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Heart failure with preserved left ventricular ejection fraction (HFpEF) is a disease that

affectsmultiple organs throughout the body, accounting for over 50%of heart failure

cases. HFpEF has a significant impact on individuals’ life expectancy and quality of

life, but the exact pathogenesis remains unclear. Emerging evidence implicates low-

grade systemic inflammation as a crucial role in the onset and progression of HFpEF.

Gutmicrobiota dysregulation and associatedmetabolites alteration, including short-

chain fatty acids, trimethylamine N-oxides, amino acids, and bile acids can

exacerbate chronic systemic inflammatory responses and potentially contribute to

HFpEF. In light of these findings, we propose the hypothesis of a “gut microbiota-

inflammation-HFpEF axis”, positing that the interplay within this axis could be a

crucial factor in the development and progression of HFpEF. This review focuses on

the role of gut microbiota dysregulation-induced inflammation in HFpEF’s etiology.

It explores the potential mechanisms linking dysregulation of the gut microbiota to

cardiac dysfunction and evaluates the therapeutic potential of restoring gut

microbiota balance in mitigating HFpEF severity. The objective is to offer novel

insights and strategies for the management of HFpEF.
KEYWORDS

HFpEF, inflammation, gut microbiota, metabolites, probiotics, fecal microbial
transplantation
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1 Introduction

Heart failure with preserved left ventricular ejection fraction

(HFpEF) is a systemic multi-organ disease that often coexists with

chronic metabolic conditions such as obesity, diabetes, and

hyperlipidemia (Joseph et al., 2020; Hamo et al., 2024). HFpEF

represents the most common form of heart failure (HF),

comprising over 50% of HF cases (Nair, 2020). It is particularly

prevalent among women aged 65 and older who frequently present

with HF symptoms despite having a left ventricular ejection fraction

exceeding 50% (Anselmi et al., 2021; Museedi et al., 2024). An Irish

prospective study revealed that hospital admissions for non-

cardiovascular emergencies or annual readmission was significantly

higher for individuals with HFpEF compared to those with heart

failure with reduced left ventricular ejection fraction (HFrEF)

(Murphy et al., 2017). As the population ages, the prevalence,

mortality, and economic burden of HFpEF are escalating, making it

the most significant unmet medical need in cardiovascular diseases

(Savarese et al., 2022), which cause a serious burden on society.

Studies have indicated that inflammation is a fundamental

driver in the progression of HFpEF (Sanders-van-Wijk et al.,

2020; Liu et al., 2024), promotes myocardial remodeling and

dysfunction (Omote et al., 2022). It has been pointed out that

during the development of HFpEF, the inflammatory pathway is

distinguished from neurohumoral and metabolic pathways (Park

et al., 2022) and may play a more significant role in HFpEF

compared with HFrEF (Mongirdienė and Liobikas, 2022).

Inflammatory states can activate coronary microvascular

endothelial cells, inducing a reduction in nitric oxide (NO)

bioavailability and impairment of the NO-cyclic guanosine

monophosphate (cGMP)-protein kinase G (PKG) pathway in

neighboring cardiomyocytes (Paulus and Tschöpe, 2013; Chirinos

et al., 2016). Additionally, coronary inflammation stimulates the

local release of transforming growth factor-beta (TGF-b), inducing
fibroblast-to-myofibroblast differentiation and subsequent collagen

secretion (Kapur, 2011; Antar et al., 2023), ultimately leading to

myocardial diastolic dysfunction (Westermann et al., 2011).

Inflammation is closely associated with gut microbiota

dysregulation. The gut microbiota, considered an “invisible organ”

within the human body, participates in various physiological and

metabolic processes, playing a crucial role in human health (Hou

et al., 2022). In this condition, the gut microbiota significantly

influences the inflammatory process through its metabolic activities

and interactions with the immune system (Randeni et al., 2024).

Dysregulation of the gut microbiota is common in individuals with

HFpEF, manifesting as a decrease in beneficial microbes and an

increase in potentially harmful bacteria (Wang et al., 2023; Caldarelli

et al., 2024). The latest study found correlations between prealbumin,

left ventricular ejection fraction, and NT-proBNP and multiple gut

microbes in patients with HFpEF (Yang et al., 2024). This can be

attributed to the disturbance of gut microbiota that compromises

intestinal barrier function, allowing lipopolysaccharide (LPS),

trimethylamine N-oxide (TMAO), and other harmful metabolites to

enter the bloodstream and trigger systemic chronic inflammation,

potentially leading to HFpEF (O’Donovan et al., 2020; Masenga
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et al., 2023). Conversely, HFpEF can reduce gut blood supply and

induce changes in intestinal cell tight junctions, leading to intestinal

wall edema and barrier dysfunction (Koufou et al., 2024), worsening

gut microbiota dysregulation and creating a vicious cycle (Stolfi et al.,

2022). This suggests a bidirectional communication axis between gut

microbiota and HFpEF (Figure 1).

Inflammatory and gut microbiota have profound impacts on

cardiovascular disease (Martins et al., 2024), and a robust

association between gut microbiota and HFpEF has been

established recently (O’Donovan et al., 2020), with HFpEF

development likely linked to gut microbiota dysregulation-

mediated immune inflammation (Perticone et al., 2024).

Dapagliflozin’s positive effects on HFpEF may also be attributed

to gut microbiota (Guan et al., 2023). However, the role of gut

microbiota-induced inflammation in HFpEF remains unclear.

Further in-depth investigation of the gut microbiota of HFpEF

patients holds promise for effective prevention and treatment

strategies (Mamic et al., 2023). In this review, we conducted a

comprehensive search of the most relevant studies from PubMed,

primarily focusing on English-language literature from all years.

Some review articles and their reference lists were also searched to

identify related articles. Search terms related to “heart failure with

preserved ejection fraction”, “diastolic dysfunction”, “heart failure,

diastolic”, “myocardial fibrosis”, “inflammation”, and the names of

each specific metabolite produced by the gut microbiota were used

to identify eligible studies. These studies analyzed the impact of

inflammation triggered by gut microbiota imbalance on the HFpEF

development or investigated the potential benefits of interventions

aimed at correcting gut microbiota imbalances to alleviate HFpEF

symptoms. By examining the complex interplay among gut

microbiota dysregulation, inflammation and heart function, the

goal is to uncover novel treatment strategies for managing HFpEF.
2 The unique pathophysiological
mechanisms of HFpEF

Patients with HFpEF frequently suffer from multiple metabolic

disorders, including obesity, hypertension, and diabetes (Mishra

and Kass, 2021). Specifically, 84% of HFpEF patients are obese, over

60% have hypertension, and more than 20% have type 2 diabetes

(Shah et al., 2016). Studies have demonstrated that obesity is a key

factor contributing to impaired cardiac energy metabolism in

HFpEF, and weight reduction has been shown to enhance

myocardial glucose oxidation and improve cardiac function

(Güven et al., 2024). Angiotensin II and aldosterone promote

myocardial hypertrophy and fibrosis. While activation of the

renin-angiotensin-aldosterone system (RAAS) is common in

HFpEF patients, it is not a central pathophysiological mechanism

(Liu et al., 2024). RAAS inhibitors can reduce cardiac hypertrophy,

but do not significantly improve diastolic function, fibrosis,

myocardial inflammation, endothelial activation, or oxidative

stress (Telesca et al., 2024).

Concentric left ventricular hypertrophy is the most common

structural myocardial abnormality in HFpEF, typically resulting
frontiersin.org
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from cardiomyocyte hypertrophy and myocardial interstitial fiber

deposition. Unlike HFrEF characterized by centrifugal hypertrophy

due to cardiomyocyte injury and activation of the neurohumoral

system, systemic low-grade inflammatory response and oxidative

stress play a more prominent role in left ventricular hypertrophy in

HFpEF (Heinzel et al., 2015). Left ventricular diastolic dysfunction,

marked by impaired relaxation, increased ventricular stiffness, and

reduced elastic resilience, forms the pathophysiological basis of

HFpEF (Obokata et al., 2020). Furthermore, systemic inflammation,

elevated left ventricular filling pressure, abnormal left atrial

structure and function, pulmonary hypertension, and right

ventricular dysfunction collectively contribute to the unique

pathophysiology of HFpEF.
3 The important role of inflammation
in HFpEF

Numerous studies have reported that inflammatory markers,

including tumor necrosis factor-alpha (TNF-a), C-reactive protein
(CRP), interleukin-1 (IL-1), IL-6, and soluble suppression of

tumorigenicity 2 protein (sST2) are significantly higher in

individuals with HFpEF compared to those with HFrEF (Sanders-

van-Wijk et al., 2015; Schiattarella et al., 2021; Dawuti et al., 2023).

Additionally, inflammatory cells are markedly increased in
Frontiers in Cellular and Infection Microbiology 03
myocardial biopsy samples from individuals with HFpEF

(Westermann et al., 2011). Elevated levels of inflammatory factors

may stimulate an inflammatory response in cardiac cells, leading to

cardiomyocyte pathological hypertrophy, dysfunction,

myofibroblast growth, extracellular matrix remodeling and

sclerosis, and microvascular disease, which may promote

abnormal myocardial remodeling, and ultimately cause HFpEF

(Wenzl et al., 2021) (Figure 2).

IL-1 is a key regulator of inflammatory responses (Dinarello,

2011), IL-1b plays a major role in augmenting cardiac inflammation

through its interaction with the IL-1 receptor, IL-1 receptor-

associated kinase (IRAK), and tumor necrosis factor receptor-

associated factor 6 (TRAF6). This interaction activates

downstream signaling pathways, including nuclear factor kappa B

(NF-kB), c-Jun N-terminal kinase (JNK)/activator protein 1 (AP-1),

and mitogen-activated protein kinase (MAPK)/extracellular signal-

regulated kinase (ERK) (Weber et al., 2010; Bent et al., 2018; Tang

et al., 2024), all of which are implicated in cardiac injury.

Consequently, IL-1 may contribute to cardiomyocyte

hypertrophy, impaired function, and extracellular matrix

accumulation through these activated pathways.

IL-6 activates the janus kinase (JAK)/signal transducer and

activator of transcription (STAT), MAPK, and phosphoinositide 3-

kinase (PI3K) pathways by binding to the IL-6 receptor and gp130,

triggering intracellular signaling that induces inflammatory responses
FIGURE 1

Gut microbiota-inflammation-HFpEF axis. HFpEF, Heart failure with preserved left ventricular ejection fraction.
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and can even lead to inflammatory storms (Rose-John, 2020). In

cardiomyocytes, IL-6 downregulates sarcoplasmic reticulum Ca2

+-ATPase expression, diminishes Ca2+ reuptake by the sarcoplasmic

reticulum, and impacts diastolic relaxation (Wu et al., 2011).

SST2 serves as an inflammation marker and indicator of

myocardial stress, and it dampens the cardioprotective effects of

transmembrane binding receptor suppression of tumorigenicity 2

(ST2L) via the myeloid differentiation primary response 88

(MyD88)/IRAK/ERK/NF-kB signaling pathway by competing

with IL-33 (Kakkar and Lee, 2008). SST2 is also recognized as a

marker of inflammation and fibrosis. Studies have demonstrated a

positive correlation between sST2 and left ventricular hypertrophy

(Hubesch et al., 2022), and this correlation significantly enhances

the prognostic value of HFpEF (Lebedev et al., 2020; Lotierzo et al.,

2020; Yamamoto et al., 2021).

TNF-a, as a key proinflammatory factor, activates NF-kB and

MAPK signaling pathways by binding to its receptors TNFR-1 and

TNFR-2 (Liu et al., 1996; Bradley, 2008), aggravating cardiac
Frontiers in Cellular and Infection Microbiology 04
inflammatory damage and promoting myocardial fibrosis and

heart failure (Franssen et al., 2016). These pathways play a crucial

role in the propagation of cardiac inflammation and the progression

of HFpEF.
4 Gut microbiota and its metabolic
changes in HFpEF

Individuals with HFpEF exhibit significant gut microbiota

dysregulation compared to healthy individuals, characterized by

reduced species richness, especially those with anti-inflammatory

effects such as Butyricicoccus , Sutterella , Lachnospira ,

Ruminiclostridium, etc (Hummel et al., 2019). Concurrently, there

is an observed increase in proinflammatory associated microbiota

abundance like Erysipelotrichaceae (Drapkina et al., 2022).

Regardless of the underlying etiology, gut microbiota

dysregulation is consistent in HFpEF patients (Huang et al.,
FIGURE 2

Mechanisms associated with inflammation in HFpEF. (a) Genes associated with cardiomyocyte hypertrophy induced by inflammatory cytokine
activation; (b) Inflammatory factors activate fibroblasts and promote their proliferation and differentiation; (c) Cardiomyocyte hypertrophy and
myocardial interstitial fibrosis; (d) Main pathophysiology of HFpEF. TNF-a, tumor necrosis factor-alpha; IL-1b, interleukin-1 beta; IL-6, interleukin-6;
TNFR-2, tumor necrosis factor receptor-2; RIP, receptor-interacting protein; TRAF2, tumor necrosis factor receptor associated factor 2; MyD88,
myeloid differentiation primary response 88; JNK, c-Jun N-terminal kinase; NF-kB, nuclear factor-kappa B; p38-MAPK, p38 mitogen-activated
protein kinase; ATF-2, Activating Transcription Factor 2; c-Fos, cellular Fos; ERK, extracellular signal-regulated kinase; IL-1RI, type I interleukin-1
receptor; TRAF6, tumor necrosis factor receptor associated factor 6; IRAK, interleukin-1 receptors associated kinase; TRIF, toll/interleukin-1 receptor
domain-containing adapter inducing interferon-beta; PKC, protein kinase C; ANF, atrial natriuretic factor; ST2L, transmembrane binding receptor
suppression of tumorigenicity 2; sST2, soluble suppression of tumorigenicity 2; IL-6R, interleukin-6 receptor; JAK, janus kinase; STAT, signal
transducer and activator of transcription; Ras, rat sarcoma; Raf, rapidly accelerated fibrosarcoma; MAPKs, mitogen-activated protein kinases; b-MHC,
beta-myosin heavy chain; PERK, Protein Kinase RNA–like Endoplasmic Reticulum Kinase; IRE1, Inositol-Requiring Enzyme 1; HFpEF, heart failure with
preserved left ventricular ejection fraction; Cyt-c, Cytochrome C; Mit, mitochondria; ROS, reactive oxygen species.
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2021). Although the abundance of Firmicutes, Bacteroides, and

Proteus reduced in HFpEF patients, these phyla continue to

dominate the gut microbiota composition (Kaburova et al.,

2020b). An Australian study corroborated these findings,

emphasizing a significant depletion of short chain fatty acids

(SCFAs) producing bacteria in HFpEF patients, particularly

Ruminiclostridium. Importantly, this depletion is independent of

confounding factors such as age, body mass index (BMI), and

hypertension (Beale et al., 2021). The decrease in Ruminiclostridium
Frontiers in Cellular and Infection Microbiology 05
may be linked to elevated levels of the increased N-terminal

propeptide of procollagen type III, an indicator of myocardial

fibrosis (Kaburova et al., 2021). Details are shown in Table 1.

Alterations in the gut microbiota are associated with alterations in

their metabolites. In individuals with HFpEF, these changes are

characterized by an increase in harmful products synthesis and a

decrease in beneficial metabolite levels. The reduction in the SCFA-

producing microbiota in individuals with HFpEF affects SCFAs

synthesis (Beale et al., 2021). A cross-sectional study involving 324
TABLE 1 Gut microbiota changes in the HFpEF.

Sample
characteristics

Methods Gut microbiome Other key findings Conclusion

26 HFpEF vs 30 healthy
controls, Healthy controls were
age-matched with HFpEF
(Hummel et al., 2019).

16S rRNA The abundance of species such as
Butyricicoccus, Sutterella,
Lachnospira, Ruminiclostridium is
reduced in patients with HFpEF
compared with controls.

24 OTUs were differentially
present between HFpEF and
healthy controls, with
Prevotella abundance the
strongest differentiator.

The gut microbiome differs
between HFpEF and age-
matched healthy controls

59 HFpEF vs 50 controls.
Three different methods were
used to detect intestinal flora in
the three categories of people
with HFpEF, HFrEF, ASCVD
and compare with healthy
controls (Drapkina et al., 2022)

MALDI-TOF-MS,
NGS, qPCR

MALDI-TOF-MS analysis shows
reduced abundance of Enterococcus
faecium, Enterococcus faecalis,
Bacteroides fragilis in patients with
HFpEF.
16S rRNA sequencing analysis
reveals increased abundance of the
Erysipelotrichaceae in patients with
HFpEF.
Patients with HFpEF has higher
abundance of Oscillibacter sp.
by qPCR.

Patients with HFpEF have
minimal difference compared
with controls compared with
patients with ASCVD and
HFrEF.
The study did not find a lower
abundance of Butyricicoccus,
Sutterella, Lachnospira, and
Ruminiclostridium in the
HFpEF group than in the
control group.

Differences in gut microbiome
between patients with
cardiovascular disease and
healthy persons.
The differences in the
conclusions drawn by the three
methods require a
comprehensive approach to
the microbiota.

30 HFpEF vs 30 controls
(Huang et al., 2021)

Illumina high-throughput
DNA sequencing

At the phylum classification level,
the abundance of Synergistetes tends
to be higher in the HFpEF group
At the genus classification level, the
abundance of Butyricicoccus,
Sutterella, Lachnospira, and
Ruminiclostridium in the HFpEF
group are decreased, the abundance
of Enterococcus and Lactobacillus
are increased.

The species richness of gut
microbiota in the HFpEF group
is decreased.
Differences in composition and
species diversity of gut
microbiota in patients with
HFpEF due to
different etiologies.

Patients with HFpEF have an
increased abundance of
microbiota associated with
inflammation and a decreased
abundance of microbiota
associated with anti-
inflammatory effects in the gut
environment.
The species richness of gut
microbiota in HFpEF patients
tends to be lower.

42 HFpEF
(Kaburova et al., 2020b)

16S rRNA The relative abundance of the most
prevalent phyla in gut microbiota is
Firmicutes, Bacteroidetes
and Proteobacteria.

ECV significant positively
correlated with
Faecalibacterium, Blautia,
Lachnoclostridiu.
ECV positively correlated with
Holdemania, Victivallis,
Dehalobacterium, Enterococcus
and Catabacter.

Both negative and positive
significant correlations between
marker of myocardial fibrosis
and several bacterial genera

26 HFpEF vs 67 controls.
All patients underwent invasive
exercise hemodynamics
(Beale et al., 2021)

16S rRNA The ratio of Firmicutes to
Bacteroidetes tends to be lower in
patients with HFpEF compared
with controls(doesn’t reach
statistical significance).
Patients with HFpEF has a
significant depletion of bacteria
known to be SCFA producers,
particularly Ruminococcus.

The depletion of Ruminococcus
in patients with HFpEF appears
independent of BMI, age, and
hypertension.
b‐diversity analysis different
between HFpEF and controls
independent of age, sex, BMI,
systolic blood pressure, dietary
quality, and fiber intake,
suggesting that the changes
seen in HFpEF are far beyond
that explained by this factors.

Significant differences in gut
microbiota between patients
with HFpEF and controls with
differences in abundance of
microbial classification groups.
The gut microbiota and its
metabolites, particularly
SCFAs, may be targets for
future prevention and possibly
treatment of HFpEF.

(Continued)
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participants revealed significantly elevated TMAO levels in individuals

with HFpEF compared to healthy controls (Guo et al., 2020), and

alterations in gut microbiota composition identified as a primary driver

of increased TMAO levels (Martin et al., 2008). Gut microbiota

dysregulation in individuals with HFpEF can also trigger changes in

the metabolites of dietary amino acids (AAs) within the gut, such as

increased indoxyl sulfate, a byproduct of tryptophan metabolism, and

decreased production of protective indole-3-propionate (Mamic et al.,

2021). Meanwhile, gut microbiota in individuals with HFpEF play a

crucial role in all stages of bile acids (BAs) metabolism. The microbiota

can indirectly contribute to BAs synthesis by regulating BAs hydrolase

activity, once BAs enter the intestine, the microbiota facilitates their

further metabolism into various types (Shi M. et al., 2023). Briefly, gut

microbiota dysregulation can lead to alterations in metabolic processes,

thereby inducing a cascade of physiological changes.
5 Gut microbiota -inflammation-
HFpEF axis

With the in-depth investigation of the relationship of gut

microbiota to cardiovascular disease, it has become evident that gut

microbiota dysregulation is an important contributor to inflammatory

stimulation, exerting considerable effects on cardiac and vascular health

(Petruzziello et al., 2024). This dysregulation can induce both local and

systemic inflammation, which is considered a critical potential

mechanism for the onset of HF (Hanna and Frangogiannis, 2020).

The resulting low-grade chronic inflammation stimulates monocytes,
Frontiers in Cellular and Infection Microbiology 06
endothelial cells and other cells, prompting them to secrete pro-

inflammatory cytokines (Violi et al., 2023), including TNF-a, IL-1b,
IL-6, cellular adhesion molecules (CAMs), etc. These cytokines can

induce chronic cardiac fibrosis, which may contribute to the

development of HFpEF (Hanna and Frangogiannis, 2020; Thomas

and Grisanti, 2020). In recent years, a variety of evidence has suggested

that inflammation induced by pattern recognition receptors associated

with bacterial, as well as their metabolites, including SCFAs (Challa and

Lewandowski, 2022), TMAOs (Kinugasa et al., 2021), AAs (Wang

et al., 2024), BAs (Shi M. et al., 2023) are involved in the development

of HFpEF (Table 2). Some of these bacterial metabolites are being

considered as potential prognostic markers for HFpEF (Modrego et al.,

2023). This may be due to the fact that these metabolites affect the NF-

kB signaling pathway by different pathways, ultimately affecting the

activation of Nod-like receptor pyro-protein domain-associated

protein 3 (NLRP3) inflammasomes.

Emerging evidence suggests that innate immune response

pathways from NLRP3 inflammasomes to IL-1, IL-6 play an

important role in HFpEF (Li et al., 2022; Cheng et al., 2023).

Activation of the NLRP3 inflammasome mediated by the NF-kB
signaling pathway (Bauernfeind et al., 2009), upregulates

transcription of NLRP3, pro-IL-1b, IL-18 (Grebe et al., 2018;

Olsen et al., 2021). The NLRP3 protein interacts with and binds

to apoptosis-associated speck-like protein containing a caspase

activation and recruitment domain, which subsequently recruits

pro-caspase-1, facilitating its maturation and activation. This

cascade leads to cleavage and release of pro-IL-1b and IL-18,

inducing vascular endothelium and smooth muscle cells to
TABLE 1 Continued

Sample
characteristics

Methods Gut microbiome Other key findings Conclusion

42 HFpEF
(Kaburova et al., 2021)

16S rRNA The highest abundance in patients
with HFpEF is Firmicutes,
Bacteroides, and Proteobacteria.

Allisonella associated with
higher PICP concentrations, S.
ruminalis and Gemmiger
associated with lower PICP
levels, Blautia and the
unclassified Enterobacteriaceae
associated with higher PIIINP
levels, and Bilophila associated
with lower PIIINP levels

The gut microbiota may be
associated with myocardial
fibrosis generation based on
pathways mediated by SCFA,
histamine, and
proinflammatory compounds.

44 HFpEF vs 45 healthy
controls (Kaburova et al., 2019)

16S rRNA Bacteroides, Alistipes, Pseudomonas,
and Fusobacterium are enriched in
the common core microbiota of
HFpEF patients, while Lachnospira,
Roseburia, Eubacterium,
Methanobrevibacter,
Faecalibacterium, Lactobacillus and
Bifidobacterium are depleted.

The patients with HFpEF has
significantly higher levels of
the TMAO.

Significant structural alterations
of the intestinal microbiome
and increased TMAO levels in
HFpEF patients’ serum.

42 HFpEF
(Kaburova et al., 2020a)

16S rRNA – Significant correlations between
PICP and the Ruminococcus,
Gemmiger, Allisonella and
Howardella.
PIIINP significantly correlated
with Blautia and Bilophila.

Both PICP and PIIINP has
negative significant correlations
with beneficial bacterial genera
and positive correlations with
several potentially harmful gut
bacterial genera.
HFpEF, heart failure with preserved left ventricular ejection fraction; OTUs, operational taxonomic units; SCFAs, short-chain fatty acids; TMAO, trimethylamine oxide; HFrEF, heart failure with
reduced left ventricular ejection fraction; ASCVD, atherosclerotic cardiovascular disease; MALDI-TOF-MS, matrix-assisted laser desorption ionization time of flight mass spectrometry; NGS,
next generation sequencing; qPCR, quantitative polymerase chain reaction; ECV, extracellular volume; BMI, body mass index; PICP, procollagen I carboxy terminal Propeptide; PIIINP,
procollagen III N-terminal peptide.
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produce and release large quantities of IL-6 (Libby, 2021). In

experimental models of HFpEF, NLRP3 inflammasome activation

and increased expression of IL-1b and IL-18 have been found in the

hearts of affected mice (Yang et al., 2020; Deng et al., 2021).

Furthermore, NLRP3 inflammasomes are implicated in induction

of ventricular arrhythmias in HFpEF mice, contributing to a poor

prognosis (Yang et al., 2020). Notably, inhibition of NLRP3

inflammasomes has been shown to reduce cardiac inflammation

(Zhao et al., 2021; Yang et al., 2024) and improve left ventricular

diastolic dysfunction and myocardial fibrosis in patients with

HFpEF (Cheng et al., 2023). Potential mechanisms by which gut

microbiota dysregulation may affect HFpEF through different

inflammation pathways will be elaborated next (Figure 3).
5.1 Toll-like receptors pathway

TLRs are the key components of the pattern recognition

receptor family, which significantly influence the innate immune

system by recognizing pathogen-associated molecular patterns and
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injury-associated molecular patterns. So far, 10 different Toll-like

receptors (TLRs, including TLR1-10) have been identified in

humans, each exhibiting specificity for various microbial

components. For instance, TLR2, as a dimeric cell membrane

protein, is responsible for the recognition of bacterial lipoproteins

and peptidoglycans. TLR4 is known for its recognition of LPS, while

TLR5 is sensitive to bacterial flagella. Intracellular TLR3 detects

double-stranded RNA, and TLR9 identifies bacterial DNA

containing unmethylated CpG sequences (Bezhaeva et al., 2022).

In the context of gut microbiota dysregulation, LPS is secreted

by Gram-negative bacteria, engages with a range of immune

receptors and proteins, including TLR4, LPS-binding protein, and

CD14 (Ryu et al., 2017). This interaction triggers TLR4 activation

on the intestinal epithelium, leading to disruption of tight junctions

between intestinal epithelial cells (Park and Lee, 2013; Mohr et al.,

2022), increased intestinal permeability (Hietbrink et al., 2009), and

facilitation of bacteria and endotoxins into the bloodstream. Once

in the systemic circulation, LPS and peptidoglycans provoke an

immune response by binding to TLR4 and nucleotide-binding

oligomerization domain-like receptors (NLRs) (Rodrigues-e-
TABLE 2 The effect of gut microbiota and its metabolites on the pathophysiology of HFpEF.

Factors Model Downstream signaling Phenotype

LPS (Singh et al., 2012) C57BL/6J mice TLR4/MyD88/CaMKII Induced cardiomyocyte hypertrophy
and inflammation

LPS (Zhu et al., 2024) C57BL/6J male mice TLR4/MyD88 Decreasing cardiomyocyte hypertrophy and
interstitial fibrosis

Fibrinogen (Li et al., 2009) SD rats TLR4/MyD88/NF-kB Cardiac hypertrophy

Flagellin (Liu et al., 2015) C57BL/6J mice TLR5 Interstitial cardiac fibrosis and dysfunction

SCFAs (Kaye et al., 2020) C57BL/6J mice GPR43 and GPR109A Decreased cardiac hypertrophy and cardiac fibrosis

SCFAs (Lin et al., 2022) ABX mice GPR41 and GPR43/SMAD2/TGF-b1 Restored cardiac function and prevented excessive
fibrosis and ECM disarray under stress

SCFAs (Dong et al., 2024) Mouse CFs (FH-M187) NLRP3/Caspase-1/TGF-b1 Repressed the transdifferentiation of CFs into MFs

TMAO (Li et al., 2019) SD rats TGF-b/SMAD3 Cardiac hypertrophy and fibrosis

TMAO (Wang et al., 2020) C57BL/6J p65 NF-kb
TGF-b/SMAD3

Cardiac hypertrophy and fibrosis

TMAO (Wang et al., 2024) SD rats PKC/NF-kB Inducing inflammatory responses, myocardial
hypertrophy and fibrosis

Tryp, Kyn (Carrillo-Salinas
et al., 2020)

C57BL/6J male mice AhR Slow down the development of adverse
cardiac remodeling

Kyn (Shi B. et al., 2023) Patients and mice model AhR–targeted genes Aggravates cardiac remodeling, hypertrophy
and fibrosis

Urolithin A (Chen et al., 2022) SD rats TGF-b1/Nrf2 Inhibits myocardial fibrosis

Cholic acid (Eblimit et al., 2018) C57BL/6J male mice TGR5/Akt/PKA/ERK Attenuate cardiac hypertrophy

TUDCA (Rani et al., 2017) Male mice Downregulated GRP78 and GRP94. Decreased the
phosphorylation of PERK and eIF2a

Reduced myocardial hypertrophy, attenuated
cardiac fibrosis

TUDCA (Turdi et al., 2013) C57BL/6J male mice Upregulated SERCA2a expression Attenuated diastolic dysfunction
LPS, lipopolysaccharide; SCFAs, short-chain fatty acids; TMAO, trimethylamine oxide; Trp, tryptophan; Kyn, kynurenine; TUDCA, tauroursodeoxycholic acid; ABX, depleted of gut microbiota
with antibiotics; ECM, extracellular matrix; CFs, cardiac fibroblasts; MFs, myofibroblasts; eIF2a, eukaryotic translation initiation factor 2a; SERCA2a, sarcoplasmic/endoplasmic reticulum
calcium atpase 2a. TLR,toll-like receptors; MyD88, myeloid differentiation primary response 88; CaMKII, Calcium/calmodulin-dependent protein kinase II; NF-kB, nuclear factor-kappa B; GPR,
G protein-coupled receptors; SMAD, small mother against decapentaplegic family member; TGFb, TGF-b, transforming growth factor-b; NLRP-3, nucleotide-binding oligomerization domain-
like receptor family pyrin domain containing 3; PKC, protein kinase C; AhR, aryl hydrocarbon receptor; Nfr, nuclear factor erythroid 2-related factor; Akt, protein kinase B; PKA, protein kinase
A; ERK, extracellular signal-regulated kinase.
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Lacerda et al., 2023). Consequently, LPS is identified as a pivotal

factor in induction of systemic inflammation (Cao et al., 2018).

The microbial constituents originating from the gut microbiota

that can enter the bloodstream and reach the heart, inducing

inflammation through activation of TLRs. This inflammatory

cascade can ultimately lead to myocardial dysfunction and

fibrosis (Zhang et al., 2023). Studies have demonstrated that

TLRs, which orchestrate innate immune responses, are primarily

responsible for inflammatory responses in the hearts of HF patients

(Sharma et al., 2016), including TLR2, TLR3, TLR4, TLR5, and

TLR9 (Yu and Feng, 2018). Specifically, TLR2 has been shown to

mediate cardiac hypertrophy and inflammation in mice induced by

Ang II via the TLR2/MyD88/NF-kB signaling pathway (Ye et al.,

2021). Antagonizing TLR2 can block activation of NF-kB, suppress
expression of inflammatory cytokines such as IL-1b, IL-6, IL-18,
and attenuate cardiomyocyte apoptosis and cardiac fibrosis (Wang

et al., 2019). TLR4 is implicated in cardiac inflammation and

development of hypertrophy through multiple signaling pathways,

including TLR4/MyD88/Calcium/calmodulin-dependent protein
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kinase II (CaMK II), TLR4/MyD88/NF-kB, TLR4/MyD88/PI3K/

protein kinase B (AKT) and TLR4/MyD88/MAPK (Zhang et al.,

2023). Animal experiments have found that Lactobacillus reuteri

GMNL-263 can reduce inflammation, hypertrophy, and fibrosis in

myocardial tissue by inhibiting theTLR4 pathway (Chiang et al.,

2021). Both TLR3 and TLR4 have been identified to facilitate Ang

II-induced cardiac hypertrophy through the TRIF pathway (Han

et al., 2018). Furthermore, TLR5 has been linked to cardiac fibrosis

and dysfunction by stimulating inflammation and endothelial-

mesenchymal transition (Liu et al., 2015). Myocardial cell

hypertrophy and fibrosis have been identified as the major

pathophysiological manifestations of HFpEF (Fayyaz et al., 2024;

Krittanawong et al., 2024).
5.2 Short chain fatty acids

SCFAs, primarily acetate, propionate, and butyrate, are critical

mediators in the “gut microbiota-inflammation-HFpEF axis” and
FIGURE 3

Inflammation induced by gut microbiota causing HFpEF. HFpEF, Heart failure with preserved left ventricular ejection fraction; LPS,
lipopolysaccharide; TMAO, trimethylamine oxide; SCFAs, short-chain fatty acids; IPA, indole-3-propionic acid; Trp, tryptophan; Kyn, kynurenine; IS,
indole sulfate; BCAAs, branched chain amino acids; UDCA, ursodeoxycholic acid; TLR, toll-like receptor; Mit, mitochondrion; SOD2, superoxide
dismutase 2; ROS, reactive oxygen species; COX-2, cyclooxygenase-2; TGF-b, transforming growth factor-b; TGR-5, transmembrane G protein-
coupled receptor; FXR, farnesoid X receptor; PPAR-g, peroxisome proliferator-activated receptor-g; GPR, G protein-coupled receptors; HDAC,
histone deacetylase; NLRP3, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3; ASC, apoptosis-associated
speck-like protein containing a caspase activation and recruitment domain; SIRT3, sirtuin 3; BCKDH, branched-chain a-keto acid dehydrogenase;
TNF-a, tumor necrosis factor a; IL, interleukin; TXNIP, thioredoxin-interactive protein; GSDMD, gasdermin D; GSDMD-N, N-terminal gasdermin D;
Smad3, small mother against decapentaplegic family member 3; TIRAP, toll/interleukin-1 receptor domain-containing adapter protein; TRAF-6,
tumor necrosis factor receptor associated factor 6; MKK6, mitogen-activated protein kinase kinase 6; AP-1, activator protein-1; MAPKs, mitogen-
activated protein kinases; JNK, c-Jun N-terminal kinase; ERK, extracellular signal-regulated kinase; NF-kB, nuclear factor-kappa B; MyD88, myeloid
differentiation primary response 88; PI3K, Phosphoinositide 3-kinase; AKT, protein kinase B; JAK, janus kinase; STAT3, signal transducer and activator
of transcription 3; ppm1k, protein phosphatase Mg2+/Mn2+-dependent 1K; PP2Cm, protein phosphatase 2Cm.
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are terminal products of gut microbial catabolism (Yuan et al.,

2024). Within the digestive tract, SCFAs can increase expression of

intestinal tight junction proteins (Wang et al., 2012), regulate Treg/

Th17 balance via peroxisome proliferator-activated receptor-

gamma (PPAR-g) pathway, and maintain gut epithelial cell

physiology (Wen et al., 2021), thereby reducing gut permeability

and alleviating low-grade systemic inflammation (Ma et al., 2022).

Butyrate reduction is prevalent in cardiovascular disease and

associated with disease severity (Chakaroun et al., 2023). This is

mainly because SCFAs are known to influence the pathology of HF

by activating multiple G protein-coupled receptors, inhibiting

histone deacetylase (HDAC) activity, and improving the cardiac

inflammatory response (Kaye et al., 2020; Yukino-Iwashita et al.,

2022; Taslim et al., 2023). Specifically, propionate diminishes the

activity of NF-kB, IL-6, STAT1, and STAT3 signal transduction

through down-regulation of HDAC activity, leading to a decrease in

Th1 and Th17 immunoreactivity (Han et al., 2024). Additionally,

propionate suppresses downstream inflammatory responses

mediated by STAT1 and STAT3 (Jeong and Choe, 2023).

Butyrate also significantly inhibits NK-kB activity by stimulating

PPAR-g (Malesza et al., 2021). Oral administration of propionate to

mice with myocardial injury has been shown to substantially reduce

systemic inflammation and myocardial fibrosis (Tang et al., 2019).

In obesity mice, butyrate supplementation has been observed to

suppress the expression of inflammatory factors such as IL-1b,
NLRP3 and monocyte chemoattractant protein-1 in cardiac tissues.

This effect is achieved by inhibiting HDAC and negatively

regulating the NLRP3 inflammasome signaling pathway, which in

turn reduces the release of inflammatory factors within adipocytes

(Wang et al., 2015). Given the strong association between obesity,

NLRP3 inflammasomes, and the progression of HFpEF, these

findings are significant. Hatahet et al. treated obese pre-HFpEF

mice with tributyrin, the transcript levels protein phosphatase Mg2

+/Mn2+ dependent 1K (ppm1k) were significantly increased.

Ppm1k encodes protein phosphatase 2Cm, which in turn causes

dephosphorylation and activation of the branched-chain alpha-keto

acid dehydrogenase complex, promoting branched-chain amino

acids (BCAAs) catabolism and alleviating the early cardiac

mechanical dysfunction associated with the development of

obesity-related HFpEF (Hatahet et al., 2023).

Collectively, these studies suggest that SCFAs play a pivotal role

in preventing the development of HFpEF by cutting off the

connection between inflammation and the metabolic syndrome,

suggesting their significant potential in the prevention and

management of HFpEF (Beale et al., 2021; Challa and

Lewandowski, 2022).
5.3 Trimethylamine N-oxide

TMAO is the oxygenated metabolite of trimethylamine,

generated by gut microbiota catabolism of choline and L-

carnitine, followed by hepatic enzymatic oxidation (Janeiro et al.,

2018). In vitro screening tests indicate that 36 strains from four

phyla, including Bacteroidetes, Firmicutes, Actinobacteria, and
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Proteobacteria, participate in these processes under anaerobic

conditions (Romano et al., 2015). Studies have shown that

TMAO levels significantly decrease with a diet cessation, and this

is associated with reduced cardiac fibrosis (Organ et al., 2020).

TMAO has been implicated in cardiac dysfunction through

multiple mechanisms (Makrecka-Kuka et al., 2017; Tang et al.,

2019). Several studies have found that TMAO promotes myocardial

hypertrophy and fibrosis via the TGF-b/SMAD3 signaling pathway (Li

et al., 2019; Wen et al., 2022). Elevated plasma TMAO levels have been

associated with cardiac inflammation and interstitial fibrosis,

contributing to cardiac dysfunction in mice that consume a diet rich

in choline (Chen et al., 2017). Administration of a TMAO synthesis

inhibitor has shown the capacity to modulate the TGF-b/SMAD3

signaling pathway, thereby preventing myocardial hypertrophy and

fibrosis (Wang et al., 2020). Other studies have revealed that TMAO

inhibits sirtuin3 expression and suppresses the activity of superoxide

dismutase 2 and mitochondrial aldehyde dehydrogenase 2, leading to

mitochondrial reactive oxygen species accumulation and activation of

NLRP3 inflammasomes and N-terminal gasdermin D production,

which in turn contributes to cardiovascular endotheliitis (Sun et al.,

2016; Zhang et al., 2020; Li et al., 2022). Additionally, TMAO

stimulates the secretion of exosomes by hepatocytes, which activate

the NF-kB signaling pathway, causing vascular endothelial diastolic

dysfunction (Liu et al., 2021). In cardiomyocytes, modulation of the

TMAO/NF-kB pathway inhibits myocardial hypertrophy and fibrosis,

thereby ameliorating cardiac dysfunction (Wang et al., 2024). TMAO is

also excreted by the kidney, and elevated levels can lead to renal

interstitial fibrosis and dysfunction (Sun et al., 2017), indirectly

promoting the development of HFpEF (Ter Maaten et al., 2016).

Previous studies have reported elevated plasma TMAO

concentrations are associated with left ventricular diastolic

dysfunction (Wilson Tang et al., 2015). While the prognostic

value of TMAO levels in HF has been a subject of debated, with

some suggesting its relevance is primarily for HFrEF, and not

HFpEF (Wilson Tang et al., 2014; Trøseid et al., 2015; Suzuki

et al., 2019). Subsequent studies have challenged this view. Notably,

Salzano et al. have demonstrated elevated TMAO is associated with

outcome in patients with HFpEF, especially when B-type natriuretic

peptide levels are not elevated, suggesting its TMAO as a sensitive

risk stratification marker for HFpEF (Salzano et al., 2020). Further

studies have confirmed TMAO as an independent risk factor for

HFpEF, and highly associated with HFpEF risk (Dong et al., 2021).

In addition, plasma TMAO levels at discharge in individuals with

HFpEF have been link to an increased risk of subsequent

cardiovascular events post-discharge (Kinugasa et al., 2021).
5.4 Amino acids

Dysregulation of gut microbiota can affect the metabolism of AAs,

increasing the risk of HF (Mahenthiran et al., 2024). Multiple

metabolites derived from tryptophan have been shown to affect

cardiac function. For instance, indole sulfate may increase the

expression of pro-inflammatory cytokines, such as TNF-a, IL-1b in

cardiomyocytes. This upregulation is mediated through activation of
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signaling pathways, including p38 MAPK, p42/44MAPK, and NF-kB,
inducing myocardial fibrosis and hypertrophy, ultimately contributing

to myocardial diastolic dysfunction (Lekawanvijit et al., 2010; Shimazu

et al., 2013). In a recent study by Wang et al., exogenous

supplementation of another Trp metabolite, indole-3-propionic acid

supplementation reduced inflammation, oxidative stress, diastolic

dysfunction, and myocardial remodeling in HFpEF. This beneficial

effect is thought to be mediated by inhibition of nicotinamide N-

methyltransferase and activation of sirtuin 3 (Wang et al., 2024).

Kynurenine is an important metabolite of AAs, has been

positively associated with symptom severity, inflammation

indicators, and mortality risk in patients with HF (Lund et al.,

2020; Razquin et al., 2021). This may be due to kynurenic acid

induction of pro-inflammatory IL-1b and IL-8 and the expression of

TNF via the aromatic hydrocarbon receptor signaling (Dahlem et al.,

2020). On the contrary, elevated inflammatory mediators can also

mediate kynurenine pathway activation through induction of JAK-

STAT signaling cascade (Grishanova and Perepechaeva, 2024). Other

studies have found that circulating product concentrations resulting

from gut microbiota metabolism of phenylalanine and tyrosine are

associated with major cardiovascular events and mortality risk

(Nemet et al., 2023). The accumulation of BCAAs and their

intermediary metabolites in the myocardium is also associated with

the development of HF (McGarrah and White, 2023). A BCAA-free

diet attenuates the proliferation of cardiac fibroblasts and the

expression of collagen 1a1, thereby mitigating cardiac hypertrophy

induced by workload (Yang et al., 2023). Although dietary intake is

the primary source of BCAAs, these indispensable amino acids are

also synthesized by the gut microbiota (Gojda and Cahova, 2021).

Although studies have established the effect of amino acids on the

heart, further research is warranted to confirm the role of gut

microbiota-mediated AAs metabolism in the pathogenesis of HFpEF.
5.5 Bile acids

BAs are organic acids synthesized by the liver and released into the

small intestine, where they promote the absorption of dietary fat-

soluble molecules (Wan et al., 2020). Bacteroides, Clostridium,

Bifidobacterium, Lactobacillus, and other genera modulate the

expression of bile salt hydrolase genes. Elevated levels of total and

unconjugated BAs correlate with an increased abundance of the

associated intestinal microbiota. Besides, the concentration of

secondary BAs, including deoxycholic acid, is positively correlated

with the relative abundance of Bacteroides (Yokota et al., 2012). This

association suggests a significant interaction between the gut

microbiota and BAs.

Recent research suggests that BAs act as signaling molecules

mediating cardiac function (Yntema et al., 2023). BAs are divided

into two categories based on molecular structure: hydrophilic and

hydrophobic. These distinct types of BAs have differential effects on

cardiac health. Hydrophobic BAs are associated with QT interval

prolongation, cardiac hypertrophy, cardiomyocyte apoptosis, and

dysregulation of cardiac hemodynamics (Vasavan et al., 2018).
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Conversely, hydrophilic BAs, acting as steroidal signaling

molecules, confer cardiac protection by modulating cardiac

inflammation through several pathways. These include activation

of the nuclear receptor FXR and the membrane G protein-coupled

receptor 5 (TGR-5) in the myocardium, and the inhibition of NF-

kB signaling (Xiaoli et al., 2020; Zhou and Anakk, 2022; Shi M.

et al., 2023; Zhang et al., 2023). Activation of TGR-5 activates the

AKT pathway in downstream cardiomyocytes, which reduces

cardiomyocyte inflammation and oxidative stress and increases

cardiomyocyte survival (Eblimit et al., 2018). Treatment with

taurine deoxycholic acid attenuated hypertensive-induced cardiac

inflammation and myocardial remodeling in animal experiments

(Bal et al., 2019). In cell culture studies, activation of TGR-5 by

lithocholic acid ameliorates hyperglycemia-induced cardiac

hypertrophy in cardiomyocytes (Cheng et al., 2019). Vitamin D

receptors (VDRs) are expressed within the T tubules of

cardiomyocytes, with lithocholic acid (LCA) being one of its

ligands (Tishkoff et al., 2008). Targeted ablation of VDR in

cardiomyocytes leads to cellular hypertrophy, cardiac

enlargement, and impairments in both systolic and diastolic

function (Chen et al., 2011). However, it remains to be

determined whether LCA ligands can modulate VDR to elicit

similar effects. These studies revealed an important role for BAs

in the pathophysiology of HFpEF.
6 Modulating gut microbiota
dysregulation may improve HFpEF

In patients with HFpEF, gut microbiota dysregulation is

prevalent and may positively impact pathophysiology by

modulating gut microbiota or their metabolites through

interventions such as probiotics, fecal microbial transplantation

(FMT), prebiotics and replenishing gut microbiota metabolites

(Figure 4). This has been confirmed in animal experiments (Table 3).
6.1 Probiotics

The significant contribution of probiotics in maintaining human

health and regulating immune function is significant (Wang et al.,

2022b; Cristofori et al., 2021; Gavzy et al., 2023; Mazziotta et al., 2023;

Bai et al., 2024). Clinical trials have demonstrated that individuals

with cardiovascular disease can achieve significant improvements in

cardiovascular health following approximately 12 weeks of probiotic

therapy. Supplementation with Lactobacillus paracaseis is effective in

controlling low-density lipoprotein cholesterol levels and delaying

atherosclerosis progression in hyperlipidemic patients (Khongrum

et al., 2023). In trials of probiotic interventions for coronary heart

disease, inflammatory indicators such as LPS, IL-1b, hs-CRP, and
TNF-a were significantly decreased in the probiotic group compared

to the control group after 12 weeks of probiotic intervention (Moludi

et al., 2021; Moludi et al., 2022).
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Several studies have indicated that probiotics can enhance

plasma markers indicative of inflammation and oxidative stress in

HF, and significantly ameliorate HF-related comorbidities (Karim

et al., 2022; Pourrajab et al., 2022; Cui et al., 2023). However, it is

important to acknowledge that trials didn’t differentiate based on

ejection fraction categories. Probiotics can also capable of

modulating the metabolite production of gut microbiota (Sadeghi

et al., 2023), which could have a positive impact on HFpEF and its

complications. For instance, in obese mice on a high-fat diet, the

administration of Clostridium tyrobutyricum notably improved gut

microbiota dysregulation, increased the production of SCFAs, and

reduced the intestinal expression of TNF-a, IL-6, IL-1b (Luo et al.,

2024). Given that obesity is an important comorbidity in HFpEF,

and a key factor in the pathogenesis of HFpEF, inflammation plays a

central role in its development (Chirinos et al., 2020). These

findings suggest that probiotics may exert beneficial effects on

HFpEF by modulating the gut microbiota dysregulation. Further

experimental research is needed to confirm these potential benefits.
6.2 Fecal microbial transplantation

FMT has garnered widespread attention as a therapeutic

strategy for restoring gut microbiota ecological balance.

Analogous to organ transplantation, FMT is the process of

transplanting the fecal microbiota from a healthy donor into the

gut of the patients with microbiota-related diseases (Leshem et al.,

2019). The procedure aims to treat conditions by re-establishing a

balanced microbial community. FMT has demonstrated the ability
Frontiers in Cellular and Infection Microbiology 11
to improve atherosclerosis in genetically susceptible mice lacking

C1q/TNF-associated protein (Kim et al., 2022), and it has shown a

positive effect on cardiometabolic diseases (Pakmehr A, Mousavi

et al., 2024). The therapeutic effect of FMT treatment may be

associated with increased diversity of the gut microbiota in the

recipient (Luqman et al., 2024).

A previous study reported that FMT in obese mice increased

circulating butyrate levels (Bonomo et al., 2020). Recent studies

have discovered that FMT from lean mice to obese pre-HFpEF mice

augments early cardiac diastolic dysfunction and left ventricular

hypertrophy, mechanisms consistent with the effects of butyrate

therapy (Hatahet et al., 2023). Petrick et al. demonstrated that FMT

of microorganisms from nitrate-fed mice into mice with cardiac

dysfunction led to significant improvements in myocardial

remodeling, oxidative stress, glucose intolerance, serum

dyslipidemia and cardiac dysfunction. Additionally, this study

indicated that cardiac protective effects of nitrates are associated

with the remission of intestinal dysbiosis by FMT (Petrick et al.,

2023). These experiments highlight the potential effect of gut

microbiota modification to improve outcomes in HFpEF. The

current effects demonstrated by FMT in animal trials may

provide a novel approach for future clinical research.
6.3 Others

Prebiotics are non-digestible food ingredient that stimulate

microbial growth, maintain a balanced gut ecosystem, thereby

contributing to human health through the modulation of gut
FIGURE 4

Modulating gut microbiota dysregulation may improve HFpEF. HFpEF, Heart failure with preserved left ventricular ejection fraction; FMT, fecal
microbial transplantation; SCFAs, short-chain fatty acids.
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microbiota composition and function. Non-digestible plant

oligosaccharides are the most popular prebiotics (Farias D de et al.,

2019). Many studies have investigated the effects of prebiotics intake,

including cellulose, on cardiovascular disease. Evidence suggests that

prebiotics can inhibit the inflammatory response in healthy

individuals by inducing the production of immunoregulatory

molecules and lactic acid by the Bifidobacterium and Lactobacillus

genera (Davani-Davari et al., 2019). Furthermore, dietary involving

polysaccharide, flavonoid, and polyphenols can modulate gut

microbiota, potentially affecting cardiovascular health (Feng et al.,

2022). These processes may be related to metabolites such as BAs,

SCFAs, AAs, etc (Xu and Yang, 2021).
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Exogenous supplementation of gut microbiota metabolites,

particularly SCFAs, may be an effective therapeutic strategy for

HFpEF. Studies shown that SCFAs supplementation can increase

acetic acid levels in the colon, and elevate the relative abundance of

beneficial microbes such as Akkermansia, Turicibacter, Ruminococcus,

and Prevotella, while also enhancing gut barrier function. SCFAs

supplementation has been demonstrated to reduce the levels of

NLRP3 and IL-1b, promote the IRF4/STAT3 complex and attenuate

systemic inflammatory responses (Su et al., 2022), which may improve

HFpEF. However, there is currently a lack of relevant clinical

researches, and in light of the safety of approach, the large cohorts of

clinical research should be conducted.
TABLE 3 Regulation of gut microbiota affects pathophysiological literature related to HFpEF.

Treatment Model Changes in gut microbiota Cardiac changes

Dietary nitrate, FMT (Petrick et al., 2023) C57BL/6N male mice Decrease the abundance of Firmicutes and
the ratio of Firmicutes to Bacteroidetes

Prevent high-fat diet–induced
diastolic dysfunction

GN (Wang et al., 2022a) male wild-type C57BL/6J mice Decrease the abundance of Firmicutes and
the ratio of Firmicutes to Bacteroidetes

Improve myocardial fibrosis/ventricular
remodeling, reverse
cardiomyocyte hypertrophy

Emodin (Evans et al., 2023) C57BL/6 female mice Increase the abundance of Lachnospiraceae
x4554, Ruminococcaeae, Akkermansia
and Roseburia.

Attenuated cardiac hypertrophy.

Astragaloside IV (Du et al., 2022) C57BL/6J male mice Increase the abundance of Akkermansia,
Defluviitaleaceae_UCG-011, and Rikenella.
Decrease the abundance of Bacteroidetes.

Ameliorated heart tissues inflammatory
cell infiltration, myocardial fiber
thickening, myocardial necrosis, and
myocardial structural disorder.

Probiotics/prebiotics/synbiotics (Hu
et al., 2022)

Wistar rats Alter the abundances of Ruminococcaceae
and Lachnospiraceae.

Attenuated cardiac hypertrophy.

Dapagliflozin (Bao et al., 2023) C57BL/6N male mice Decreased the ratio of
Firmicutes/Bacteroidetes.

Reduced inflammation and
cardiac fibrosis.

FMT (Zhang et al., 2022) SD male rats Decrease the ratio of Firmicutes to
Bacteroidetes, and increase the abundance
of Enterobacteriaceae.

Increase cardiac fibrosis.

Myricetin (Zhu et al., 2024) C57BL/6J male mice Increase the abundance of short-chain fatty
acid-producing bacteria involving Roseburia,
Faecalibaculum, and Bifidobacterium.

Decreasing cardiomyocyte hypertrophy
and interstitial fibrosis.

Doxorubicin/FMT (An et al., 2021) C57BL/6J male mice Doxorubicin decreases abundance of
Prevotellaceae_UCG−001, increases the
abundance of Alloprevotella and
Rikenellaceae_RC9_gut_group. FMT increased
abundance of Alloprevotella,
Prevotellaceae_UCG−001
and Rikenellaceae_RC9_gut_group.

Doxorubicin induces cardiac pathological
remodeling.
FMT alleviates doxorubicin-induced
cardiac fibrosis.

KTBA (Xu et al., 2024) SD rats Enrich the abundance of Deltaproteobacteria,
Desulfovibrionaceae, and Desulfovibrionales.

Delays cardiomyocyte hypertrophy
and fibrosis.

Aged FMT (Xu et al., 2024) C57BL/6J mice Decrease the abundance of Firmicutes,
increase the abundance of Bacteroidetes
and Proteobacteria.

promoting myocardial apoptosis, fibrosis
and myocardial hypertrophy.

YHJF (Liu et al., 2022) C57BL/6J mice Reversed the increase in Bacteroidetes and the
decrease in Firmicutes and Ruminococcaceae.

Reversal of left ventricle hypertrophy and
myocardial fibrosis.

High-salt diet (Li et al., 2022) C57BL/6J mice Increase the abundance of Burkholderiales
bacterium YL45, Lactobacillus johnsonii, and
Lactobacillus reuteri.

Increased the HW/BW ratio, and cardiac
hypertrophy/fibrosis.
FMT, fecal microbial transplantation; GN, ginseng dingzhi decoction; KTBA, kidney-tonifying blood-activating decoction; YHJF, yiqi-huoxue-jiangzhuo formula; HW, heart weight; BW,
body weight.
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7 Discussion

Advances in research have enhanced our comprehension of

HFpEF pathogenesis, especially the hypothesis that gut microbiota

dysregulation significantly contributes to HFpEF etiology, which is

gaining traction. This article focuses on the gut microbiota-

inflammation-HFpEF axis in HFpEF, which has been shown to

have a positive impact in relevant studies, and provides new

strategies for future treatment of HFpEF. Despite the progress

achieved with this strategy, current research on the gut

microbiota-inflammation-HFpEF axis remains limited. We should

expand large clinical cohort studies and further clinical and basic

studies to elucidate potential mechanisms.
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