived polysaccharides,

rich in b-glucans and heteropolysaccharides, are emerging as
TABLE 2 Overview of antibacterial properties in Ganoderma extracts.

Species Extract type Key findings Potential applications/
Disease relevance

References

Ganoderma
applanatum

Methanol/
Methanolic/
Ethanolic

Strong activity against Gram-
positive bacteria and some
fungi; phenolic-rich

Potential treatment for skin infections,
respiratory infections, and Gram-positive
sepsis in humans and animals

Pushpa et al., 2013; Moradali et al., 2008;
Dandapat et al., 2016; Rijia et al., 2024;
Gaylan et al., 2018

Extracts Highest antibacterial and
antifungal activity

Potential for broad-spectrum
antimicrobial therapies

Lone et al., 2024

G. boninense Methanol/Ethyl
acetate/
Chloroform

Broad-spectrum activity,
including MRSA;
membrane disruption

Wound infections, multidrug-resistant
bacterial infections

Ismail et al., 2014; Chan and Chong,
2020, 2022; Abdullah et al., 2020

G. carnosum Dichloromethane
extracts

Antibacterial and antifungal;
antioxidant properties

Topical antimicrobials, antifungal creams,
plant protection

Srivastava and Sharma, 2011; Sułkowska-
Ziaja et al., 2022

G. colossus Dichloromethane,
Methanolic,
Water

Effective against E. coli and
S. aureus

Gastrointestinal and skin infections Al-Fatimi et al., 2005

G. curtisii Extracts Antiproliferative, antioxidant,
and antibacterial effects

Immunocompromised patient care,
supportive cancer therapy

Serrano-Márquez et al., 2021

G. lucidum Multiple solvents Broad antimicrobial activity;
quorum sensing inhibition

Anti-biofilm agent in chronic respiratory or
wound infections

Fakoya et al., 2013; Gowrie et al., 2014;
Shang et al., 2013; Zhu et al.,
2011; others

G. tsugae Chitosan extracts Strong antibacterial,
surpassing doxycycline

Acne treatment, resistant skin infections Chen et al., 2007

G. resinaceum Dichloromethane,
Methanolic,
Water

Active against several
bacterial pathogens

Alternative to conventional antibiotics Al-Fatimi et al., 2005

G. tuberculosum,
G. tornatum,
G. weberianum

Chloroform-
methanol extracts

Antibacterial against
Clavibacter michiganensis

Crop disease biocontrol (e.g., tomato canker) Espinosa-Garcıá et al., 2021

Ganoderma spp. Various solvents Antibacterial and antifungal
against human/plant pathogens

Agricultural biopesticide or general
therapeutic candidate

Yamac and Bilgili, 2006
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promising immunomodulatory and antimicrobial agents that could

complement or replace conventional antimicrobials (Table 3).

Hot water extracts of G. lucidum fruiting bodies, primarily

composed of D-glucose, have demonstrated activity against plant

pathogens (Erwinia carotovora and Penicillium digitatum) and

foodborne microbes (B. cereus, E. coli, and Aspergillus niger) (Bai

et al., 2008). G. lucidum polysaccharides also strongly inhibit M.

luteus (MIC 0.62–1.25 mg/mL) (Skalicka-Wozniak et al., 2012), and

fractions isolated from G. multicornum and related species show

activity against E. coli and P. mirabilis (Sharifi et al., 2012).

Additional studies revealed inhibition zones up to 19 mm against

Staphylococcus sp. (Batra and Khajuria, 2012) and potent activity

(18- to 23-mm inhibition zones) from exopolysaccharides (EPS)

cultivated on basal and malt media (Mahendran et al., 2013). Strain-

specific studies showed that G. lucidum GL-2 and GL-3 produce

polysaccharides that inhibit Staphylococcus and Enterobacter spp

(Kaur et al., 2015). Mechanistically, these polysaccharides exert

their antimicrobial action by disrupting microbial cell walls and

modulating oxidative stress. Their synergy with phenolic

compounds enhances antimicrobial efficacy, suggesting a multi-

targeted mode of action (Al-Fatimi et al., 2005; Isaka et al., 2016).

G. lucidum strain BCCM 31549 produces both (1,3)-b-D-glucan
(G) and its sulfated derivative (GS), with GS exhibiting not only

superior antimicrobial activity but also selective cytotoxicity against

U937 cancer cells (Wan-Mohtar et al., 2016), pointing to potential

dual anti-infective and anticancer utility. Enzymatically extracted

chitosan from G. lucidum shows superior antibacterial effects
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against Gram-positive bacteria and improved antioxidant activity

compared to chemically extracted counterparts (Savin et al., 2020).

Small-molecular-weight polysaccharides (3,500–4,500 Da) isolated

from culture fluids have recently demonstrated strong antibacterial

effects against plant pathogens (Robles-Hernández et al., 2021),

offering a sustainable source for agricultural biocontrol. In a more

clinically relevant context, G. lucidum polysaccharides at

concentrations of 5–100 mg/mL not only inhibited E. coli

proliferation but also modulated immune response pathways in

intestinal porcine epithelial cells (IPEC-1), suggesting potential for

treating or preventing bacterial gut infections (Zhai et al., 2021).

Collectively, these findings suggest that Ganoderma

polysaccharides can address important global health challenges

such as antibiotic-resistant bacterial infections, especially

gastrointestinal and foodborne diseases. Their natural origin,

immunostimulatory properties, and low toxicity support their

further development as functional antimicrobial agents or as

adjuncts to conventional therapies.

5.1.4 Other compounds
In addition to triterpenoids and polysaccharides, Ganoderma

species produce a chemically diverse repertoire of secondary

metabolites—including essential oils, steroids, phenolics, alkaloids,

and proteins—that contribute to their antimicrobial properties

(Table 4). These compounds are increasingly viewed as promising

leads in the search for novel anti-infective agents, particularly against

MDR pathogens. Given the growing global burden of AMR, notably S.
TABLE 3 Polysaccharides in Ganoderma species and their antimicrobial properties.

Ganoderma species Polysaccharide
composition

Pathogens targeted Disease relevance/
Target infection

References

G. lucidum D-glucose-
based polysaccharides

Plant and foodborne microbes Foodborne infections,
gastrointestinal illness

Bai et al., 2008

Polysaccharides Gram-positive bacteria Skin infections,
respiratory pathogens

Skalicka-Wozniak
et al., 2012

Polysaccharides Bacterial pathogens General bacterial infections
in humans

Batra and
Khajuria, 2012

Exopolysaccharides (EPS) Bacillus cereus Food poisoning,
diarrheal syndromes

Mahendran et al., 2013

Polysaccharides Opportunistic bacteria Hospital-acquired infections
(e.g., wound and lung)

Kaur et al., 2015

(1,3)-b-D-glucan, GS Foodborne and clinical strains Enteric infections, sepsis-
related strains

Wan-Mohtar
et al., 2016

Chitosan Gram-positive cocci Skin and bloodstream infections
(e.g., S. aureus)

Savin et al., 2020

Low-MW polysaccharides
(3.5–4.5 kDa)

Agricultural pathogens Zoonotic bacterial risks
through crops

Robles-Hernández
et al., 2021

Polysaccharides E. coli strain Gastrointestinal infections
and UTIs

Zhai et al., 2021

G. multicornum, G. multiplicatum,
G. perzonatum, and G. stipitatum

Polysaccharides Enteric bacteria Diarrheal diseases in livestock
and humans

Sharifi et al., 2012

Various Ganoderma spp. Polysaccharides Mixed bacterial species Broad-spectrum infections
(foodborne, respiratory)

Al-Fatimi et al., 2005;
Isaka et al., 2016
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aureus, M. tuberculosis, and nosocomial Gram-negative infections,

such natural compounds represent a valuable reservoir for alternative

therapies and adjunct treatments. Essential oils derived from G.

japonicum mycelia, rich in nerolidol and linalool, exhibited potent

activity against MRSA, with a minimum bactericidal concentration

(MBC) of 1.03 mg/mL (Liu et al., 2009). G. pfeifferi produced

ganomycins A and B, which demonstrated pronounced anti-Gram-

positive activity (MIC 2.5–25 µg/mL) (Mothana et al., 2000), suggesting

potential as topical agents or adjuvants for skin and wound infections.

Novel metabolites from G. australe, including australic acid, showed

broad-spectrum antimicrobial effects (Smania et al., 2007), while

solvent extracts of G. lucidum yielded terpenoids, alkaloids, and

steroids with wide-ranging antimicrobial activity (Subbraj et al.,

2008). Proteinaceous extracts from G. resinaceum also demonstrated

notable activity against hospital-associated pathogens, including E. coli,

S. aureus, and K. pneumoniae (Hearst et al., 2010), while G. lucidum

extracts produced inhibition zones up to 16 mm against MDR clinical

isolates (Sekaran et al., 2011). Steroidal compounds from several

Ganoderma species were shown to inhibit M. tuberculosis (MIC

0.781–50 µg/mL) and Gram-positive cocci (Vazirian et al., 2014),

underscoring their relevance for neglected and resurgent infectious

diseases such as tuberculosis. Innovative processing and analytical
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techniques have recently advanced the identification of bioactives

from Ganoderma. Gamma irradiation enhanced the antimicrobial

potency of G. resinaceum (Abd El-Zaher, 2010), while LC-MS

analysis detected bioactive compounds such as hesperetin and

ganocin B in G. lucidum (Abdullah et al., 2021). Optimized

extraction protocols yielded phenolic-rich fractions (16.01 mg/g total

phenolics) from G. lucidum, which showed potent activity against S.

aureus (10.6-mm inhibition zone) (Masjedi et al., 2022). These effects

are partly attributed to ROS-mediated bacterial protein leakage, as

evidenced by phenolic fractions of G. lucidum (Mishra et al., 2018b).

Moreover, uncooked Ganoderma biomass has shown dual

antimicrobial and anticancer activity, offering potential for functional

food or nutraceutical applications (Alghonaim et al., 2023). Altogether,

these studies reveal that non-triterpenoid Ganoderma metabolites—

especially essential oils, phenolics, and proteins—may offer novel

solutions to combat AMR and opportunistic infections. However,

their clinical translation remains limited due to a lack of in vivo

validation, pharmacokinetic profiling, and toxicity assessments. Future

work should prioritize preclinical testing of these compounds in

infection models, particularly for high-burden diseases such as

tuberculosis, hospital-acquired infections, and drug-resistant

enteric pathogens.
TABLE 4 Antimicrobial properties of various other compounds isolated from Ganoderma species.

Ganoderma sp. Main bioactive
components

Pathogens targeted Disease relevance/
Target infection

References

Ganoderma atrum Sterols Oxidative protection in Caco-
2 cells

Intestinal epithelial protection,
gut inflammation

Guo et al., 2022

G. australe Australic acid and
methyl australate

Gram-positive and Gram-
negative bacteria, fungi

Broad-spectrum antimicrobial for skin
and internal infections

Smania et al., 2007

G. boninense Ergosterol and ganoboninketals S. aureus strains Skin infections,
pneumonia, endocarditis

Abdullah et al., 2021

G. japonicum Nerolidol, linalool, decadienal,
and benzyl alcohol

18 microorganisms,
especially MRSA

Multidrug-resistant infections (e.g.,
MRSA in hospitals)

Liu et al., 2009

G. lucidum Steroids, terpenoids,
and alkaloids

Gram-positive bacteria Respiratory and skin infections Subbraj et al., 2008

Phenolic compounds Pathogenic bacteria General bacterial infections Mishra et al., 2018b

Tannins, phenolics, flavonoids,
and saponins

P. aeruginosa, E. coli, S. aureus,
and K. pneumoniae

Wound infections, UTIs, and
nosocomial pathogens

Sekaran et al., 2011

Uncooked biomass Antimicrobial and anticancer
(MCF-7 cells)

Breast cancer and general
microbial infection

Alghonaim et al., 2023

G. resinaceum Peptides E. coli, MRSA, and Salmonella Gastrointestinal and
systemic infections

Hearst et al., 2010

Lipids Fusarium oxysporum and
Candida albicans

Mycotic infections in humans
and animals

Abd El-Zaher, 2010

Ganoderma spp. Ganomycins A and B S. aureus and Micrococcus flavus Gram-positive infections in skin and
soft tissue

Mothana et al., 2000

Steroidal compounds Mycobacterium tuberculosis, S.
aureus, and B. subtilis

Tuberculosis and staph-
related infections

Vazirian et al., 2014

Multiple compounds P. aeruginosa, S. typhimurium,
and K. pneumoniae

GI, respiratory, and
opportunistic infections
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5.1.5 Nanoparticles
The global rise of AMR and chronic biofilm-associated infections

underscores the urgent need for novel, multi-targeted therapeutics

that are both effective and sustainable. Nanotechnology has emerged

as a powerful tool in this arena, and Ganoderma-derived

nanoparticles—particularly silver nanoparticles (Ag-NPs)—

represent a promising frontier in fungal biomedicine. Infections

caused by MDR pathogens such as S. aureus, E. coli, and P.

aeruginosa remain major contributors to mortality in hospitals

worldwide, with the WHO designating these as “priority

pathogens.” Numerous studies have demonstrated that Ag-NPs

synthesized from G. lucidum, G. resinaceum, and G. sessile exhibit

broad-spectrum antibacterial activity, often surpassing the efficacy of

conventional antibiotics or potentiating their effects through

synergistic mechanisms (Kannan et al., 2014; Ali Syed et al.,

2023; Table 5).

In resource-limited settings where access to antibiotics is

restricted, these green-synthesized nanoparticles offer a cost-

effective and scalable antimicrobial alternative. Their ability to

disrupt bacterial membranes, generate ROS, and inhibit efflux

pumps suggests utility in treating persistent infections such as

those found in tuberculosis, diabetic wounds, and catheter-

associated UTIs (Al-Ansari et al., 2020; Bhardwaj et al., 2016).

Moreover, the low toxicity of Ganoderma-synthesized copper oxide

nanoparticles (CuONPs) supports their potential use in topical

formulations for superficial infections, particularly in low-income

regions (Flores-Rábago et al., 2023).

Importantly, Ganoderma-derived nanoparticles also show

activity against biofilm-forming pathogens, a major clinical
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challenge in implant-related infections and chronic wounds.

Biofilms protect microbes from host immunity and antibiotics,

contributing to prolonged hospital stays and increased mortality.

Titanium dioxide nanoparticles combined with Ganoderma extracts

have shown antibiofilm efficacy, which could be leveraged in medical

device coatings and sterile wound dressings (Marzhoseyni et al., 2023;

Paul et al., 2015). The anticancer and antioxidant properties of these

nanoparticles add another layer of relevance. Ag-NPs synthesized

from G. lucidum and G. sessiliforme have demonstrated cytotoxicity

against breast and lung cancer cell lines, potentially addressing

cancer-related infections and immune suppression (Mohanta et al.,

2018; Bhardwaj et al., 2016). In cancer patients with neutropenia or

post-chemotherapy immune suppression, fungal or bacterial co-

infections are common. Thus, dual-action nanoparticles offer a

novel approach to oncological support therapy.

In food safety and agriculture, Ganoderma-based nanoparticles

have been tested against Campylobacter jejuni, a major cause of

gastroenteritis and post-infectious sequelae in developing nations

(Rivera-Mendoza et al., 2024). This points to a broader public health

application, particularly in addressing foodborne diseases and

improving sanitation in regions with limited access to refrigeration

or clean water. Although current studies are predominantly in vitro,

the eco-friendly synthesis, scalability, and multipotent biological

activities of Ganoderma-derived nanoparticles position them as

strong candidates for next-generation antimicrobials. Future work

must address in vivo efficacy, targeted delivery mechanisms,

pharmacokinetics, and regulatory considerations to facilitate clinical

translation. Hence, Ganoderma-based nanomaterials not only show

promise against MDR pathogens and biofilms but also align with
TABLE 5 Overview of antimicrobial activity and applications of nanoparticles derived from Ganoderma species.

Ganoderma
species

Nanoparticle
type

Antimicrobial activity Additional applications References

G. lucidum Silver (Ag-NPs) Active vs. S. aureus, E. coli, and
P. aeruginosa; enhances
antibiotics

Therapeutic, anticancer (IC50 9.2 µg/
mL), wound dressings, and
public health

Kannan et al., 2014; Al-Ansari et al.,
2020; Paul et al., 2015; Constantin
et al., 2023

Polysaccharide NPs Improved antimicrobial and
antioxidant activity

Drug delivery Qin et al., 2018

Modified
sodium
montmorillonite

Corrosion resistance
and hydrophobicity

Nanocomposites Sheydaei et al., 2023

G. applanatum Silver (Ag-NPs) Active vs. E. coli and S. aureus Biomedical applications Mohanta et al., 2016; Jogaiah et al., 2019

G. sessiliforme Silver (Ag-NPs) Effective vs. foodborne pathogens Antioxidant and cytotoxic effects Mohanta et al., 2018

Copper
oxide (CuONPs)

Active vs. S. aureus, E. coli, and
P. aeruginosa

Treatment of superficial infections Flores-Rábago et al., 2023

G. sessile Metallic NPs Active vs. Campylobacter jejuni Foodborne illness control Rivera-Mendoza et al., 2024

G. resinaceum Silver (Ag-NPs) Active vs. multidrug-
resistant pathogens

— Ali Syed et al., 2023

G. boninense Phenolic compounds Strong fungitoxicity — Chong et al., 2011

Ganoderma spp. Titanium dioxide
(TiO2) NPs

Effective vs. biofilm-
forming pathogens

Clinical antibacterial agents Marzhoseyni et al., 2023

Silver nanocomplex Broad-spectrum bactericidal Eco-friendly antimicrobial agent Shokouhi et al., 2023
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1535246
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Karunarathna et al. 10.3389/fcimb.2025.1535246
global health priorities such as reducing AMR, treating co-infections

in cancer or HIV patients, and improving access to antimicrobial

materials in underserved regions. These properties highlight their

unmet therapeutic potential in both developed and developing

healthcare systems.
5.2 Fungal infections

Fungal infections pose a growing threat to global health,

particularly among immunocompromised individuals, transplant

recipients, and patients undergoing chemotherapy. According to

the Global Action Fund for Fungal Infections, over 1.5 million

deaths annually are attributed to invasive fungal diseases, and

current treatments are limited by toxicity, poor bioavailability,

and rising resistance—especially in Candida and Aspergillus

species. The pipeline for new antifungal drugs remains
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dangerously sparse, underlining the urgent need for novel, safer,

and more effective agents. Against this backdrop, Ganoderma

species, particularly G. lucidum, offer promising antifungal

potential with mechanisms distinct from conventional agents

(Table 6). G. lucidum has demonstrated broad-spectrum activity

against pathogenic fungi, including C. albicans, Aspergillus flavus,

and Fusarium oxysporum, with some studies reporting MIC values

below 1 µg/mL (Bitew and Abate, 1994). These findings are not

merely academic; they suggest that Ganoderma-derived compounds

could fill critical therapeutic gaps in treating drug-resistant

candidiasis and aspergillosis, which are common and often fatal

in ICU patients and those with hematological malignancies.

Among the most notable bioactives is ganodermin, a protein

isolated from G. lucidum that inhibits multiple phytopathogens

(Wang and Ng, 2006), with potential for further development into

topical antifungal formulations. In clinical contexts, G. lucidum has

been incorporated into products like antifungal toothpaste and
TABLE 6 Antifungal compounds and activities of various Ganoderma species against pathogenic fungi.

Species Antifungal
compound

Target pathogen Disease relevance/
Target infection

References

G. lucidum Culture filtrate Candida albicans Candidiasis (oral, vaginal, and systemic) Bitew and Abate, 1994

Ganodermin Plant and postharvest fungi Agricultural applications (not animal/
human-specific)

Wang and Ng, 2006

Toothpaste formulation Oral Candida Oral candidiasis and dental hygiene Dzubak et al., 2006; Nayak
et al., 2010b

Acetone extract Filamentous fungi Respiratory or skin mycoses Singh et al., 2014

Methanolic extracts Soil and plant-associated fungi Opportunistic infections in
immunocompromised hosts

Baig et al., 2015

Ethanol and
aqueous extracts

Opportunistic and phytopathogenic fungi Human fungal infections (skin,
respiratory); some plant relevance

Parkash and Sharma, 2016;
Radhika and Rajan, 2021

Glucan sulfate (GS) Aspergillus spp. Aspergillosis (pulmonary or systemic) Wan-Mohtar et al., 2017

PMMA modification Candida albicans Denture-related candidiasis Enaba and El Gendi, 2022

Triterpenoids Dermatophytes and molds Skin infections like ringworm and
athlete’s foot

Wasser, 2011

Secondary metabolites Docked with S. aureus protein targets Suggests dual antibacterial/antifungal
action, relevant for mixed infections

Nguyen et al., 2024

Ethanolic extracts Aspergillus flavus Food spoilage fungi and risk of
aflatoxicosis in animals

Vahdani et al., 2022

G. boninense Methanolic extracts Candida albicans Vulvovaginal and systemic candidiasis Daruliza et al., 2012

G. annulare Applanoxidic acids A, C,
and F

Dermatophytes Human skin infections (tinea and
athlete’s foot)

Smania et al., 2003

G. mbrekobenum Mycelial plugs Feed-contaminating fungi Prevention of mycotoxicosis in livestock El-Fallal et al., 2021

Ganoderma sp. Crude
exopolysaccharides

Mixed fungal species General antifungal for clinical and food
safety uses

Demir and Yamaç, 2008

Various extracts Multiple human and plant pathogens Broad antifungal; relevant for
dermatological and respiratory infections

Migahed et al., 2018;
Naveenkumar et al., 2018

Not specified Aspergillus niger Opportunistic pathogen in
immunocompromised individuals

Chandrawanshi and
Shukla, 2019
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biomaterials such as polymethylmethacrylate (PMMA), where it

enhanced mechanical performance while inhibiting C. albicans

biofilm formation, a common cause of denture stomatitis (Nayak

et al., 2010b; Enaba and El Gendi, 2022).

The unique mode of action of Ganoderma-derived triterpenoids—

targeting ergosterol to disrupt fungal membranes—may offer an

alternative to existing ergosterol-targeting drugs like amphotericin B

but with lower toxicity (Wasser, 2011). In addition, these compounds

have demonstrated the ability to interfere with biofilm formation and

fungal cell wall synthesis, both of which are key contributors to

antifungal resistance and treatment failure (Chan et al., 2013).

Importantly, Ganoderma extracts have shown efficacy against

dermatophytes such as Microsporum canis and Trichophyton

mentagrophytes, which are prevalent in tropical climates and

often undertreated due to limited healthcare access (Smania et al.,

2003). In veterinary and agricultural sectors, Ganoderma is also

emerging as a natural antifungal for contaminated feed and crops,

suggesting a One Health approach to fungal control (El-Fallal et al.,

2021). From a pharmaceutical development perspective, molecular

docking studies have revealed strong binding affinities of

Ganoderma metabolites to key fungal protein targets, offering a

rational basis for structure-based drug design (Nguyen et al., 2024).

This computational insight strengthens the argument for clinical

translation and underscores the need for further in vivo validation

and toxicity profiling. Hence, the antifungal properties of

Ganoderma are not just promising in vitro but potentially

transformative in clinical settings where fungal infections are

increasing and treatment options remain inadequate. By targeting

resistant strains, disrupting biofilms, and offering low-toxicity

alternatives, Ganoderma-derived compounds could represent the

next generation of antifungal therapeutics—especially in settings

where conventional options fall short.
5.3 Viral infections

Viral infections remain a major global health challenge, with

diseases such as HIV/AIDS, hepatitis B (HBV), herpes simplex

(HSV), and influenza collectively causing significant morbidity and

mortality. According to UNAIDS, approximately 39 million people

were living with HIV globally in 2023, while WHO reports over 250

million people chronically infected with HBV. These figures

underscore the urgent need for novel antiviral agents, especially

in light of emerging drug resistance and the limited efficacy or

accessibility of current therapeutics in many regions. Ganoderma

species, particularly G. lucidum, have garnered interest for their

potential to address these unmet needs through their diverse arsenal

of bioactive compounds (Table 7). Isolated triterpenoids, such as

ganoderic acid-b, lucidumol B, and ganodermanontriol, have

demonstrated significant anti-HIV-1 protease activity, with IC50

values ranging from 20 to 90 mM (Min et al., 1998; El-Mekkawy

et al., 1998). Importantly, molecular docking studies suggest that

ganoderic acid-B exhibits a binding affinity surpassing that of the

standard drug nelfinavir, supporting its potential as a lead

compound for drug development (Kang et al., 2015). In addition,
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enzymatic crude extracts rich in laccase from G. lucidum have

shown remarkable in vitro inhibition of HIV-1 replication (Zhang

et al., 2011; Flórez-Sampedro et al., 2016), providing an alternative

strategy targeting reverse transcription pathways.

The antiviral effects of Ganoderma extend beyond HIV.

Polysaccharides and triterpenes from G. lucidum have shown

inhibitory activity against HSV and influenza virus. These effects

are attributed to both direct interference with viral entry and

replication, as well as enhancement of host immunity through

cytokine stimulation (Basnet et al., 2017). This dual mode of action

is particularly relevant in immunocompromised populations where

traditional antivirals may fail or cause adverse effects. Notably,

Ganoderma adspersum extract demonstrated potent activity against

HSV-1 with a high selective index and protective efficacy (Zahmoul

et al., 2024), highlighting its therapeutic potential for dermatological

or mucosal viral infections. Furthermore, triterpenoids such as

ganoderiol F, ganodermadiol, and colossolactones isolated from G.

lucidum, G. sinense, and G. colossum have shown broad-spectrum

activity against HIV-1, HSV, and influenza viruses with IC50 or ED50

values within pharmacologically relevant ranges (El Dine et al., 2008;

Sato et al., 2009; Mothana et al., 2003). These findings suggest that

Ganoderma may serve as a platform for developing multitarget

antivirals—particularly valuable in resource-limited settings where

polyvalent therapies are needed to treat co-infections. Although

current evidence is largely preclinical, these studies collectively

position Ganoderma-derived compounds as promising candidates

for addressing therapeutic gaps in managing persistent and drug-

resistant viral infections. Future efforts should focus on validating

these compounds in clinical models and elucidating their

pharmacokinetics and immunomodulatory effects to advance their

development into viable antiviral therapies.
5.4 Parasitic infections

Parasitic diseases continue to exact a significant toll on global

health, particularly in tropical and subtropical regions. Malaria alone

caused over 600,000 deaths in 2022, predominantly among children

under five in sub-Saharan Africa (World Health Organization, 2024).

Other parasitic infections, such as toxoplasmosis, giardiasis,

leishmaniasis, and blastocystosis, also contribute to considerable

morbidity, with limited treatment options, increasing drug

resistance, and toxicity issues posing substantial therapeutic

challenges. Recent research has highlighted the potential

antiparasitic properties of Ganoderma species, revealing promising

efficacy against several protozoal and parasitic infections (Table 8).

Notably, nortriterpenes ganoboninketals A–C, derived from G.

boninense fruiting bodies, demonstrated potent antiplasmodial

activity against Plasmodium falciparum with IC50 values of 4.0, 7.9,

and 1.7 mM, respectively (Adams et al., 2010; Ma et al., 2014; Figure 2).

Additional triterpenes—schisanlactone B, ganodermalactone F, and

colossolactone E—isolated from Ganoderma sp. KM01 also showed

activity against P. falciparum, with IC50 values ranging from 6.0 to 10.0

mM (Lakornwong et al., 2014). Moreover, G. lucidum-derived

compounds such as ganoderic acids (DM, TR1, and S),
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ganodermanondiol, and ganofuran B, isolated using EtOAc, exhibited

inhibitory effects on P. falciparum within a 6.0–20 mM IC50 range

(Adams et al., 2010). These activities fall within a biologically relevant

range, highlighting their potential as lead compounds for the
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development of novel antimalarials, especially in the face of rising

resistance to artemisinin-based therapies.

In studies on nematode inhibition, Zhao et al. (2009) reported

that lectins from Ganoderma exhibited activity against plant
TABLE 7 Antiviral activity of compounds derived from Ganoderma species against various viral infections.

Ganoderma
species

Active compound(s) Target
virus

Mechanism/
Effect

Disease
relevance

References

G. lucidum Ganoderic acid-b, lucidumol B,
ganodermanondiol, ganodermanontriol,
and ganolucidic acid A

HIV-1 Inhibits HIV-
1 protease

Key for antiretroviral
therapy; useful
against AIDS

Min et al., 1998

Ganoderic acid-a, ganoderiol F,
and ganodermanontriol

HIV-1 Moderate inhibition
of viral replication

May reduce HIV viral
load in early stages

El-Mekkawy et al., 1998

Triterpenoids and polysaccharides HSV Blocks viral entry Potential for cold sore
and genital
herpes treatment

Polysaccharides Influenza virus Enhances host
immune response

Immunostimulant for
seasonal influenza

Li et al., 2015

Laccases HIV-1 Inhibits
reverse transcriptase

Possible treatment
option for resistant
HIV strains

Zhang et al., 2011;
Flórez-Sampedro et al., 2016

Polysaccharides HBV Inhibits
viral replication

May support chronic
hepatitis
B management

Gao et al., 2003

Ganoderone C, lucialdehyde B, ergosta-
7,22-dien-3a-ol

Influenza virus Suppresses
viral growth

Reduces severity and
duration of
flu symptoms

Niedermeyer et al., 2005

Lanosta-trienone (GLTA) and
ganoderic acid Y

Enterovirus 71 RNA
replication inhibitor

Effective for hand-
foot-and-mouth
disease in children

Zhang et al., 2014

Ganoderic acids A–C1, H, and GS-2 HIV Broad
protease inhibition

Potential backbone
compounds for
HIV therapy

Kang et al., 2015;
Cai et al., 2020

Proteoglycan HSV-1 and
HSV-2

Pre- and co-
treatment inhibition

Suitable for both
prophylaxis and
treatment of herpes

Liu et al., 2014

Ganoderic acid H HBV Suppresses surface
antigen expression

Relevant to
controlling chronic
hepatitis progression

Li and Wang, 2006;
Kumar et al., 2020

Hesperetin, ganosin B Dengue virus Inhibits viral protease Promising approach
to limit
dengue replication

Lim et al., 2020

G. adspersum Crude extract HSV-1 Broad-spectrum
antiviral activity

Topical applications
for recurrent
herpes infections

Zahmoul et al., 2024

G. sinense Ganoderiol F, ganoderic acid GS-2, and
lucidenic acids

HIV-1 High-affinity
viral inhibition

May complement
standard
HIV therapeutics

El Dine et al., 2008;
Sato et al., 2009

G. colossum Farnesyl hydroquinone, ganomycin I
and B

HIV-1 Competitive
inhibition of protease

Novel anti-HIV leads
for drug development

El Dine et al., 2008

G. lingzhi Ganoderic TR and T-Q H1N1
and H5N1

Neuraminidase
inhibition

Potential therapy for
influenza pandemics

Zhu et al., 2015

G. pfeifferi Ganodermadiol, lucidadiol, and
applanoxidic acid G

Influenza A Moderate suppression
of viral activity

May assist in
reducing viral load
during flu outbreaks

Mothana et al., 2003
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nematodes Heterodera glycines and Ditylenchus dipsaci, although

their potency was deemed insufficient for practical use.

Nonetheless, these findings provide a foundation for future

optimization or bioengineering approaches to enhance

antihelminthic efficacy. Computational studies further support the

antiparasitic potential of Ganoderma compounds. G. lucidum

triterpenoids were shown to interact with plasmepsin I, a key

enzyme in P. falciparum. Ganodermanondiol demonstrated the

highest affinity (binding energy = −7.14 kcal/mol, Ki = 0.005

mM), outperforming the standard inhibitor KNI-10006 (Kang

et al., 2015). This suggests a plausible mechanism of action and

reinforces the value of Ganoderma constituents in rational drug

design against malaria. Ganoderma extracts also displayed

antiprotozoal effects against Blastocystis hominis, a parasite

increasingly associated with gastrointestinal disorders. Strong

inhibitory activity was observed at an MIC of 62.5 mg/mL. At

higher concentrations, extracts of Ganoderma and Boesenbergia

rotunda reduced B. hominis growth by up to 90% within 12 h and

induced notable morphological damage, pointing to their potential

in managing treatment-refractory blastocystosis (Kaewjai et al.,

2023; Uwidia et al., 2024). In addition, G. lucidum extracts

demonstrated anti-Toxoplasma effects, particularly against

Toxoplasma gondii RH strain tachyzoites. In vitro studies showed

that the hydroalcoholic extract of G. lucidum exhibited the highest

toxoplasmacidal activity and selectivity (EC50 = 3.274),

outperforming both aqueous (EC50: 76.32) and alcoholic extracts

(EC50: 40.18) (Ahmadi et al., 2023). Given the limited efficacy and

potential teratogenicity of current anti-toxoplasmosis treatments,

such natural alternatives may offer safer and more accessible

interventions, especially in immunocompromised populations.

Overall, these findings suggest that Ganoderma-derived

metabolites hold considerable promise in addressing parasitic

diseases where conventional therapies fall short. Future studies

should aim to evaluate their efficacy in vivo, explore their
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mechanisms of action, and assess safety profiles to support

clinical translation.
6 Clinical studies on antimicrobial
properties of Ganoderma

G. lucidum has been extensively studied for its antimicrobial

properties, particularly in laboratory and animal models. In vitro

studies have demonstrated that its bioactive compounds—mainly

polysaccharides and triterpenoids—possess antiviral, antibacterial,

and antifungal activities. Despite these promising findings, human

clinical evidence remains limited, with most clinical research to date

focusing on immune modulation, cancer therapy, and liver

protection rather than direct antimicrobial effects. Some

preliminary clinical studies suggest potential antiviral benefits. A

pilot clinical trial conducted by Hijikata et al. (2005) evaluated an

herbal formula containing G. lucidum in patients with herpes zoster

(shingles). Participants who received 750 mg daily experienced

rapid symptom relief, with most resolving within 10 days, and no

cases of postherpetic neuralgia were reported after 1 year. In a

subsequent study by the same group (Hijikata et al., 2007),

individuals with recurrent herpes simplex infections who were

treated with a hot water extract of G. lucidum at 4 g daily

reported faster symptom resolution—genital herpes symptoms

improved in 4.9 ± 1.3 days compared to 10.9 ± 6.3 days without

treatment. However, both studies involved combination herbal

formulas, making it difficult to isolate the specific effects of G.

lucidum. To date, there are no human clinical trials specifically

evaluating the antibacterial efficacy of G. lucidum, and evidence in

this area is limited to in vitro findings. Similarly, while antifungal

activity has been reported in laboratory settings—particularly

against Candida species and dermatophytes—no human studies

have validated these effects clinically. Research on its antiparasitic
TABLE 8 Antiparasitic properties of Ganoderma species.

Ganoderma
species

Active compounds/
extracts

Target parasite Disease relevance/
Efficacy

References

G. boninense Ganoboninketals A–C Plasmodium falciparum Exhibits strong antiplasmodial
activity; promising for malaria
drug development

Adams et al., 2010;
Ma et al., 2014

G. lucidum Ganoderic acids (DM, TR1, and
S), ganodermanondiol, and
ganofuran B

Targets plasmepsin I enzyme in Plasmodium Inhibits a key enzyme in malaria
parasite; potential
antimalarial candidates

Adams et al., 2010;
Kang et al., 2015

Hydroalcoholic extract Toxoplasma gondii (RH strain) More effective than aqueous and
alcoholic extracts; potential
toxoplasmosis treatment

Ahmadi et al., 2023

Ganoderma spp. Lectins Heterodera glycines and Ditylenchus dipsaci
(plant-parasitic nematodes)

Limited antiparasitic effect; not
viable for agricultural use

Zhao et al., 2009

Crude extract Blastocystis hominis Inhibits growth and induces
morphological damage; potential for
protozoal infection management

Kaewjai et al., 2023;
Uwidia et al., 2024

Ganoderma
sp. KM01

Schisanlactone B,
ganodermalactone F, and
colossolactone E

Plasmodium falciparum Moderate inhibition; candidates for
further antimalarial screening

Lakornwong et al., 2014
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activity remains scarce, with neither significant preclinical nor

clinical data currently available.
7 Ganoderma against plant pathogens

Research on Ganoderma has revealed its potential as a natural

biocontrol agent against various plant pathogens. Numerous studies

have documented its antimicrobial effects, highlighting its capacity

to combat fungal and bacterial infections in plants. G. lucidum

mycelia showed moderate antimicrobial activity against soil-borne

pathogens, including fungi (F. oxysporum, Rhizoctonia solani, and

Sclerotium rolfsii) and bacteria (R. solanacearum and S. aureus). In

vitro, mycelial extracts increased inhibition zones, while in vivo tests

on tomato seedlings delayed disease symptoms, suggesting G.

lucidum as a potential biocontrol agent, particularly against R.

solani and S. rolfsii (Mendoza and Nepomuceno, 2006). G.

lucidum extracts exhibit antifungal properties effective against

plant pathogens F. oxysporum and Alternaria alternata in

marigolds. This study compared organic and aqueous extracts of

G. lucidum, applying various concentrations (5%, 10%, 15%, and

20%) using Agar absorption, Agar well diffusion, and Vapor assay

methods. Methanolic extract showed the highest inhibition (64%)

using the Agar absorption method, while aqueous extract showed

the lowest inhibition (38%) with Agar well diffusion. These findings

highlight the potential of G. lucidum methanolic extract as a

biological control agent for marigold plant diseases (Shahid et al.,

2016). The antimicrobial activity of extracts from wood-rotting

Basidiomycetes mushrooms from Eucalyptus plantations in

Uruguay was investigated. Eight extracts, including those from G.

resinaceum and L. sulphureus, were active against pathogens such as

Xanthomonas vesicatoria and Aspergillus oryzae (Barneche et al.,

2016). A compound named G_app7, isolated from G. applanatum,

was found to effectively inhibit the growth of Sclerospora

graminicola, the pathogen causing downy mildew in pearl millet

(Pennisetum glaucum). G_app7 reduced sporangium formation

(41.4%), zoospore release (77.5%), and motility (91%), and closely

resembles metominostrobin, a fungicide. It remained effective at

temperatures between 25 and 80°C and was stable for at least 12

months at 4°C. Seed treatment with G_app7 provided a 63%

increase in disease protection compared to controls, highlighting

its potential as an environmentally safe agrochemical for pearl

millet protection (Jogaiah et al., 2016).

The antibacterial effects of selenium-containing biocomposites

from submerged cultures of Ganoderma species were studied

against plant pathogenic bacteria. Biocomposites from G.

cattienensis and G. lucidum were most effective against C.

michiganensis, while those from G. valesiacum and G. lucidum

showed strong activity against Xanthomonas campestris. G. colossus

exhibited notable activity against Pseudomonas fluorescens. The

study highlights the potential of using coumarin-based

compounds for producing antimicrobial substances from fungi

(Perfileva et al., 2017). Eight mushroom species were screened,

including G. lucidum, for their impact on Colletotrichum capsici, the

chili fruit rot pathogen. The results revealed that G. lucidum,
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Auricularia polytricha, and Lentinus edodes demonstrated

significant antifungal activity, with G. lucidum achieving the

highest mycelial growth inhibition (54.81%). Chloroform extracts

from G. lucidum inhibited spore germination (88%) and mycelial

growth (60.55%) at 24 h. These findings suggest G. lucidum as a

promising source for developing fungicides against C. capsici,

warranting further investigation of its active compounds (Priy

et al., 2019).

The antimicrobial potential of an aqueous ammonia extract

from G. lucidum carpophores, sourced from Quercus ilex trees, was

investigated, revealing key chemical constituents such as acetamide

and oleic acid. The extract exhibited strong anti-oomycete and

antifungal activities, with MIC values of 187.5 mg·mL−1 against

Phytophthora cinnamomi and varying MICs against other fungi.

When conjugated with chitosan oligomers, the extract’s

antimicrobial efficacy significantly increased, showcasing MIC

values as low as 78.12 mg·mL−1, demonstrating its potential for

protecting holm oak in sustainable agricultural practices (Sánchez-

Hernández et al., 2023). The antifungal properties of G. lucidum

against the mango anthracnose pathogen C. gloeosporioides were

investigated in this study. Ethyl acetate extracts from the fruiting

body inhibited mycelial growth by 70.10% at a 1% concentration.

Thin-layer chromatography identified two active bands, with the

first achieving 53.77% inhibition. Gas chromatography–mass

spectrometry detected benzothiazole, which completely inhibited

mycelial growth at 50 ppm and caused structural abnormalities in

the pathogen. The findings suggest that G. lucidum biomolecules

could be effective natural agents against plant pathogens

(Muniyappan et al., 2023). The crude extract of G. lucidum was

formulated into an emulsion [water in oil (W/O)] to induce

systemic resistance in chickpeas against Fusarium wilt caused by

F. oxysporum f. sp. ciceri (FOC). Different dilutions of the

formulation were applied to chickpeas, which were then

challenged with FOC. Enzyme assays showed increased activity of

peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine

ammonia-lyase (PAL) in treated plants, indicating activation of the

plant’s natural defense pathways. GC-MS analysis confirmed

bioactive compounds responsible for enhancing enzyme levels.

This study suggests the potential for developing bio-formulations

to control plant diseases (Singh and Vyas, 2023). Table 9

summarizes the antimicrobial activities of Ganoderma species

against plant pathogens.
8 Challenges and limitations of
Ganoderma in antimicrobial
applications

Although Ganoderma, especially G. lucidum, has demonstrated

promising antimicrobial properties, several key challenges limit its

broader adoption in medical and agricultural settings. These

challenges primarily stem from variability in species, inconsistency

in extract composition, and a lack of robust human clinical research

specifically targeting antimicrobial use. A major hurdle is the natural

variation in bioactive compounds among different Ganoderma
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species. Each species produces a unique blend of compounds—such

as polysaccharides, triterpenoids, and phenolics—which directly

influences their antimicrobial efficacy. Even within the same

species, factors like geographical origin, climate, substrate, and

cultivation conditions can alter the concentration and types of

active molecules. This variability makes it difficult to predict or

compare the antimicrobial strength of different extracts, reducing

their reliability as standardized treatments. Another significant

limitation lies in the difficulty of standardizing Ganoderma extracts.

Unlike conventional pharmaceuticals that are based on single, well-

defined molecules, Ganoderma extracts are complex mixtures.

Depending on the extraction method used—whether water-based

or alcohol-based—the resulting compounds and their concentrations

can vary greatly. This leads to inconsistent therapeutic profiles,

making dosage optimization and reproducibility a challenge.

Furthermore, there is currently no universally accepted quality

control standard for Ganoderma products, which adds another

layer of uncertainty for clinical or commercial use. Perhaps the

most critical limitation is the lack of extensive human clinical trials

specifically designed to assess antimicrobial effects of Ganoderma.

While laboratory and animal studies have shown promising results

against bacteria, fungi, and viruses, human trials remain scarce. Most
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clinical research has focused on immunemodulation, cancer support,

and liver protection, rather than on infectious diseases. Without

rigorous clinical testing, questions remain about its safety,

appropriate dosing, and real-world efficacy. This lack of data also

presents a barrier to regulatory approval and mainstream medical

acceptance, hindering the development of Ganoderma-based

antimicrobial therapies. Although Ganoderma holds great promise

as a natural antimicrobial agent, issues related to species variability,

extract standardization, and insufficient clinical evidence must be

addressed before it can be reliably integrated into therapeutic or

agricultural practices.
9 Future research directions for
Ganoderma in antimicrobial
applications

The growing recognition of antimicrobial properties of

Ganoderma highlights several critical research avenues that could

unlock its full therapeutic potential. First and foremost, standardizing

Ganoderma extracts is essential to ensure consistency in their
TABLE 9 Antimicrobial activity of Ganoderma spp. against plant pathogens.

Ganoderma
species

Target pathogen(s) Type of activity Key findings Disease
relevance

References

G. applanatum Sclerospora graminicola
(pearl millet
downy mildew)

Antifungal (in vitro) Isolate G_app7
suppressed spore
formation and improved
plant resistance

Potential bioagent for
downy mildew control
in cereals

Jogaiah et al., 2016

G. cattienensis and
G. lucidum

Clavibacter michiganensis,
X. campestris, and
P. fluorescens

Antibacterial
(selenium
biocomposites)

Selenium nanoparticles
from Ganoderma
selectively inhibited
bacterial growth

Useful for agricultural
pathogen control and
seed coating

Perfileva et al., 2017

G. lucidum Phytophthora cinnamomi
and other phytopathogens

Antifungal and
anti-oomycete

Efficacy enhanced by
chitosan combination

Effective against root rot
and damping-
off diseases

Sánchez-Hernández et al., 2023

Fusarium oxysporum f. sp.
ciceri (chickpea wilt)

Induced
systemic resistance

Stimulated plant defense
enzymes (PO, PPO,
and PAL)

Sustainable control of
Fusarium wilt
in legumes

Singh and Vyas, 2023

Colletotrichum
gloeosporioides
(mango anthracnose)

Antifungal (in vitro) 70% inhibition of
mycelial growth;
benzothiazole identified

Potential for pre-harvest
mango protection

Muniyappan et al., 2023

F. oxysporum, R. solani, S.
rolfsii, and R. solanacearum

Antifungal,
antibacterial (in vitro
and in vivo)

Mycelial extract delayed
disease onset and
increased
inhibition zones

Broad-spectrum plant
disease control

Mendoza and Nepomuceno, 2006

F. oxysporum and
Alternaria alternata
(marigold pathogens)

Antifungal (in vitro) Methanolic extract had
64% growth inhibition

Alternative to chemical
fungicides
for ornamentals

Shahid et al., 2016

Colletotrichum capsici (chili
fruit rot)

Antifungal (in vitro) Inhibited spore
germination (88%) and
mycelial growth (54.8%)

Biocontrol option for
chili
postharvest spoilage

Priy et al., 2019

G. resinaceum and
Laetiporus
sulphureus

X. vesicatoria and
Aspergillus oryzae

Antibacterial and
antifungal (in vitro)

Crude extracts
suppressed growth of
pathogens from
Eucalyptus plantations

Supports integrated pest
management in forestry

Barneche et al., 2016
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bioactive compounds, such as polysaccharides, triterpenoids, and

phenolics. Variations in species, cultivation methods, and extraction

techniques currently lead to unpredictable antimicrobial effects,

limiting reproducibility in both research and clinical applications.

Future studies should focus on optimizing extraction protocols and

determining minimum effective concentrations to create reliable,

high-quality formulations suitable for pharmaceutical use. Another

promising direction involves developing Ganoderma-based

antimicrobial drugs or supplements. Its bioactive compounds have

demonstrated broad-spectrum activity against bacteria, fungi, and

viruses, making them strong candidates for novel treatments. Given

the escalating threat of AMR, Ganoderma’s multi-target mechanisms

—including cell wall disruption, nucleic acid synthesis inhibition, and

oxidative stress induction—could provide alternative therapies that

pathogens struggle to resist. Perhaps most compelling is the potential

for Ganoderma to enhance conventional antibiotics through

synergistic combinations. Preliminary evidence suggests that

pairing Ganoderma extracts with existing antimicrobials may

improve efficacy while reducing required dosages, thereby

minimizing side effects and delaying resistance. Future research

should systematically investigate these interactions, particularly

against drug-resistant strains, as well as explore the role of

Ganoderma as an adjunct therapy for fungal and viral infections in

immunocompromised patients. By addressing these priorities,

Ganoderma could transition from a traditional remedy to a

scientifically validated antimicrobial agent, offering new solutions in

an era of increasing treatment challenges.
10 Conclusion

Ganoderma exhibits significant promise as a natural source of

antimicrobial agents, with its bioactive compounds—

polysaccharides, triterpenoids, phenolic compounds, and proteins

—demonstrating a variety of mechanisms to combat bacterial,

fungal, and viral infections. These compounds function by

disrupting microbial cell walls, inhibiting nucleic acid synthesis,

modulating the immune system, and regulating oxidative stress,

offering a multi-targeted approach to pathogen inhibition.

However, it is important to note that there may be potential risks

or limitations associated with the use of Ganoderma as an

antimicrobial agent, which should be thoroughly investigated in

future research. Numerous in vitro and preclinical studies have

already illustrated Ganoderma’s potential to be developed into

therapeutic agents, especially in light of the growing global

concern over AMR. Future research should prioritize clinical

trials to validate Ganoderma’s efficacy in human subjects,

particularly for its antimicrobial applications. Standardizing

Ganoderma extracts is another critical area that would facilitate

consistency in research and therapeutic use. In addition, identifying

and isolating specific active compounds within Ganoderma may

allow for more targeted drug development, potentially leading to

the creation of new antimicrobial drugs or supplements.
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Furthermore, exploring synergistic effects with conventional

antibiotics could offer new solutions to enhance treatment efficacy

and reduce drug resistance. Continued investigation into these areas

will be key to unlocking Ganoderma’s full potential as a vital player

in the future of antimicrobial therapies.
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ancient remedies to modern applications: chemistry, benefits, and safety. Antioxidants.
14, 513. doi: 10.3390/antiox14050513

Priy, K., Thiribhuvanamala, G., Kamalakannan, A., and Krishnamoorthy, A. S.
(2019). Antimicrobial activity of biomolecules from mushroom fungi against
Colletotrichum capsici (Syd) Butler and bisby, the fruit rot pathogen of Chilli. Inter.
J. Curr. Microbiol. Appl. Sci. 8, 1172–1186. doi: 10.20546/ijcmas.2019.806.145

Pushpa, H., Anand, M., Kasimaiah, P., and Penugonda, J. V. S. P. (2013). Evaluation
of antimicrobial activity of some of the selected basidiomycetous fungi. Int. J. Pharma
Bio Sci. 4, B964–B971.

Qin, Y., Xiong, L., Li, M., Liu, J., Wu, H., Qiu, H., et al. (2018). Preparation of
bioactive polysaccharide nanoparticles with enhanced radical scavenging activity and
antimicrobial activity. J. Agric. Food Chem. 66, 4373–4383. doi: 10.1021/
acs.jafc.8b00388

Radhika, R. (2021). Antibacterial activity of G. lucidum extracts against MDR
pathogens. Int. J. Mod. Agric. 10, 3488–3493. doi: 10.33545/26649926.2021.v3.i1a.24

Radhika, R., and Rajan, S. (2021). Antifungal potentials of G. lucidum extracts. Plant
Cell Biotechnol. Mol. Biol. 22, 22–27.

Rajesh, K., and Dhanasekaran, D. (2014). Phytochemical screening and biological
activity of medicinal mushroom Ganoderma species. Malaya J. Biosci. 1, 67–75.
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