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Introduction: Accurate prediction of immunogenic proteins is crucial for vaccine

development and understanding host-pathogen interactions in bacterial

diseases, particularly for Salmonella infections which remain a significant global

health challenge.

Methods: We developed SHASI-ML, a machine learning-based framework for

predicting immunogenic proteins in Salmonella species. The model was trained

and validated using a curated dataset of experimentally verified immunogenic

and non-immunogenic proteins. Three distinct feature groups were extracted

from protein sequences: global properties, sequence-derived features, and

structural information. The Extreme Gradient Boosting (XGBoost) algorithm

was employed for model development and optimization.

Results: SHASI-ML demonstrated robust performance in identifying bacterial

immunogens, achieving 89.3% precision and 91.2% specificity. When applied to

the Salmonella enterica serovar Typhimurium proteome, the model identified

292 novel immunogenic protein candidates. Global properties emerged as the

most influential feature group in prediction accuracy, followed by structural and

sequence information. The model showed superior recall and F1-scores

compared to existing computational approaches.

Discussion: These findings establish SHASI-ML as an efficient computational tool

for prioritizing immunogenic candidates in Salmonella vaccine development. By

streamlining the identification of vaccine candidates early in the development

process, this approach significantly reduces experimental burden and associated

costs. The methodology can be applied to guide and optimize both research and

industrial-scale production of Salmonella vaccines, potentially accelerating the

development of more effective immunization strategies.
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1 Introduction

Salmonella, a rod-shaped, Gram-negative bacterium that

belongs to the Enterobacteriaceae family, is the most commonly

isolated bacterial agent in foodborne infections, both sporadic and

epidemic. It occurs in nature with more than 2600 serovars (Gast

and Porter, 2020), associated with a broad spectrum of diseases,

ranging from mild gastroenteritis to severe systemic infections,

making Salmonella a significant pathogen of global concern.

Salmonella infections can be categorized into typhoidal and

non-typhoidal forms. Typhoidal infections, caused by S. typhi and

S. paratyphi, are responsible for typhoid and paratyphoid fevers,

which are systemic illnesses with significant global health

implications (Marchello et al., 2019; Garrett et al., 2022). Non-

typhoidal infections, typically caused by serovars such as S.

typhimurium and S. enteritidis, predominantly manifest as

gastroenteric illnesses and remain the most common form of

salmonellosis. In addition to these clinical syndromes, certain

non-typhoidal serovars are implicated in invasive infections,

known as invasive non-typhoidal Salmonella infections (iNTS)

(Balasubramanian et al., 2019). The global incidence of

Salmonella-related diseases is alarmingly high, with particularly

severe public health impacts in Africa and Asia, where inadequate

access to clean water, poor sanitation, and limited healthcare

infrastructure significantly exacerbate the burden of disease

(Castro-Vargas et al., 2020; Walker et al., 2023).

In Low- and Middle-Income Countries (LMICs), it is estimated

that approximately 17.8 million cases of typhoid fever occur annually

(Antillón et al., 2017), with Sub-Saharan Africa alone experiencing a

burden of over 100 cases per 100,000 people each year and a fatality

rate of 1% (Stanaway et al., ; Van Puyvelde et al., 2023). Furthermore,

Africa accounts for 26% of the global typhoid-related mortality,

equating to 33,490 lives lost annually (Mogasale et al., 2014).

Within Nigeria, the toll is particularly severe, with an estimated

364,791 cases of typhoid fever resulting in 4,232 deaths annually;

alarmingly, 68% of these fatalities occur among individuals under the

age of 15 (Akinyemi et al., 2018). These statistics underscore the

devastating impact of Salmonella infections, particularly in vulnerable

populations such as children and those residing in resource-

limited settings.

Salmonellosis, the most common foodborne illness in humans,

is primarily transmitted through the consumption of contaminated

water or food. Clinical manifestations typically include nausea,

vomiting, abdominal pain, and diarrhea, which may range from

mild to severe (Wei et al., 2019). Typhoid fever, caused by S.

enterica serovar Typhi, poses a significant public health challenge in

developing countries, where inadequate water supply and sanitation

facilitate its transmission (Stanaway et al., ; Stanaway et al., 2019).

The growing emergence of multidrug-resistant strains has further

compounded the threat of Salmonella infections, rendering

standard treatments increasingly ineffective. This alarming trend

has prompted the inclusion of Salmonella on the World Health

Organization’s (WHO) antimicrobial resistance (AMR) high-

priority pathogen list, underscoring the urgent need for new

treatment strategies and interventions (Acheson and Hohmann,
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2001; Kariuki et al., 2015; Baliban et al., 2020; WHO Bacterial

Priority Pathogens List, 2024: bacterial pathogens of public health

importance to guide research, development and strategies to

prevent and control antimicrobial resistance, 2024). Vaccines

could be a powerful tool against all major Salmonella infections,

reducing the reliance on antibiotics and helping to combat AMR

(MacLennan et al., 2014; Baliban et al., 2020). However, the existing

vaccines for typhoid fever offer only moderate protection and are

often costly to produce (Rossi et al., 2016; Syed et al., 2020) and, in

addition, there are currently no licensed vaccines available for iNTS

or paratyphoid fever (Raoufi et al., 2015).

To address these issues, innovative solutions are imperative.

Among these, the integration of artificial intelligence (AI) and

machine learning (ML) in the medical field is transforming

healthcare by providing powerful tools to tackle complex

challenges (Visibelli et al., 2023b). These technologies enable the

analysis of extensive datasets, uncovering patterns and insights that

were previously inaccessible through traditional methods. By doing

so, they improve the understanding of disease mechanisms,

resistance trends, and population-specific health disparities, while

also supporting advancements in diagnostics, treatment, and

patient care (Guerranti et al., 2021; Visibelli et al., 2023a). These

computational models are enhancing healthcare systems by

fostering interdisciplinary collaboration and enabling real-time

data sharing, which is particularly beneficial in managing

outbreaks and monitoring antimicrobial resistance. Their

applications extend to drug discovery (Frusciante et al., 2022),

where they streamline the identification of novel therapeutic

candidates (Pettini et al., 2021), accelerate clinical trials, and

predict drug efficacy and safety profiles. Additionally, AI-powered

platforms are being developed to assist in public health

interventions by modeling disease spread, improving vaccine

distribution strategies, and identifying at-risk populations with

greater accuracy. By bridging gaps in traditional healthcare

approaches, AI and ML are not only addressing current medical

challenges but also paving the way for a more efficient global

health ecosystem.

In this context, the aim of the Siena Hub Against Salmonella

Infections (SHASI) system is to combine vaccine Research &

Development (R&D) and industrial expertise to create new

approaches toward the development of multivalent vaccines

against Salmonella diseases. Here, we present SHASI-ML, a

machine-learning-based framework designed to predict

immunogenic proteins in Salmonella. This approach integrates

diverse data sources and computational techniques, offering a

comprehensive method for analyzing protein immunogenicity.

SHASI-ML incorporates structural, sequence-derived, and

engineered features to enhance the accuracy and generalizability

of predictions, addressing key limitations of existing methods.

Beyond prediction, SHASI-ML addresses critical bottlenecks in

vaccine development, including cost reduction and safety

enhancement. By streamlining the identification of viable vaccine

candidates, this study contributes to precision medicine and global

health initiatives, paving the way for innovative solutions to combat

infectious diseases.
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2 Method

2.1 Dataset creation

To create a dataset of immunogenic and non-immunogenic

proteins, we conducted an exhaustive search in PubMed for papers

containing data on novel immunogenic proteins tested on humans

up until March 2017. This search gathered information on 317

immunogenic proteins from 47 bacterial microorganisms which

were collected from the National Center for Biotechnology

Information (NCBI) (Sayers et al., 2022) and the Universal

Protein Resource KnowledgeBase (UniProtKB) (The UniProt

Consortium, 2024). Selection criteria included availability in the

database as of March 2017, ensuring the sequences belonged to

strains known to infect humans. We included all available strains

for which immunogenicity data could be linked to experimentally

validated findings. We considered Salmonella strains with complete

proteome data and evidence of clinical relevance, narrowing the

selection to strains with the most comprehensive and high-quality

annotations. For proteins with multiple fragments, isoforms, or

duplicates, all fragments, and isoforms were included in the dataset

to ensure comprehensive representation. Known epitopes were also

explicitly included even when their parent proteins were already

present. Non-immunogenic proteins were selected from the same

bacterial microorganisms using the Basic Local Alignment Search

Tool (BLAST) (Altschul et al., 1990). Proteins showing no sequence

identity with known immunogenic proteins were identified as non-

immunogenic. Additionally, to prevent bias in length distribution,

non-immunogenic proteins were filtered to match the length

distribution of the immunogenic proteins.
2.2 Protein structure and feature prediction

SCRATCH protein structure and structural feature prediction

server (Cheng et al., 2005) was primarily used for the prediction of

3- and 8-state secondary structure information. In addition, it was

used to calculate the fraction of exposed residues across 20 relative

solvent accessibility cutoffs (ranging from ≥0% to ≥95% in 5%

intervals). Mono-, di-, and tri-state frequencies of these residues

were extracted as well. Moreover, the product of the fraction of

exposed residues and the average hydrophobicity of these exposed

residues was computed at each relative solvent accessibility cutoff.
2.3 Disordered region analysis

To analyze disordered regions in protein sequences, including

protein-binding sites, the DISOPRED server (Ward et al., 2004) was

employed. The inclusion of disordered region analysis is supported

by research showing that intrinsically disordered proteins tend to

elicit weak or even non-existent immune responses (Dunker et al.,

2002; MacRaild et al., 2016). This can be attributed to the

observation that disordered proteins often adopt well-defined

conformations when interacting with other proteins or antibodies

(Uversky, 2013), resulting in interactions that, while specific, are of
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relatively low affinity. Based on these findings, additional

engineered features were calculated to provide a more in-depth

investigation of the disordered regions.
2.4 Machine learning model

The Extreme Gradient Boosting (XGBoost) algorithm (Chen

and Guestrin, 2016) was employed for model development.

XGBoost is a powerful machine learning technique that produces

a predictive learner in the form of a set of weak predictive models,

allowing the optimization of an arbitrary differentiable cost

function. The method employs the gradient descent algorithm to

minimize errors in sequential models. This algorithm was chosen

due to its strong performance with structured datasets and its ability

to prioritize relevant features during training. Hyperparameters

were optimized through a grid search process. The final

configuration included 800 estimators with a maximum tree

depth of 8. The subsampling ratio for columns and training

instances was set at 0.7. L1 regularization was set to 1, while the

minimum number of samples per leaf and the minimum samples

required to split an internal node were set to their default values (1

and 2, respectively). A feature selection step was not necessary as

XGBoost already prioritizes important features while filtering out

irrelevant ones during training. The dataset was divided into

training and validation sets using a stratified split to ensure a

balanced representation of immunogenic and non-immunogenic

proteins in both sets. Cross-validation was performed to further

validate the model’s robustness.
3 Results and discussion

Immunogenic proteins were derived from documented human

studies, ensuring the inclusion of all available protein fragments and

isoforms for a comprehensive dataset. Non-immunogenic proteins

were selected using BLAST, maintaining no sequence identity with

known immunogenic proteins and ensuring a comparable length

distribution. Salmonella strains were chosen based on their clinical

importance and the availability of high-quality annotations,

enhancing the dataset’s relevance to vaccine research. Structural

features, including secondary structure and relative solvent

accessibility (RSA) predictions, along with engineered metrics

such as hydrophobicity and intrinsic disorder, were systematically

integrated into the analysis. The collected protein sequences ranged

in length from 8 to 2,710 residues, with an average length of

approximately 400 amino acids. and a gradual decrease in the

sequence length beyond 500 residues, (Figure 1).

For data pre-processing, three different groups of features were

extracted from each sequence in the dataset. These include global

properties of the protein, features derived directly from the protein

sequence, and structural information obtained using SCRATCH and

DISOPRED. The first set includes molecular weight, sequence length,

a fraction of turn-forming residues, the total absolute charge, and the

average of hydropathicity and aliphatic indices. The second group of

features includes frequencies of mono and di-peptides within the
frontiersin.org
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protein sequences. For the third group of features, SCRATCH and

DISOPREDwere applied, obtaining a total of features able to preserve

the relevant information contained in the sequence and reflect the

essential properties of the proteins (Figure 2).

This information is then used to develop a prediction model of

bacterial immunogens based on XGBoost. The network was trained

and tested on 20 runs, each using a different dataset split using 80%

for the training set and 20% for the test set. The training set

included physio-chemical, sequence, and structural properties of

253 immunogenic and 253 non-immunogenic proteins while the

test is composed of features of 64 immunogenic and 64 non-
Frontiers in Cellular and Infection Microbiology 04
immunogenic proteins. Finally, the performance metrics of the

model are listed in Table 1 and include Recall, Specificity,

Precision, Accuracy, and F1 score. All these evaluation metrics

are based on true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN) outcomes.

Indeed, the SHASI-ML method demonstrated robust

performance in identifying bacterial immunogenic proteins. Out

of the 128 proteins analyzed, 64 were experimentally validated as

immunogenic. The SHASI-ML method correctly identified 54 of

these immunogenic proteins, achieving a recall of 0.84.

Furthermore, the obtained results highlight that the SHASI-ML
FIGURE 2

Data pre-processing detailed information.
FIGURE 1

Length distribution of the collected sequences.
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model outperforms the best-performing models in (Dimitrov et al.,

2020) in terms of Recall, Accuracy, and F1 Score, as shown

in Table 2.

While the method showed slightly lower precision (0.86) and

specificity (0.86) compared to the RSM-1NNmethod, it compensated

for these limitations with higher recall (0.84) and F1-score (0.84),

which reflects its ability to minimize false negatives and balance

precision with recall. The slight reduction in precision and specificity

relative to the RSM-1NN method can be attributed to the broader

inclusivity of SHASI-ML, which prioritizes identifying a wider range

of true positives. Despite this, the method’s overall superiority is

evident in its computational efficiency, ability to handle data inputs,

and robust performance across various feature classes. SHASI-ML
Frontiers in Cellular and Infection Microbiology 05
also reduces the false-positive rate, with only 9 non-immunogenic

proteins misclassified as immunogenic.

Indeed, our choice of features provides useful information

about the physio-chemical, sequence, and structural properties of

the protein of interest, which improve prediction performances,

showing an outstanding ability to identify bacterial immunogens.

We also report the importance of each group of features in the

prediction. The feature importance technique assigns a score to

the input features based on how useful they are at predicting a

target variable. In our case, it indicates how valuable each

attribute was in the construction of the boosted decision trees

inside the model. The more an attribute is considered to make key

decisions, the higher its relative importance. As shown in
TABLE 2 Comparison of the performance of the best ML models evaluated in (Dimitrov et al., 2020) and the SHASI-ML.

Model Recall Specificity Accuracy Precision F1 Score

RF 0.72 0.82 0.77 0.80 0.76

RSM-1NN 0.72 0.92 0.82 0.91 0.80

XGBOOST 0.84 0.75 0.79 0.77 0.80

SHASI-ML 0.84 0.86 0.85 0.86 0.84
Metrics include Recall, Specificity, Accuracy, Precision, and F1 Score. The models compared are Random Forest (RF), RSM-1NN (Random Subset Method with 1-Nearest Neighbor), XGBoost
(Extreme Gradient Boosting), and SHASI-ML.
TABLE 1 Summary of the performances of SHASI-ML.

Model TP TN FP FN Recall Specificity Accuracy Precision F1 Score

XGBoost 54 55 9 10 0.84 0.86 0.85 0.86 0.84
The metrics include True Positives (TP), True Negatives (TN), False Positives (FP), False Negatives (FN), Recall, Specificity, Accuracy, Precision, and F1 Score, as evaluated using the XGBoost
(Extreme Gradient Boosting) model.
FIGURE 3

Feature importance scores for predicting bacterial immunogens, grouped by feature classes. The bar chart represents the relative contribution of
each feature group (Global Properties, Structural Information, and Sequence Features) toward model performance.
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Figure 3, Global properties are the most relevant, followed by

Structural and Sequence information, which are less informative

for the model.

Finally, an independent dataset of Salmonella sequences was

created to demonstrate the effectiveness of our model for these

protein targets. This dataset was not curated to optimize the model’s

performance but rather to evaluate its ability to perform on real-

world protein data. We validate the present study by comparing it to

the proteome of Salmonella enterica serovar Typhimurium (strain

LT2/SGSC1412/ATCC 700720) (McClelland et al., 2001) because it

shows the best Benchmarking Universal Single-Copy Orthologs

(BUSCO) score in the UniProtKB/Swiss-Prot repository. The final

dataset contains 1806 protein sequences, from which the three sets

of features were extracted. A SHASI-ML prediction was then

performed, highlighting new 292 immunogenic proteins

suggesting that it can very efficiently select immunogenic proteins

from an initial set of candidates reducing time and production costs.

Overal l , SHASI-ML showed superior performance in

immunogenicity prediction, also demonstrating the significance of

feature extraction in ML-based prediction.
4 Conclusion

The ability of SHASI-ML to predict potential vaccine candidates

early in the development process significantly reduces experimental

burdens and associated costs, enabling faster and more cost-effective

discovery of novel vaccines. This advantage is particularly critical in

addressing global health emergencies, where time and resources are

often limited. This methodology not only enhances efficiency but

also reduces the need for extensive in vivo testing, making it a safer

option, particularly in regions where immune deficiencies may be

latent and undiagnosed among potential vaccine recipients.

Additionally, its predictive capabilities allow researchers to focus on

the most promising candidates, streamlining the transition from

computational analysis to experimental validation.

Looking ahead, these findings will be integrated with the use of

modified Outer Membrane Vesicles (mOMVs), a versatile platform

designed to further refine and accelerate the R&D process. The

synergy between AI-based immunogen identification and mOMV-

based platforms holds the potential to significantly advance the

development of next-generation vaccines against Salmonella. This

integrated approach not only increases global health security but

also holds promise for advancing vaccine development in low- and

middle-income countries, addressing critical global health inequities.

The development of a universal vaccine against Salmonella serves as a

model for applying this methodology to other emerging infectious

diseases. Despite these advances, challenges remain. Experimental

studies are essential to validate the in silico predictions generated by

SHASI-ML, and a larger, curated dataset incorporating both positive

and negative experimental outcomes will be critical for enhancing

prediction accuracy. Future research should also focus on employing

advanced ML techniques to further explore the deep immunogenic

characteristics of Salmonella, paving the way for breakthroughs in

vaccine research. By combining innovation, efficiency, and

accessibility, SHASI-ML represents a compelling and transformative
Frontiers in Cellular and Infection Microbiology 06
tool in the fight against infectious diseases, offering a scalable, ethical,

and cost-effective pathway to improved global health outcomes.
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