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Shanghai, China, 4National Clinical Research Center for Infectious Disease, Shenzhen Third Peoples
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Introduction: HIV-associated cryptococcosis is marked by unpredictable

disease trajectories and persistently high mortality rates worldwide. Although

improved risk stratification and tailored clinical management are urgently needed

to enhance patient survival, such strategies remain limited.

Methods: We analyzed clinical and immunological data from 98 HIV-related

cryptococcosis cases, employing machine learning techniques to model disease

severity and predict survival outcomes. Our approach included unsupervised

clustering, elastic net regularized Cox regression, and random survival forests.

Model performance was rigorously assessed using the C-index, Brier score,

Calibration and time-dependent AUC, with validation executed through a

comprehensive, multi-replicated nested cross-validation framework.

Results: Through cytokine profiling, we identified an immune phenotype

characterized by excessive inflammatory response (EXC), associated with

greater disease severity, more frequent neurological symptoms, and poorer

survival outcomes compared to the other two immune phenotypes,

highlighting its potential significance in risk stratification. To further support

clinical decision-making, we developed an elastic net regularized Cox regression

model, achieving superior predictive accuracy with a mean C-index of 0.78 for

36-month outcomes and a mean Brier score of 0.13, outperforming both

random survival forest and traditional Cox models. Time-dependent AUC

analysis validated the model’s robustness, with AUC values of 0.84 at 12

months and 0.79 at 36 months, indicating its reliability and potential

clinical utility.

Discussion: This study presents comprehensive and multidimensional

approaches to overcome the challenges commonly encountered in real-world

clinical settings. By applying cytokine-based clustering, we illustrate the potential

for more nuanced severity stratification, offering a fresh perspective on disease

progression. In parallel, our penalized survival model provides a step forward in
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personalized risk assessment, supporting informed clinical decisions and

customized patient management. These findings suggest promising directions

for individualized healthcare solutions, leveraging machine learning to enhance

survival predictions in HIV-related cryptococcosis.
KEYWORDS

HIV, cryptococcosis, machine learning, survival prediction, cytokine, penalized
Cox regression
1 Introduction

HIV-associated cryptococcosis remains a severe, life-

threatening opportunistic infection, especially among individuals

with profound immunosuppression (Pasquier et al., 2018). Despite

advancements in antiretroviral therapy (ART), cryptococcal

meningitis continues to pose high morbidity and mortality rates

worldwide, particularly in low- and middle-income countries

(Pasquier et al., 2018). The rapid and unpredictable progression

of the disease underscores the urgent need for effective risk

assessment tools to identify high-risk patients early and enable

timely, targeted interventions to improve clinical outcomes.

While numerous models have been developed to predict HIV

infection risk, guideline-endorsed tools for widespread clinical use

remain lacking due to challenges in generalizability, data

completeness, and practicality for clinical integration (Li et al., 2024).

Additionally, Cytokine dysregulation and inflammation likely

contribute to CD4+ T cell depletion and persistent viral load in HIV

pathogenesis (Hunt PW., 2012). More studies were incorporating

diverse data sources into clinical research, to our knowledge, limited

research has involvedmultiplex cytokine profiling in predictive models.

The complexity of HIV, with its various complications, poses

significant challenges for traditional statistical models like Cox

proportional hazards (Cox PH) for survival analysis (Cox, 1972)

and logistic regression for non-survival outcomes (Efthimiou et al.,

2024). While valued for their interpretability, these models face

limitations of multicollinearity and non-linear effects when

handling multiple features. In contrast, machine learning (ML)

models excel at managing large, complex datasets by automatically

identifying intricate patterns without strict statistical assumptions

(Waring et al., 2020). They can integrate diverse data types—such as

immunological markers and clinical parameters—for more accurate

predictive models. Commonly used ML models in clinical research

include support vector machines (SVM) and random forests (RF),

both demonstrating strong predictive performance (Liu et al.,

2020). However, for survival analysis, random survival forests

(RSF) are among the few ML-based approaches gaining traction,

as traditional Cox regression remains predominant despite the

advantages offered by more flexible ML techniques (Li et al., 2024).

Large datasets are typically preferred for developing robust

models and ensuring accurate evaluations. However, real-world
02
clinical trials—particularly those addressing HIV-associated

conditions—often struggle with limited sample sizes. Relying on

simple train-test splits can yield biased performance estimates and

poor generalizability due to variability in data division. To mitigate

these risks, techniques such as cross-validation (CV) and leave-one-

out cross-validation (LOOCV) are commonly used (Vabalas et al.,

2019). More recently, nested cross-validation(nested CV) has

emerged as a superior approach, utilizing an inner loop for model

tuning and an outer loop for performance evaluation (Vabalas et al.,

2019). This method maximizes data efficiency, provides more

reliable performance metrics, and minimizes the risk of

overfitting, which is crucial when dealing with small datasets and

complex clinical variables.

To tackle these challenges, our study seeks to develop and

validate reliable survival prediction models by employing advanced

machine learning techniques and combining immunological and

clinical data, specifically for HIV-associated cryptococcosis. We

utilize nested cross-validation to ensure our findings are robust and

generalizable, ultimately contributing to more accurate and

practical tools for clinical decision-making—even in resource-

limited settings.
2 Materials and methods

2.1 Data collection

We collected data from all patients with HIV-associated

cryptococcosis admitted to the Shanghai Public Health Clinical

Center between January 1, 2016, and June 1, 2024. After filtering for

completeness of demographic data, clinical features, laboratory tests,

and CT imaging characteristics, a total of 98 patients with high-quality

plasma samples were included in this study. Disease severity for all

patients was assessed within 24 hours of admission using the Sequential

Organ Failure Assessment (SOFA) score, the Confusion, Urea

nitrogen, Respiratory rate, Blood pressure, and Age ≥65 years

(CURB-65) severity score, the Acute Physiology and Chronic Health

Evaluation (APACHE-II) scoring system, the Veterans Aging Cohort

Study (VACS) 2.0 index score, and the Glasgow Coma Scale (GCS)

(McGinnis et al., 2022; Rosas-Carrasco et al., 2022). All patients

received antifungal therapy upon diagnosis of cryptococcosis, with
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antiretroviral therapy (ART) initiated at least 4–6 weeks after the start

of antifungal treatment (Chang et al., 2024). Plasma samples were

collected prior to any treatment and sent to the specimen bank of the

Infection and Immunology Department at the Shanghai Public Health

Clinical Center. Samples were centrifuged at 1000 g for 20 minutes,

divided into aliquots, and stored at –80° C until further

experimentation. All samples underwent a quality screening process

before subsequent testing.
2.2 Experimental measures and
preprocessing

2.2.1 Cytokines and chemokines
A total of 98 plasma samples were experimented with themultiplex

ELISA method (Bio-Plex Pro Human Cytokine 27-plex Assay, catalog

no: #M500KCAF0Y, Bio-Rad Laboratories, Inc., Hercules, CA, USA).

The following cytokines and chemokines were measured: interleukins

(IL)-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13,
IL-15, IL-17, IFNg, tumor necrosis factor-a (TNFa), interferon-
inducible protein-10 (IP-10), IL-1RA, monocyte chemoattractant

protein-1 (MCP-1), macrophage inflammatory protein-1a (MIP-1a),
macrophage inflammatory protein-1b (MIP-1b), platelet-derived
growth factor-BB (PDGF-BB), RANTES, granulocyte–macrophage

colony-stimulating factor (GM-CSF), granulocyte colony-stimulating

factor (G-CSF), vasoactive endothelial growth factor (VEGF), fibroblast

growth factor (FGF), and Eotaxin. Cytokine and chemokine levels were

quantified using Bio-Plex Manager software. Values below the

detection threshold were recorded as zero, indicating undetectable

levels. Values exceeding the upper limit of the standard curve were

considered out of the assay’s scope and assigned the maximum value

on the curve.

2.2.2 Flow cytometry assays
Peripheral blood mononuclear cells (PBMCs) from prior-

treatment patients were isolated by Ficoll-Paque density gradient

centrifugation and seeded in 96-well plates (2 × 105 cells/well). Cells

were stimulated with purified cryptococcal mannoprotein for

cryptococcal antigen (CrAg) detection. The cryptococcal

mannoprotein-free stimulation group served as an autologous

control, while PMA/ionomycin-treated cells (eBioscience, USA)

served as positive controls. Following 2-hour incubation, protein

transport inhibitor (eBioscience, USA) was added, and cells were

cultured for an additional 8 hours.

Cell viability was assessed using Live/Dead Fixable Violet dye

(Invitrogen, USA). Surface markers were analyzed using anti-human

CD3-Alexa Fluor 700 (Clone OKT3; BioLegend, USA), anti-human

CD4-FITC (Clone RPA-T4; BD Pharmingen, USA), anti-human CD8-

APC-H7 (Clone SK1; BD Pharmingen, USA), anti-human CCR7-PE

(Clone REA108; MACS, Germany), and anti-human CD45RA-APC

(Clone HI100; BD Pharmingen, USA). Following surface staining, cells

were fixed and permeabilized using the Cytofix/Cytoperm kit (BD

Biosciences, USA). Intracellular cytokines were detected using

anti-human IFN-g-BV421 (Clone 4S.B3; BD Horizon, USA) and

anti-human TNF-a-PE-CF594 (Clone MAb11; BD Horizon, USA).
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Intracellular staining was performed at 4° C for 40 minutes. Data were

acquired using an LSR Fortessa flow cytometer (BD Biosciences) and

analyzed with FlowJo™ software version 10.9.0 (BD Life Sciences).
2.3 Statistical methods

2.3.1 Hierarchical clustering
We applied hierarchical clustering to identify distinct immune

phenotypes based on a comprehensive cytokine profile. A total of 27

cytokines were measured and standardized for analysis. Ward’s

method, chosen for its ability to minimize within-cluster variance,

was selected for its robust clustering performance. It also achieved the

highest agglomerative coefficient (AC = 0.89) compared to other

linkage methods, such as single, complete, and average linkage,

reinforcing its suitability for our data. The optimal number of

clusters was determined to be three, based on an integrated

evaluation of total within-cluster sum of squares, average silhouette

width, and dendrogram analysis, which collectively indicated the best

balance between compactness and separation. To further enhance

model relevance and reduce noises, we refined the cytokine dataset

by filtering down from 27 to 22 cytokines, retaining only those with

significant inter-group differences. This filtering step improved clarity

and interpretability of the clustering results. Euclidean distance was

used as the metric to calculate dissimilarities between data points.

2.3.2 Survival model development and validation
We analyzed high-dimensional data, including demographic,

clinical, and cytokine measurements. To improve the 3-year survival

analysis, we performed univariate survival analysis for initial variable

selection, retaining only significant variables (Supplementary Table 2).

Missing data were imputed using random forest; categorical variables

were encoded as factors, and continuous variables were standardized.

Nested 5-fold cross-validation with 10 replicates optimized model

parameters and estimated performance.

An elastic net regularized COX model (Tibshirani, 1996),

integrating Lasso (L1) and Ridge (L2) penalties, was employed to

identify key predictors of 3-year mortality. Regularization

parameters a (alpha, L1-L2 balance) and l (lambda, penalty

strength) were optimized using cross-validation, with an optimal

alpha value of 0.1 selected based on the highest mean concordance

index (C-index) and minimized variability. We also developed a

RSF model (Ishwaran et al., 2008) using nested cross-validation.

The outer loop assessed performance; the inner loop optimized key

parameters: number of variables tried at each split (mtry), number

of trees in the forest (ntree), and minimum size of terminal nodes

(nodesize). Final parameters (mtry = 4, ntree = 2000, nodesize = 5)

were chosen based on the lowest average out-of-bag (OOB) error.

To compare 36-month survival predictions across the immune

phenotypes, we developed a Cox PHmodel focusing on the EXC group

versus the others. A biomarker-based reference model from our

previous publication (Wu et al., 2024) was used for benchmarking.

Model performances were evaluated using the Concordance index (C-

index) on unseen test data, along with the Brier score, calibration plots,

and time-dependent area under the curve (AUC).
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2.3.3 Statistical analysis
All analyses were performed using R (version 4.4.0) (The R core

team, 2024) with relevant packages like tidyverse (Wickham, 2019),

MissForest (Stekhoven and Buhlmann, 2012), pheatmap (Kolde,

2019), survminer (Alboukadel Kassambara et al., 2024), survival

(Therneau, 2024), glmnet (Friedman et al., 2010), nestedcv (Lewis

et al., 2023), randomForestSRC (Ishwaran, 2024), pec (TA, 2023),

and timeROC (Blanche et al., 2013). Categorical variables were

expressed as frequencies and percentages; continuous variables as

means and standard deviations (SD). For group comparisons, we

used ANOVA or Kruskal-Wallis tests for continuous variables and

c2 or Fisher’s exact tests for categorical variables. Pairwise

comparisons utilized the Mann-Whitney U test. Correlations

between cytokine levels were analyzed using Pearson’s correlation.

Non-linear relationships were modeled using Restricted Cubic

Splines (RCS), and Kaplan-Meier (KM) survival curves estimated

survival probabilities. Statistical significance was set at p < 0.05.
3 Results

3.1 Identification and characterization of
immune phenotypes

Using unsupervised clustering on data from 98 patients with HIV-

related cryptococcosis, we identified three distinct immune phenotypes:

Mild Immune Response (MILD, n = 21), Moderate Immune Response

(MOD, n = 44), and Excessive Inflammatory Response (EXC, n = 33).

Cytokine profiles visualized through heatmaps and principal

component analysis (Figures 1A, B) showed clear separation among

the groups. Levels of cytokines such as IL-2, IL-10, IFN-g, and Eotaxin

progressively increased from MILD to MOD to EXC (Figure 1C),

indicating distinct immune activation patterns correlated with disease

severity. Interestingly, IL-9 levels were higher in the MILD group

compared to EXC. Demographic characteristics like gender, age, and

BMI were similar across groups (Table 1). Clinically, the EXC group

exhibited a higher prevalence of symptoms such as hearing loss and

signs of meningeal irritation.While CD4+ T cell counts were uniformly

low (<40 cells/mL) across all groups, CD8+ T cell counts were

significantly lower in the EXC group (287 cells/mL) compared to

MILD (515 cells/mL, Table 1, Figure 2B). Flow cytometry analysis

revealed significant differences in immune cell subsets, particularly,

CD8+ effector memory T cells (TEM), across different phenotypes

(Figure 2E, Supplementary Figure 3).
3.2 Disease severity stratified by immune
phenotypes

The EXC phenotype was associated with poorer short-term

outcomes and greater disease severity compared to MILD and

MOD (Figure 1A). Significant differences in CURB-65 severity

levels were observed among the three groups (Table 1), while

SOFA, Glasgow Coma Scale, and VACS 2.0 scores showed no

significant associations. Apache II scores were notably higher in the
Frontiers in Cellular and Infection Microbiology 04
EXC group compared to MILD (Table 1, Figure 2A). The EXC

group had a shorter mean duration from symptom onset to

admission (21 days) compared to MILD (35 days), with no

significant difference in time to diagnosis (Figures 2C, D).

Correlation analysis indicated a stronger association between

cytokines and cryptococcal antigen (CrAg) titers in the EXC

group (Figure 2F).
3.3 Three-year survival predictive models

To develop a robust 3-year survival prediction model, we

constructed a penalized Cox model incorporating immunological

and clinical features, optimizing the balance between L1 (Lasso) and

L2 (Ridge) penalties. The optimal model (a = 0.1) achieved a mean

concordance index (C-index) of 0.78 across 10 replicates (Figures 3A,

B). As shown in Figure 3C, key positive predictors included Eotaxin

(coefficient: 0.27) and IL-1RA (coefficient: 0.24), both strong indicators

of higher mortality risk. Additional significant contributors were CD8+

TEM cells and central lesion distribution. Negative predictors, such as

cerebrospinal fluid (CSF) red and white blood cell counts, were

associated with reduced mortality risk. In contrast, despite extensive

tuning, the RSF model underperformed, with C-index values

consistently below 0.5 (Figures 3D–F), underscoring the superior

predictive capacity of the penalized Cox model in our cohort.
3.4 Comparative survival model
performance and evaluation

We compared the predictive performance of different survival

models, including an optimized Coxmodel from our previous research.

The penalized Coxmodel (Model 1,a = 0.1) consistently demonstrated

the highest mean C-index, indicating exceptional predictive accuracy

and consistency (Figure 4A). In contrast, the RSF model (Model 3) and

the EXCL phenotype-based Cox model (Model 4) exhibited lower and

more variable C-index values, reflecting weaker and less reliable

performance. The penalized Cox model also had the lowest Brier

scores (Figure 4B), highlighting its precision in predicting survival

probabilities. Calibration plots at 36 months (Supplementary Figure 6)

showed close alignment between predicted and actual outcomes.

Receiver operating characteristic (ROC) analysis at 12 and 36

months (Figures 4C, D) further underscored the model’s strong

discriminatory power, with AUC values of 0.84 and 0.79,

respectively. The IL-1RA-based Cox model (Model 2) performed

slightly less well, while the RSF model had limited predictive

capacity, indicated by an AUC around 0.60.
4 Discussion

This study demonstrates that ML-based methods for risk

stratification and survival prediction in HIV-associated

cryptococcosis outperform traditional survival analysis in both

accuracy and reliability.
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TABLE 1 Clinical and immunological characteristics of HIV-related cryptococcosis cases stratified into three immune phenotype groups: MILD (N =
21), MOD (N = 44), and EXC (N = 33).

Overall (N=98) MILD (N=21) MOD (N=44) EXC (N=33) p-values

Gender 0.581

Male 13 (13%) 2 (10%) 5 (11%) 6 (18%)

Female 85 (87%) 19 (90%) 39 (89%) 27 (82%)

Age (years), Mean (SD) 42.4 (± 13.2) 37.9 (± 12.2) 43.6 (± 12.2) 43.6 (± 14.8) 0.22

BMI (kg/m2), Mean (SD) 19.9 (± 3.4) 19.2 (± 2.5) 20.7 (± 4.1) 19.4 (± 2.5) 0.134

Neurological Symptoms 61 (62%) 16 (76%) 21 (48%) 24 (73%) 0.027

Hearing Loss 6 (6%) 1 (5%) 0 (0%) 5 (15%) 0.022

Asymptomatic 23 (23%) 0 (0%) 5 (11%) 18 (55%) <0.001

Signs of Meningeal Irritation 10 (10%) 0 (0%) 3 (7%) 7 (21%) 0.026

(Continued)
F
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FIGURE 1

Identifications of three distinct immune phenotype groups based on serum cytokine profiles in HIV-related cryptococcosis cases using hierarchical
clustering (N = 98). (A) Heatmap illustrating cytokine profiles with severity-related clinical features across the three immune phenotypes (patient distribution:
MILD = 21, MOD = 44, EXC = 33). (B) 3-dimensional principal component analysis (PCA) plot demonstrating the separation of the three immune
phenotypes. (C) Comparative analysis of cytokine distributions across the immune phenotype groups. Statistical significance is denoted as: * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001. MILD, Mild immune response; MOD, Moderate immune response; EXC, Excessive inflammatory
response; FGF, Fibroblast growth factor; IFN-g, Interferon-gamma; GM-CSF, Granulocyte-macrophage colony-stimulating factor.
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As pivotal regulators of immune responses, cytokines are

traditionally used to reflect disease progression based on predefined

clinical parameters (Shebl et al., 2012), this approach may not capture

the full complexity of immune dysregulation in opportunistic

infections like cryptococcosis. By employing unsupervised

clustering of cytokine data, we uncovered inherent structures and

identified natural groupings that were not immediately apparent but

correlated with disease stages, progression rates, and treatment
Frontiers in Cellular and Infection Microbiology 06
responses , which provided deeper ins ights into the

immunopathogenesis of HIV-associated cryptococcosis.

This data-driven subgrouping based on immunological markers

has been reported in diseases like COVID-19 (Mueller et al., 2022) and

allergic asthma (Muehling et al., 2022), but its application in HIV is

limited so far. Our study is the first to identify three distinct immune

phenotypes—MILD, MOD, and EXC—in HIV-related cryptococcal

cases based on cytokine profiles. The EXC phenotype correlated with
TABLE 1 Continued

Overall (N=98) MILD (N=21) MOD (N=44) EXC (N=33) p-values

Gender 0.581

Pachynsis Pleurae 34 (35%) 3 (14%) 21 (48%) 10 (30%) 0.024

CD4 (cells/mL), Mean (SD) 29.7 (± 33.3) 26.1 (± 16.1) 34.0 (± 38.1) 26.1 (± 33.8) 0.518

CD8 (cells/mL), Mean (SD) 363 (± 291) 515 (± 347) 357 (± 293) 287 (± 225) 0.026

HIV-1 RNA (×105 copies/mL), Mean (SD) 5.43 (± 15.8) 2.09 (± 2.01) 6.39 (± 16.6) 6.07 (± 19.1) 0.625

Extrapulmonary dissemination 19 (19%) 3 (14%) 15 (34%) 1 (3%) 0.002

Vacs 2.0 score, Mean (SD) 82.4 (± 10.5) 80.4 (± 10.1) 82.4 (± 10.7) 83.5 (± 10.7) 0.667

SOFA score 0.232

SOFA < 2 59 (60%) 16 (76%) 24 (55%) 19 (58%)

SOFA ≥ 2 39 (40%) 5 (24%) 20 (45%) 14 (42%)

APACHE II score 0.071

Low risk [0,15] 4 (4%) 0 (0%) 0 (0%) 4 (12%)

Moderate risk [16-30] 76 (78%) 18 (86%) 35 (80%) 23 (70%)

High risk [31,71] 18 (18%) 3 (14%) 9 (20%) 6 (18%)

CURB-65 severity score 0.006

Low risk [0,1] 8 (8%) 0 (0%) 1 (2%) 7 (21%)

Moderate risk [2] 85 (87%) 21 (100%) 41 (93%) 23 (70%)

High risk [3,5] 5 (5%) 0 (0%) 2 (5%) 3 (9%)

Glasgow score 0.265

Coma [3,8] 20 (20%) 2 (10%) 8 (18%) 10 (30%)

Moderate [9,11] 3 (3%) 0 (0%) 1 (2%) 2 (6%)

Mild [12,14] 4 (4%) 1 (5%) 3 (7%) 0 (0%)

Consciousness [15] 71 (72%) 18 (86%) 32 (73%) 21 (64%)

Vacs 2.0 score 0.4

[50,83] 39 (40%) 9 (43%) 20 (45%) 10 (30%)

[83,110] 38 (39%) 6 (29%) 17 (39%) 15 (45%)

Anti-fungal Treatments 0.004

AmB+5FC ± Flu 64 (65%) 16 (76%) 20 (45%) 28 (85%)

Flu 17 (17%) 3 (14%) 13 (30%) 1 (3%)

Others 17 (17%) 2 (10%) 11 (25%) 4 (12%)
Continuous variables are expressed as mean ± SEM, and categorical variables are presented as counts (percentages). Comparisons across groups were performed using the chi-squared test or
Fisher’s exact test for categorical variables and one-way ANOVA or the Kruskal-Wallis test for continuous variables, as appropriate. All severity evaluation scores were calculated based on the
maximum values recorded from admission up to 24 hours.
BMI, Body mass index; APACHE II, Acute physiology and chronic health evaluation II; CURB-65, Confusion, urea, respiratory rate, blood pressure, age ≥65; SOFA, Sequential organ failure
assessment; VACS, Veterans aging cohort study; AmB, Amphotericin B; FLU, Fluconazole; 5-FC, 5-Fluorocytosine.
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the most severe disease presentation, including shorter symptom

durations, higher CURB-65 and APACHE II scores, and a threefold

increase in 36-month mortality rates compared to the MILD group.

Notably, the EXC group had significantly lower CD8+ T-cell counts

(below 300 cells/mL), while CD4+ T cell counts remained uniformly low

across all phenotypes. Flow cytometry revealed a significant increase in

CD8+ TEM cells in the EXCL group compared to the MILD type

(Supplementary Figure 3). We propose that in advanced HIV infection

complicated by cryptococcosis—commonly characterized by CD4+ T

cell depletion—complex immune phenotypes emerge. One such

phenotype is characterized by marked by excessive inflammatory

responses and elevated cytokines such as IL-2, IL-10, IFN-g, and
Eotaxin, likely associated with fungal antigen burden (Figures 1, 2).
Frontiers in Cellular and Infection Microbiology 07
As described previously (Ifergan et al., 2011), CD8+ TEM cells

demonstrate greater transmigration across the blood-brain barrier

compared with non-effector memory CD8+ T cells, with selective

recruitment further enhanced at the blood-brain barrier

endothelium. This phenomenon may underlie the higher prevalence

of central nervous system-related symptoms, elevated intracranial

pressure and higher CSF/serum albumin ratios observed in our EXC

group, ultimately exacerbating clinical outcomes. These findings align

with prior studies linking excessive immune activation (cytokine

storm) to a dysregulated CNS response in HIV-associated

cryptococcosis (Okurut et al., 2020). Notably, the EXC phenotype

may indicate a higher-risk subgroup requiring more immediate

attention upon admission to slow disease progression and improve
FIGURE 2

Immune phenotype characterization, high-dimensional flow cytometry analysis, and cytokine correlation in HIV-related cryptococcosis cases across
three immune phenotypes (NMILD = 21, NMOD = 44, NEXC = 33). (A–D) Violin plots illustrating key clinical features across the three immune
phenotypes, with the width of each violin representing the data distribution. (E) UMAP plot depicting the separation of the three distinct immune
phenotypes (NMILD = 6, NMOD = 33, NEXC = 6) based on high-dimensional flow cytometry data. (F) Correlation matrices showing the relationships
between immune mediators and pathogen load within each immune phenotype group. Statistically significant positive correlations are represented
in red and negative correlations in blue, with color intensity reflecting the correlation strength. Statistical significance for cytokine comparisons
between groups is denoted as follows: ns (p > 0.05), *p < 0.05, **p < 0.01. UMAP, Uniform Manifold Approximation and Projection; TEM, Effector
Memory T Cells; TCM, Central Memory T Cells; TN, Naïve T Cells; TEMRA, Terminally Differentiated Memory T Cells.
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survival rates, emphasizing the urgent need for clinicians to recognize

these immune phenotypes for better risk assessment and personalized

therapeutic interventions. On the other hand, prior studies have also

associated elevated CSF IFN-g levels with enhanced fungal clearance

and improved survival in HIV/AIDS patients with cryptococcal co-

infection (Jarvis et al., 2012; Jarvis et al., 2015). This apparent

contradiction may stem from compartmentalized immune responses

and stage-specific variations in host-pathogen interactions (Okafor

et al., 2020). Future studies combining paired peripheral and CNS

immune profiling with advanced machine learning approaches are

needed to elucidate these complex neuroimmune dynamics.

Previous meta-analyses (Li et al., 2024) have reported that the

traditional Cox PH model remains the predominant tool for
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survival analysis in HIV studies, despite its shortcomings in

handling overfitting and multicollinearity in high-dimensional

data. Addressing the need for fresh analytical approaches, we

employed a penalized Cox model incorporating regularization

techniques that introduce a penalty term to the loss function.

This method effectively addresses small sample sizes and high-

dimensional data by shrinking the coefficients of less important

variables toward zero, thereby performing variable selection and

reducing model complexity (Gui and Li, 2005). To enhance the

robustness of our findings, we utilized nested cross-validation with

multiple replicates, averaging performance metrics across runs to

mitigate the impact of data partitioning peculiarities—a critical

consideration when working with limited datasets.
FIGURE 3

Three-year survival predictive models and variable importance for HIV-related cryptococcosis. (A–C) Parameter tuning for alpha and lambda (l)
distributions based on the Concordance Index (C-index) and the variable importance from the penalized Cox model (alpha = 0.1), with features
ranked according to their contribution to the model’s predictive performance. (D–F) Distribution of the C-index across multiple replicates, out-of-
bag (OOB) error rate plot across trees, and variable importance plot from the random survival forest model (trees number: 2000, terminal node size:
5). (G) Restricted cubic spline (RCS) curve for the potential biomarker IL1-RA. (H) Kaplan-Meier survival curves stratified by the three distinct immune
phenotypes(NMILD = 21, NMOD = 44, NEXC = 33) over 36 months, with the p-value from the likelihood ratio test displayed to show the significance
of differences between groups. The first 10 variable contribution values were displayed on variable importance plots. C-index, Concordance Index;
OOB, Out-of-Bag Error.
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Our optimized penalized Cox model demonstrated superior

performance compared to other predictive models, including the

previously best-performing traditional Cox PH model based on

IL-1RA levels (Wu et al., 2024). While IL-1RA was identified as a

potential biomarker for predicting survival in disseminated HIV-

associated cryptococcosis, it lacks generalizability across different

disease stages. In contrast, the penalized Cox model yielded a mean

concordance index of 0.78, a mean Brier score of 0.13, and time-

dependent AUC values of 0.84 at 12 months and 0.79 at 36 months.

These metrics collectively indicate that our penalized Cox model

possesses high accuracy, specificity, sensitivity, and reliability.

This model highlighted Eotaxin, IL-1RA, central lesion distribution,

CD8+ TEM, and hemiplegia as key contributors to 36-month mortality

risk. These factors partially aligned with findings detected in the EXC

phenotype, suggesting their importances in understanding disease
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progression. We also explored the use of the RSF model in our

cohort; however, our findings suggest that it may be unsuitable for

small cohorts of patients with complex disorders.

We acknowledge that, despite our efforts to collect data from one

of the largest regional HIV care centers in China, recruiting larger

cohorts was challenging due to limited patient availability, incomplete

data, and variable sample quality. This limitation may impact the

statistical power and generalizability of our findings. Additionally, the

retrospective design of our study limited the inclusion of CSF

cytokines, as lumbar punctures are not routinely performed in all

settings. Future multicenter studies with larger cohorts, prospective

designs, and CSF-blood paired analyses are needed to validate our

findings and strengthen the robustness of our model.

In summary, our study demonstrates the effectiveness of

machine learning methods for risk stratification and survival
FIGURE 4

Performance evaluation of survival prediction models for HIV-related cryptococcosis. (A, B) Comparative assessments of model performance using
the Concordance Index (C-index) and integrated Brier score over 36 months. Lines illustrate the consistency of model performance metrics across
multiple replicates. (C, D) Time-dependent AUC curves demonstrating variations in model performance at different time points (C: 12 months; D: 36
months). Each line represents the AUC values for a specific model over time, highlighting predictive accuracy at various follow-up durations. All
models were evaluated using replicated and nested cross-validation methods to ensure robustness and reliability.
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prediction in HIV-related cryptococcosis. Using unsupervised

clustering, we identified three distinct immune phenotypes—

MILD, MOD, and EXC—providing new insights into immune-

related disease severity. The penalized Cox regression model

outperformed traditional approaches, highlighting its potential for

clinical integration, especially in small and complex cohorts. These

findings underscore the need for further research to validate these

phenotypes and develop tailored therapeutic strategies, ultimately

aiming to improve outcomes for patients with HIV-related

opportunistic infections.
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