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Introduction: Highly Pathogenic Avian Influenza (HPAI) H5N1 is a significant

zoonotic pathogen with the potential to cause pandemics. Its high prevalence

and mortality rates in poultry, along with a recent expansion in host range,

underscore the urgent need to understand the molecular mechanisms

underlying its pathogenesis and host-pathogen interactions. Metabolomics, the

comprehensive study of small-molecule metabolites within biological systems,

offers a promising approach to unravel these mechanisms and aid in the

development of effective control strategies against HPAI H5N1.
Methods: To investigate the metabolomic alterations associated with HPAI H5N1

infection, serum and lung samples were collected from specific pathogen-free

(SPF) chickens that were either infected with HPAI H5N1 or mock-infected as

controls. Metabolomic profiling was performed using liquid chromatography-

tandem mass spectrometry (LC-MS/MS) under both positive and negative

ionization modes. The resulting data were analyzed to identify metabolites that

were significantly altered in response to infection.
Results: Themetabolomic analysis revealed substantial changes in both lung and

serum samples following HPAI H5N1 infection. Specifically, 31 and 13 altered

metabolites were identified in the lung, and 22 and 15 in the serum, under positive

and negative ionization modes, respectively. Notably, key metabolites such as

sphingosine, psychosine sulfate, and L-serine, which are known to influence viral

endocytosis and cell signaling, were significantly altered in infected chickens.
Discussion: The observed changes in sphingolipid and tryptophan metabolism

provide insights into the mechanisms underlying lung and central nervous system
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(CNS) pathology associated with HPAI H5N1 infection. This study represents the

first comprehensive metabolomic profiling of HPAI H5N1-infected chickens,

offering valuable information for the development of novel therapeutics and

control strategies. The identification of specific metabolite alterations may guide

future research aimed at mitigating the impact of this highly pathogenic virus.
KEYWORDS
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1 Introduction

Influenza viruses, part of the Orthomyxoviridae family and the

genus Influenza virus, are RNA viruses characterized by a

segmented, single-stranded, negative-sense genome (Cargnin

Faccin and Perez, 2024). These viruses are classified into four

types: A (IAV), B (IBV), C (ICV), and D (IDV). IAV, in

particular, is a pathogen of significant clinical importance, posing

a considerable threat to both the poultry and public health (Zhang

et al., 2024b). Avian influenza viruses (AIVs) are categorized based

on their impact on chicken, as determined by the intravenous

pathogenicity index (IVPI) test, into highly pathogenic avian

influenza viruses (HPAIV) and low pathogenic avian influenza

viruses (LPAIV) (Liu et al., 2023). Recently, the spread of HPAIV

strains such as H5N1, H7N9, and H5N8 across different host

species has become a serious public health concern (Sutton,

2018). Among these, H5N1 is particularly notable due to its high

pathogenicity, leading to significant mortality in both chicken and

humans (Kim et al., 2023). The HPAIV subtype H5N1 is already

panzootic in poultry, causing severe economic impacts. It continues

to cross species barriers, infecting humans and other mammals,

often with fatal outcomes. Additionally, avian influenza viruses,

including H5N1, are known to mutate rapidly. If a strain were to

acquire the ability for sustained human-to-human transmission, it

could lead to a pandemic situation similar to seasonal influenza but

with potentially more severe consequences (Yamaji et al., 2020).

Therefore, a deeper understanding of the host-pathogen interaction

of HPAI H5N1 is crucial, given its prevalence, ability to infect

humans, and potential for mutation. For this purpose,

metabolomics is a superior tool as it offers a more effective means

of understanding disease progression compared to other omics

techniques, such as genomics, transcriptomics, and proteomics,

due to its close association with phenotype and real-time

biological processes.

Metabolomics involves the study of small chemical compounds

(< 1500 atomic mass unit) produced or utilized within a biological

system, including both primary and secondary metabolites. When

performed accurately, metabolomics provides an unbiased analysis

of a diverse range of small-molecule metabolites, collectively known

as the metabolome, within a specific biological system under

defined conditions (Snowden et al., 2012). This approach is useful
02
for characterizing underlying pathological mechanisms and, more

broadly, for monitoring and understanding phenotypic variations

(Beale et al., 2019). Metabolomics can be conducted using either

targeted or non-targeted approaches (Bingol, 2018). In this study we

have utilized non-targeted approach.

Several studies have utilized metabolomic analysis to investigate

influenza viruses (Tisoncik-Go et al., 2016; Cui et al., 2016; Milner

et al., 2014, 2015; Chandler et al., 2016) primarily using mice and

ferrets as experimental models. Zhang et al., 2024b, conducted

metabolomic profiling of the H9N2 avian influenza virus in DF-1

cells. However, no metabolomic studies have been conducted on

H5N1, particularly in chicken hosts. In this study, we are

performing metabolomic profiling and identifying metabolomic

markers following HPAI H5N1 infection in chicken.
2 Materials and methods

2.1 Ethics statement

The animal experiments were carried out at the Biosafety level 3

+ containment facility ICAR-National Institute of High Security

Animal Diseases, Bhopal, India, as per the guidelines of

Institutional Animal Ethics Committee and Committee for the

Purpose of Control and Supervision of Experiments on Animals

(CPCSEA), Ministry of Environment and Forests, Govt. of India

(Approval no. 125/IAEC/NIHSAD/21).
2.2 Animal experiment

Six, six-week-old, specific pathogen-free (SPF) chicken, were

divided into two groups of three each. The first group was

intranasally inoculated with 106 EID50 of A/duck/India/02CA10/

2011/Agartala avian influenza virus, while the control group

received an intranasal inoculation of phosphate buffered saline

(PBS). At 12 h post-inoculation, the birds were slightly dull and

were starting to show a tendency to avoid physical activity. They were

euthanized by cervical dislocation, and blood as well as lung tissue

was collected. Lung samples were rinsed 3–4 times by immersing in

ample volumes of triple solvent mixture (acetonitrile: methanol:
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water in a 2:2:1 ratio) to washout blood, divided into triplicates and

then stored in triple solvent overnight at -20°C to inactivate the virus

in the samples. Similarly, serum was combined with an equal volume

of the triple solvent divided into three technical triplicates and kept at

-20°C (Hu et al., 2021).Virus inactivation was confirmed by

inoculation in embryonated chicken eggs. The RNA extracted from

lungs and serum samples collected from the infected birds were

screened using RT-qPCR for confirmation of presence of infection.
2.3 Metabolite extraction

Each sample was made into three technical replicates to ensure

reliability and reproducibility of results, resulting in a total of 18

sample sets each for lung and serum. Metabolites were extracted

from lung tissue and serum samples according to the protocol

outlined by Lau et al. (2015). Lung tissue samples (50 mg each) were

weighed, flash-frozen in liquid nitrogen, and ground into a fine

powder using a mortar and pestle. Subsequently, 1 mL of triple

solvent (acetonitrile:methanol:water in a 2:2:1 ratio) was added to

the powdered tissue, and the mixture was sonicated for 3 minutes

using a probe sonicator (Q Sonica, Parmer). For the serum samples,

25 mL of serum (inactivated serum mixture) was mixed with 450 mL
of the triple solvent mixture, briefly vortexed, and then sonicated in

a water bath. All samples, including lung tissue and serum, were

stored overnight at -20°C. The following day, the samples were

centrifuged at 12,000 × g for 15 minutes at 4°C to separate the

supernatants, which were then collected and dried under vacuum

using a SpeedVac. The dried residues were reconstituted in 250 mL
of 0.1% formic acid, thoroughly mixed, and prepared for mass

spectrometry analysis.
2.4 LC-MS/MS analysis

Metabolite extracts were analyzed using liquid chromatography

followed by tandem mass spectrometry (LC-MS/MS) on a QTRAP

6500 mass spectrometer (AB Sciex) coupled with an Agilent 1290

Infinity II liquid chromatography system, equipped with a C18

Kinetex column (2.1 X 150 mm, 1.7mm). Data acquisition was

performed using Analyst software version 1.6.3, with the Analyst

Device Driver used to configure analysis parameters. Metabolite

separation was achieved with a 25-minute Liquid Chromatography

method, as outlined in Supplementary Table 1. Solvent A consisted

of 0.1% formic acid in LC-MS grade water, while solvent B was 0.1%

formic acid in 90% acetonitrile. The flow rate was set to 0.250

mL/min.

Mass spectrometry data was acquired using the Information-

Dependent Acquisition (IDA) method in low mass mode. The IDA

method was built using the EMS (enhanced mass spectra) to EPI

(enhanced product ion) modes. The top five spectra from the EMS

mode were selected for further analysis in the EPI (MS/MS) mode,

utilizing high-energy collision-induced dissociation (CID).

Metabolite data was collected in both positive and negative

polarities, with voltages of 4500 V and -4500 V, respectively, and
Frontiers in Cellular and Infection Microbiology 03
a probe temperature of 450°C. Compound parameters included a

declustering potential (DP) of ±100 V and a collision energy (CE) of

±40 V. All resulting files in.wiff format were analyzed for the feature.
2.5 Data analysis

The LC-MS/MS results in.wiff format were converted to.mzML

format using the ProteoWizard MSConvert tool. The.mzML raw

data were then processed in MZMine 2.53 (Schmid et al.,

2023).Feature detection was performed at both MS and MS/MS

level, in centroid mode. The noise level greater than 1.0E1 was set to

MS/MS level. This was followed by peak extension and

chromatogram deconvolution, and isotope peak grouping. For

replicate runs of infected and control samples, the deisotoped

features were aligned using the Join-Aligner algorithm, gaps were

filled, and duplicate peaks were removed. The.mgf files containing

precursor and fragment information were used for metabolite

assignment through fragment-level matches using the in-house

MS2Compound tool (https : //sourceforge.net/projects/

ms2compound/). Metabolites from the Human Metabolite

Database (HMDB) (https://hmdb.ca/) served as the backend

database for identification. We selected HMDB because, at

present, no dedicated metabolomics database exists specifically for

chickens, as the field is still developing. However, many metabolites

are highly conserved across species, and core metabolic pathways

(such as glycolysis, the TCA cycle, and lipid metabolism) are shared

among vertebrates. This makes HMDB a valuable and widely

accepted resource for chicken metabolomic analysis. In fact,

several poultry studies have successfully employed HMDB for

metabolite identification despite the absence of a chicken-specific

database (Wang et al., 2024; Tang et al., 2021; Zhang et al., 2024a).

In this study, MS2Compound matched metabolites to precursor m/

z values based on their charge states and corresponding adducts ([M

+H]+ for positive mode and [M–H]– for negative mode).

Metabolite assignment having highest rank and mS-score to a

particular m/z considered for further downstream analysis.

Following this, exogenous metabolites such as drugs,

environmental contaminants, exclusive plant metabolites etc have

been removed from further analysis.
2.6 Statistical analysis

Statistical analysis was performed using MetaboAnalyst 6.0

(https://www.metaboanalyst.ca/). Initially, Principal Component

Analysis (PCA), an unsupervised method, was conducted to

assess overall sample clustering. This was followed by a

supervised analysis using Orthogonal Partial Least Square

Discriminant Analysis (OPLS-DA), where metric values were

obtained to evaluate the reliability of the experimental model. In

the OPLS-DA analysis, Variable Importance in Projection (VIP)

scores were calculated for all metabolites, with only those having

VIP ≥ 1 retained for further analysis. To identify significantly

differential metabolites between infected and control samples, t-
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tests and fold change analysis were performed, with thresholds set at

p ≤ 0.05 for the t-test and 1.2 for fold change.
2.7 Pathway enrichment analysis

Pathway enrichment analysis was performed using MetaboAnalyst

6.0 (https://www.metaboanalyst.ca/). For this analysis, the combined

list of significantly differential metabolites from both positive and

negative ionization modes was used. Pathways with a p-value ≤ 0.05

were identified as significantly enriched.
2.8 Metabolomic marker identification

To identify potential metabolomic markers, receiver operating

characteristic (ROC) curve analysis was performed on the

significantly differential metabolites, and the Area Under the

Curve (AUC) values were obtained for each metabolite. AUC

values between 0.7 and 0.8 are considered acceptable, those

between 0.8 and 0.9 are deemed excellent, and values above 0.9

are regarded as outstanding (Hosmer and Lemeshow, 2013). In this

study, metabolites with AUC values greater than 0.7 were
Frontiers in Cellular and Infection Microbiology 04
considered as potential metabolomic markers. From this list,

markers were proposed based on their contribution to significant

enriched pathways and existing evidence linking them to influenza

A virus.
3 Results

3.1 Lung metabolomic profiling

LC-MS/MS-based metabolomic profiling of lung samples

identified 3,602 aligned peaks in positive ionization mode and

2,678 in negative ionization mode using MZMine 2.53. The

MS2Compound search assigned 851 metabolites in positive and

443 in negative ionization mode. After excluding exogenous

metabolites, 196 metabolites in positive and 90 in negative

ionization mode were retained.

PCA analysis showed slight overlap between infected and

control samples in both ionization modes, as depicted in

Figures 1A, B. In contrast, OPLS-DA analysis (Figures 1C, D)

clearly separated infected and control samples in both modes.

The OPLS-DA model yielded matrix values of R2X = 0.131, R2Y

= 0.884, and Q2 = 0.645 for positive ionization mode, and R2X =
FIGURE 1

Score Scatter plots of PCA and OPLS-DA of chicken lung metabolomic profiling following HPAI H5N1 infection (A) PCA score plot Positive ionization
mode (B) PCA score plot negative ionization mode (C) OPLS-DA score plot positive ionization mode (D) OPLS-DA score plot negative ionization
mode. Each point in the figure represents a sample, and samples from the same group are represented by the same color.
frontiersin.org

https://www.metaboanalyst.ca/
https://doi.org/10.3389/fcimb.2025.1540290
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Kadamthodi et al. 10.3389/fcimb.2025.1540290
0.138, R2Y = 0.852, and Q2 = 0.646 for negative ionization mode.

These Q2 values indicate that the experimental models are reliable,

reflecting significant alterations in cellular metabolism following

HPAI H5N1 infection.

After retaining metabolites with VIP scores ≥ 1, 65 metabolites

remained in positive ionization mode and 36 in negative ionization

mode. Subsequent t-test and fold change (FC) analysis identified 31

significantly differentially expressed metabolites in positive

ionization mode (26 upregulated and 5 downregulated) and 13 in

negative ionization mode (11 upregulated and 2 downregulated).

Notable metabolites among the significantly differentially expressed

ones include psychosine sulfate, sphingosine, indole acetaldehyde,
Frontiers in Cellular and Infection Microbiology 05
11,14,15-THETA, diglycerides (DG), and phosphatidylserine (PS).

These are represented as volcano plots in Figure 2 for positive

ionization mode and Figure 3 for negative ionization mode. A heat

map of the combined differential metabolites from both positive

and negative ionization modes is shown in Figure 4. The complete

list of significantly differentially expressed metabolites provides in

Supplementary Tables 2, 3.

Pathway enrichment analysis of the combined list of differential

metabolites from both ionization modes (a total of 44 metabolites)

identified key metabolic pathways, including Sphingolipid

metabolism, Tryptophan metabolism, Homocysteine degradation,

and the Malate-Aspartate shuttle. Notably, Sphingolipid and
FIGURE 3

Volcano plot of differential metabolites in chicken lung metabolomic profiling following HPAI H5N1 infection in negative ionization mode. Each point
in the plot represents a metabolite: red dots indicate upregulated metabolites, blue dots indicate downregulated metabolites, and gray dots
represent metabolites with no significant change.
FIGURE 2

Volcano plot of differential metabolites in chicken lung metabolomic profiling following HPAI H5N1 infection in positive ionization mode. Each point
in the plot represents a metabolite: red dots indicate upregulated metabolites, blue dots indicate downregulated metabolites, and gray dots
represent metabolites with no significant change.
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Tryptophan metabolism pathways were significantly enriched with

p-values ≤ 0.05. A dot plot of the pathway enrichment analysis is

presented in Figure 5, and the detailed results are provided in the

Supplementary Table 6.
3.2 Serum metabolomic profiling

LC-MS/MS-based metabolomic profiling of serum samples

identified 3,866 aligned peaks in positive ionization mode and

2,660 in negative ionization mode using MZMine 2.53. The

MS2Compound search assigned 1,129 metabolites in positive and

545 in negative ionization mode. After excluding exogenous

metabolites, 145 metabolites in positive ionization mode and 107

in negative ionization mode were retained.

Similar to the lung sample profiling, PCA analysis of serum

samples showed a slight overlap between infected and

control samples in both ionization modes (Figures 6A, B).

However, OPLS-DA analysis (Figures 6C, D) revealed a clear

separation between infected and control samples. The matrix

values obtained after OPLS-DA were R2X = 0.11, R2Y = 0.906,
Frontiers in Cellular and Infection Microbiology 06
and Q2 = 0.605 for positive ionization mode, and R2X = 0.104, R2Y

= 0.855, and Q2 = 0.419 for negative ionization mode. The Q2 values

in both ionization modes were adequate to consider the

models trustworthy.

After retaining metabolites with VIP scores >1, 55 metabolites

were identified in positive ionization mode and 49 in negative

ionization mode. Following t-test and fold change (FC) analysis, 22

significantly differentially expressed metabolites were identified in

positive ionization mode, with 8 upregulated and 14 downregulated.

In negative ionization mode, 15 differentially expressed metabolites

were found, with 10 upregulated and 5 downregulated. The complete

list of significantly differentially expressed metabolites provides in

Supplementary Tables 4 and 5 and visualized as a volcano plots

(Figures 7, 8). A heat map of the combined differential metabolites

from positive and negative ionization modes is shown in Figure 9.

Notable metabolites include 2,3-Diphosphoglyceric acid, 2,3-Dinor-

TXB2, Quinolinic acid, N-Palmitoyl phenylalanine, L-Serine, L-

Proline, PE(18:3(6Z,9Z,12Z)/P-16:0), PE(18:3(9Z,12Z,15Z)/P-16:0),

N-Succinyl-2-amino-6-ketopimelate, and NADP.

Pathway enrichment analysis of the combined list of

differentially expressed metabolites (a total of 37) identified
FIGURE 4

Heat map of combined differential metabolites in positive and negative ionization modes from lung metabolomic profiling following HPAI H5N1
infection in chicken. Each column in the heat map represents an individual sample, and each row represents a differential metabolite. The color of
each cell indicates the relative level of the differential metabolites: red signifies upregulation, while green indicates downregulation.
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significant enrichment in Arginine and Proline Metabolism,

Estrone Metabolism, Nicotinate and Nicotinamide Metabolism,

Sphingolipid Metabolism, and Tryptophan Metabolism. Of these,

Arginine and Proline Metabolism, Estrone Metabolism, and
Frontiers in Cellular and Infection Microbiology 07
Nicotinate and Nicotinamide Metabolism were significantly

enriched with a p-value ≤ 0.05. A dot plot of the pathway

enrichment analysis is presented in Figure 10, and detailed results

are provided in Supplementary Table 7.
FIGURE 5

Bubble plot diagram of metabolic pathways enriched in chicken lung tissue following HPAI H5N1 infection. Each bubble represents a metabolic
pathway, with the 25 most significant pathways displayed based on their p-values. The size of each bubble corresponds to the number of
metabolites involved in the pathway. The x-axis represents the p-value of the pathway, while the y-axis represents the enriched pathways.
FIGURE 6

Score Scatter plots of PCA and OPLS-DA of chicken serum metabolomic profiling following HPAI H5N1 infection (A) PCA score plot Positive
ionization mode (B) PCA score plot negative ionization mode (C) OPLS-DA score plot positive ionization mode (D) OPLS-DA score plot negative
ionization mode. Each point in the figures represents a sample, and samples from the same group are represented by the same color.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1540290
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Kadamthodi et al. 10.3389/fcimb.2025.1540290
3.3 Marker identification

3.3.1 Metabolomic marker identification of lung
sample

ROC curve analysis was conducted on significantly differential

metabolites identified in lung samples. AUC values for all the

differential metabolites identified metabolites are given in

Supplementary Table 8. Metabolites with AUC values greater

than 0.7 were selected, resulting in 25 metabolites meeting this

criterion. Based on their roles in major pathways and existing data

linking them to influenza A virus pathogenesis in chicken, potential

metabolomic markers identified include Sphingosine (AUC = 0.84),
Frontiers in Cellular and Infection Microbiology 08
PS(16:1(9Z)/16:1(9Z)) (AUC = 0.901), 11,14,15-THETA (AUC =

0.765), and Indoleacetaldehyde (AUC = 0.704). The ROC plots of

these metabolites are shown in Figure 11.

3.3.2 Metabolomic marker identification of serum
sample

Similar to the lungs, 31 metabolites in the serum samples

showed AUC values greater than 0.7. The AUC values for all

differential metabolites in serum are given in Supplementary

Table 9. Quinolinic acid (AUC = 0.889), Guanidoacetic acid

(AUC = 0.864), L-Proline (AUC = 0.802), L-Serine (AUC =

0.815), and N-Palmitoyl phenylalanine (AUC = 0.889) are
FIGURE 8

Volcano plot of differential metabolites in chicken serum metabolomic profiling following HPAI H5N1 infection in negative ionization mode. Each
point in the volcano map represents a metabolite. Red dots represents upregulation, blue dots represents down regulation and gray dot represents
not significant.
FIGURE 7

Volcano plot of differential metabolites in chicken serum metabolomic profiling following HPAI H5N1 infection in positive ionization mode. Each
point in the volcano map represents a metabolite. Red dots represents upregulation, blue dots represents down regulation and gray dot represents
not significant.
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proposed as potential metabolomic markers in serum following

HPAI H5N1 infection. The ROC curve plots for these metabolites

are shown in Figure 12.
4 Discussion

In recent years, metabolomics has significantly advanced our

understanding of host-pathogen interactions across various

pathogens. As the latest addition to the omics toolkit,

metabolomics offers distinct advantages over genomics,

transcriptomics, and proteomics. In chicken, metabolomic

profiling has been applied to several viral diseases, including

Newcastle disease, Marek’s disease, Avian leukosis, and Infectious

Bursal Disease (IBD). In this study, we analyzed the metabolomics

profile of Highly Pathogenic Avian Influenza (H5N1) infection in

chicken using liquid chromatography coupled with tandem mass

spectrometry (LC-MS/MS) on a QTRAP 6500 mass spectrometer

(AB Sciex) paired with an Agilent 1290 Infinity II liquid

chromatography system. This research provides new insights into

the chicken host’s response to H5N1 infection and sheds light on
Frontiers in Cellular and Infection Microbiology 09
virus-host interactions, potentially elucidating the infection

mechanisms of HPAI H5N1.

Significant metabolite changes observed in this study were

primarily related to lipid metabolism. In the lungs, 15 metabolites

in the positive ionization mode and 11 in the negative ionization

mode were associated with lipid metabolism. Similarly, in serum, 10

metabolites were linked to lipid metabolism in both positive and

negative ionization modes. Changes in lipid metabolism following

influenza A virus infection have been reported in multiple studies

(Chen et al., 2023; Petrich and Chiantia, 2023; Kawabata et al.,

2023). In our study, triglycerides TG (16:0/22:1(13Z)/o-18:0) and

TG (14:0/20:0/o-18:0) were upregulated, consistent with findings by

Jonkers et al. (2002), who demonstrated hypertriglyceridemia

following inflammation. This hypertriglyceridemia can be linked

to the inflammation caused by HPAI H5N1 infection.

In the lungs, sphingosine and psychosine sulfate were found to be

upregulated in infected samples. Sphingosine is a key component of

sphingolipid metabolism, while psychosine sulfate is a

glycosphingolipid and a sulfated form of psychosine, according to

PubChem. Psychosine is derived from sphingosine through direct

galactosylation (Igisu and Suzuki, 1984). The observed upregulation
FIGURE 9

Heat map of combined differential metabolites in positive and negative ionization modes from serum metabolomic profiling following HPAI H5N1
infection in chicken. Each column in the heat map represents an individual sample, and each row represents a differential metabolite. The color of
each cell indicates the relative level of the differential metabolites: red signifies upregulation, while green indicates downregulation.
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FIGURE 10

Bubble plot diagram of metabolic pathways enriched in the serum of chicken following HPAI H5N1 infection. Each bubble represents a metabolic
pathway, with the 25 most significant pathways displayed based on their p-values. The size of each bubble corresponds to the number of
metabolites involved in the pathway. The x-axis represents the p-value of the pathway, while the y-axis represents the enriched pathways.
FIGURE 11

ROC curve for biomarkers identified in the metabolomic profiling of chicken lungs following HPAI H5N1 infection. The X-axis represents the false
positive rate, while the Y-axis represents the true positive rate.
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of sphingosine and psychosine sulfate suggests a significant alteration

in sphingolipid metabolism following Highly Pathogenic Avian

Influenza (H5N1) virus infection. Sphingolipid metabolism is

crucial in viral pathogenesis, as sphingolipids facilitate essential

structural interactions, including the fusion of the plasma

membrane with the viral membrane, which supports viral

endocytosis, cell signaling, and viral budding (Avota et al., 2021).

These findings indicate that the HPAI H5N1 virus primarily exploit

the sphingolipid metabolic pathway for its entry and replication.

Alteration of sphingolipid metabolism has been reported by Zhang

et al. (2024b) following experimental infection of H9N2 avian

influenza virus in chick DF1 cells.

Similarly, we identified that indole acetaldehyde and pyridoxal

5’-phosphate are upregulated in infected lung tissue, while

quinolinic acid is upregulated in infected serum. These

metabolites are part of tryptophan metabolism according to

Human Metabolomic Database (HMDB). Quinolinic acid is

specifically involved in the kynurenine pathway of tryptophan

metabolism and pyridoxal 5’-phosphate serves as a coenzyme for

several enzymes in the tryptophan metabolism, particularly in the

kynurenine pathway (Stone and Darlington, 2002; Rios-Avila et al.,

2013; Stone, 2016). The differential expression of these metabolites

suggests a significant link between HPAI H5N1 infection and

tryptophan metabolism, particularly the kynurenine pathway. The

association between influenza A virus and tryptophan metabolism

has been established by several studies (Cui et al., 2016; Chandler

et al., 2016; Gaelings et al., 2017). Alterations in tryptophan

metabolism are linked to inflammation and the metabolites

within the kynurenine pathway contribute to immunomodulation
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and changes in central nervous system function (Chandler et al.,

2016; Gaelings et al., 2017). Therefore, we can conclude that HPAI

H5N1 leverages tryptophan metabolism to induce lung injury

and inflammation.

The metabolite 11,14,15-THETA is upregulated in the lungs

following infection. It is a product of the 15-lipoxygenase (15-LO)

pathway of arachidonic acid, as reported by Pfister et al., 1998. A study

by Zhu et al. (2003) also identified an increased production of 15-LO

pathway products, including 15-hydroxyeicosatetraenoic acid (HETE),

11,14,15-trihydroxyeicosatrienoic acid (THETA), and 11,12,15-

THETA, in response to chronic hypoxia in neonatal rabbits. The 15-

LO pathway is implicated in hypoxic pulmonary vasoconstriction

(HPV), a homeostatic mechanism intrinsic to the pulmonary

vasculature (Zhu and Ran, 2012). HPV involves the constriction of

intrapulmonary arteries in response to alveolar hypoxia and diverting

blood to better oxygenated lung segments, thereby optimizing

ventilation/perfusion matching and systemic oxygen delivery

(Dunham-Snary et al., 2017). The elevation of 11,14,15-THETA

production could thus be linked to hypoxic conditions caused by

lung pathology induced by the HPAI H5N1 virus.

In serum profiling, we detected elevated levels of 2,3-

Diphosphoglyceride (2,3-DPG or 2,3-BPG) in infected birds. 2,3-

DPG is an intermediate metabolite in the Luebering–Rapoport

glycolytic pathway, synthesized in red blood cells (RBCs) from

1,3-diphosphoglycerate (1,3-DPG) through the action of

diphosphoglycerate mutase. It functions as a regulator of

hemoglobin’s allosteric properties in RBCs. When 2,3-DPG binds

to hemoglobin, it stabilizes the T-state conformation, thereby

reducing hemoglobin’s affinity for oxygen and helps in release of
FIGURE 12

ROC curve for biomarkers identified in the serum metabolomic profiling of chickens following HPAI H5N1 infection. The X-axis represents the false
positive rate, while the Y-axis represents the true positive rate.
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oxygen (Benesch and Benesch, 1967; Brewer, 1974). Production of

2,3-DPG increases in response to hypoxia. Acute hypoxic exposure

induces hyperventilation, enhances CO2 removal, and leads to

respiratory alkalosis, which raises blood pH (Lühker et al., 2017).

This elevated pH stimulates glycolysis, contributing to an increased

concentration of 2,3-DPG (Duhm and Gerlach, 1971). Although

2,3-DPG’s role as an allosteric regulator is more pronounced in

mammals, it has also been observed in avian species (Isaacks et al.,

1977). Therefore, the increased level of 2,3-DPG may be associated

with hypoxia resulting from lung inflammation due to infection.

Our study also identified several amino acids with significant

changes between infected and control samples. Notable alterations

include serine, proline, seryl arginine, and N-a-Acetyl-L-arginine.

Seryl arginine and N-a-Acetyl-L-arginine are derivatives of

arginine. Arginine metabolism is essential for influenza virus

replication, with studies showing reduced virus yield in arginine-

depleted cultures (Schierhorn et al., 2017; Becht, 1969).

Additionally, serine, involved in sphingolipid metabolism, is

crucial for various stages of influenza virus lifecycle, including

entry, budding, and propagation (Avota et al., 2021). Thus,

alterations in amino acid metabolism likely play a significant role

in viral propagation within the host. It may be noted that the

metabolite level changes observed in the lungs and serum are

indicative of the initial inflammation and host responses to HPAI

H5N1infection, however, clinically only slight dullness was

observed in the infected birds at 12hr post inoculation. This

might be due to the fact that though the metabolite changes have

just started to appear in the lungs and serum, the clinical impacts

were so far only minimal owing to homeostatic mechanisms active

in other tissues in intact birds.

By comparing the pathway profiles of the lungs and serum after

infection, we identified several commonly affected pathways,

including sphingolipid metabolism, tryptophan metabolism,

homocysteine degradation, and the glucose-alanine cycle.

Additionally, there are pathways uniquely impacted in the lungs,

such as the malate-aspartate shuttle, taurine and hypotaurine

metabolism, and spermidine and spermine metabolism. In

contrast, the serum exhibited alterations in pathways related to

arginine and proline metabolism, estrone metabolism, and

nicotinate and nicotinamide metabolism, among others.

Pathways such as homocysteine degradation, estrone

metabolism, taurine and hypotaurine metabolism, nicotinate and

nicotinamide metabolism, and steroidogenesis show high

enrichment in our study following infection. However, the roles

of these pathways are not well characterized with respect to

influenza, especially in mammals. Therefore, these pathways

could be uniquely related to avian species, but further

research is needed to understand their actual roles in chicken

following infection.

We have identified potential metabolomic biomarkers

associated with HPAI H5N1 infection in chicken. Through ROC

curve analysis, metabolites with an AUC value exceeding 0.7 were

deemed as potential biomarker candidates. From these candidates,

we selected specific metabolomic markers based on their roles in

metabolic pathways that exhibited significant enrichment (p < 0.05)
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and had prior studies linking them to the influenza A virus. We

propose sphingosine, PS(16:1(9Z)/16:1(9Z)), 11,14,15-THETA, and

indoleacetaldehyde as metabolomic markers in the lungs following

HPAI H5N1 infection. Sphingosine is involved in the sphingolipid

metabolic pathway, which showed significant enrichment (p < 0.05)

in our study. Similarly, indoleacetaldehyde is part of the tryptophan

metabolism pathway, which also demonstrated significant

enrichment (p < 0.05). PS(16:1(9Z)/16:1(9Z)) was chosen due to

its established association with influenza A virus infection, as noted

by Shiratsuchi et al. (2000) and Moller-Tank and Maury (2014).

Additionally, 11,14,15-THETA, a product of the 15-lipoxygenase

pathway of arachidonic acid, has been linked to hypoxia, as

reported by Zhu et al. (2003). Given that hypoxia can arise from

lung injury caused by the influenza virus, 11,14,15-THETA is

considered a relevant biomarker. For serum analysis, we identified

quinolinic acid, guanidoacetic acid, L-proline, L-serine, and N-

palmitoyl phenylalanine as potential biomarkers. Quinolinic acid

is part of the tryptophan metabolism pathway, which has been

associated with influenza in multiple studies (Cui et al., 2016;

Chandler et al., 2016; Gaelings et al., 2017). Guanidoacetic acid is

linked to the arginine and proline metabolism pathway, which is

significantly enriched, with its correlation to the influenza A virus

documented by Schierhorn et al. (2017) and Becht (1969). L-proline

and L-serine, both amino acids, along with N-palmitoyl

phenylalanine, a phenylalanine derivative, are vital for viral

development, making them strong candidates for metabolomic

markers.Further validation is necessary to confirm these

suggested metabolites through testing with field samples of a

larger size and targeted metabolome analysis. Other metabolites

with strong AUC values may also serve as markers, but currently,

there is insufficient data linking them directly to HPAI

H5N1 infection.
5 Conclusion

Our study identified significant alterations in metabolites and

pathways following HPAI H5N1 infection with more pronounced

alterations in the lungs compared to serum suggesting lungs is the

primary site of infection. We found notable enrichment in

sphingolipid metabolism, tryptophan metabolism, and arginine

and proline metabolism in chicken, aligning with findings in

mammals. The alterations in the sphingolipid pathway suggest

that the virus may utilize it for structural interactions, while

changes in tryptophan metabolism could explain the central

nervous system (CNS) signs often observed after infection. Due to

the absence of a comprehensive chicken-specific metabolome

database, we relied on human databases for metabolite and

pathway identification. Nonetheless, our findings will contribute

to the development of a dedicated chicken metabolome database

and support future research. The biomarkers identified in this study

may serve as potential tools for disease diagnosis following proper

validation. Further investigation into these metabolic changes can

enhance our understanding of HPAI pathogenesis and facilitate

advancements in disease diagnosis and control.
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