
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Francesca Turroni,
University of Parma, Italy

REVIEWED BY

Alin Laurentiu Tatu,
Dunarea de Jos University, Romania
Helena Vidaurri De La Cruz,
General Hospital of Mexico, Mexico

*CORRESPONDENCE

Jinge Xin

xinjinge@foxmail.com

Kai Han

hankmaster@163.com

†These authors have contributed equally to
this work

RECEIVED 11 December 2024

ACCEPTED 25 February 2025
PUBLISHED 19 March 2025

CITATION

Chen Y, Peng L, Li Y, Peng Y, Dai S, Han K
and Xin J (2025) Amplicon-based analysis
reveals link between adolescent acne and
altered facial skin microbiome induced
by negative emotional states.
Front. Cell. Infect. Microbiol. 15:1543616.
doi: 10.3389/fcimb.2025.1543616

COPYRIGHT

© 2025 Chen, Peng, Li, Peng, Dai, Han and Xin.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 19 March 2025

DOI 10.3389/fcimb.2025.1543616
Amplicon-based analysis
reveals link between adolescent
acne and altered facial skin
microbiome induced by
negative emotional states
Yu Chen1†, Lixia Peng1,2†, Yueying Li2†, Yusheng Peng1, Siqi Dai1,
Kai Han1,3* and Jinge Xin1*

1Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China,
2Department of Dermatology, Nanfang Hospital Taihe Branch, Guangzhou, China, 3Department of
Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
Introduction: The skin microbiome is integral to maintaining skin homeostasis

and is involved in the pathogenesis of acne. Emerging evidence supporting the

‘brain-skin axis’ suggests that psychological stress may exacerbate acne. Both

negative emotional states and acne are highly prevalent among adolescents.

Although research has begun to explore this relationship, the role of the skin

microbiome in adolescents experiencing emotional disturbances and acne

remains poorly understood.

Methods: 166 adolescents aged 15–18 were divided into four distinct groups

based on their emotional health and acne severity: no acne or negative emotions

(NC), acne without negative emotions (NS), negative emotions without acne (YC),

and acne with negative emotions (YS). Skin samples were collected from each

participant’s forehead and analyzed using high-throughput sequencing

techniques, followed by comprehensive bioinformatics analyses to evaluate

the microbial composition and diversity across the different groups.

Results: Adolescents with both acne and negative emotions exhibited

significantly higher acne severity (IGA 2.675 ± 0.090) compared to the group

with acne but without negative emotions (IGA 1.952 ± 0.136). Distinct microbial

community patterns emerged among the groups, with acne-affected individuals

displaying increased a-diversity. Additionally, negative emotions were associated

with heightened b-diversity differences between acne-affected individuals. The

predominant bacterial phyla identified were Firmicutes, Bacteroidetes,

Proteobacteria, and Fusobacteria, with Acinetobacter being more abundant,

and Roseomonas and Cutibacterium being less prevalent in adolescents

experiencing negative emotions.

Conclusion: This study revealed that the bacterial biomarkers of the disease

change when acne is accompanied by negative emotions. Cutibacterium,
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Acinetobacter, and Roseomonas may be key contributors to acne exacerbation.

These findings underscore the importance of considering both emotional and

microbiological factors in the management of adolescent acne, particularly

within the context of the brain-skin connection.
KEYWORDS

skin microbiome, acne vulgaris, adolescents, negative emotions, 16S rRNA 43
sequencing, bioinformatics
1 Introduction

The skin microbiome is a highly complex and dynamic

ecosystem, comprising approximately one million microorganisms

per square centimeter across the 1.8 m² surface of human skin

(Belkaid and Naik, 2013; Belkaid and Segre, 2014; Schommer and

Gallo, 2013). Skin microbial communities play essential roles in

sustaining skin homeostasis by reinforcing the skin barrier

(Almoughrabie et al., 2023), maintaining pH balance (Nakamura

et al., 2020), inhibiting colonization by pathogenic bacteria (Claesen

et al., 2020; Nagy et al., 2006), and modulating both innate and

adaptive immunity (Agak et al., 2018; Sanford et al., 2016). The skin

microbiome is involved in the pathogenesis of various dermatological

conditions, including acne (Linehan et al., 2018; Naik et al., 2015,

2012; Scharschmidt et al., 2015; Weckel et al., 2023). Recent research

has highlighted the “brain-skin connection”, which investigates the

interplay between neurological and dermatological health (Marek-

Jozefowicz et al., 2022). Stress-induced hormonal fluctuations can

disrupt the central clock of the brain, which is crucial for maintaining

skin physiology (Mortimer et al., 2024). These changes can reduce

skin hydration, decrease blood flow and lipid production, and alter

the physiological environment of the skin, thereby affecting the

composition of the skin microbiome (Costello et al., 2009;

Dhabhar, 2000; Grice et al., 2009; Grice and Segre, 2011; McGinley

et al., 1980). Notably, mental health disorders and skin conditions

often manifest concurrently with depression and anxiety frequently

accompanying by acne (Costello et al., 2009). Psychological stress has

also been identified as a factor that can worsen acne severity (Loney

et al., 2008; Uhlenhake et al., 2010).

In 2024, approximately 1.2 billion of the world’s population will

be adolescents, accounting for one-sixth of the global population

(Trask, 2024). Adolescents are in a transition period from childhood

to adulthood and experience significant physiological and

psychological changes, including hormonal shifts and emotional

development (Eiland and Romeo, 2013). In this population,

negative emotions such as depression and anxiety, as well as

dermatological issues such as acne, are prevalent. According to the

World Health Organization, one in seven adolescents aged 10–19

years is affected by negative emotions, accounting for 13% of the

global disease burden in this demographic (Trask, 2024). Acne affects

nearly 90% of adolescents worldwide, making it one of the most
02
widespread conditions with an estimated annual economic impact of

$4 billion annually (Tan and Bhate, 2015). Given the distinct age-

related variations in the skin microbiome (Luna, 2020), research into

the brain-skin axis in adolescents is essential for developing strategies

for managing acne that is exacerbated by psychological stress.

We performed a cross-sectional pilot analysis of adolescents

aged 15–18, using 16S rRNA sequencing of the V3-V4 region to

investigate the diversity and composition of the facial microbiome

in individuals with acne and mood disorders. A machine learning

approach was utilized to identify significant microbial biomarkers

and microbiome function was predicted using PICRUSt2. The aim

was to characterize the microbiological characteristics of acne in

adolescents with negative emotions, potentially guiding the

development of innovative treatment strategies for this population.
2 Materials and methods

2.1 Subjects and sample acquisition

A total of 166 volunteers, including males and females, ages 15-

18 years, with and without acne, were enrolled after providing

informed assent with written informed parental consent. During the

study visit, dermatologists assessed acne severity using the 5-point

investigator global assessment (IGA) scale (Schneider et al., 2023;

Figure 1A; Supplementary Table S1). The inclusion criteria were as

follows: 1) subjects who had lived in Guangzhou, Guangdong

Province, China, for more than two years. 2) Healthy subjects

with no underlying skin/medical conditions other than acne, if

present. 3) No history of oral antibiotic dermabrasion or facial laser

therapy within 2 months prior to the start of the study. 4) Subjects

had not used topical antibiotics, benzoyl peroxide, or salicylic

washes within one month prior to the start of the study. 5)

Subjects had not used any cleansing or skincare products on their

faces within 12 h prior to the start of the study. 6) The female

participants were not breastfeeding, pregnant, or menstruating.

With reference to previous studies, skin swab was collected from

forehead area (Schneider et al., 2023). For subjects meeting the

inclusion criteria, a 7 cm2 area in the center of the forehead was

swabbed at medium pressure with a pre-wet sterile synthetic cotton

swab for 30 s and stored at -80°C until sequencing. Finally, swab
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samples were collected from 166 volunteers. All acne patients have

acne on the forehead.

To assess the psychological burden on all participants, two

standardized and validated questionnaires for depression and anxiety

were administered: the Self-Rating Anxiety Scale (SAS) (Zung, 1971)

and the Self-Rating Depression Scale (SDS) (Zung, 1965). Each

questionnaire contained 20 questions. According to the primary

screening diagnostic criteria of Chinese anxiety and depression

norms: SAS ≥50 and SDS ≥53 represent diagnosable anxiety and

depression, respectively (Wang et al., 2021). Demographic and clinical

data are provided in Supplementary Table S2.
2.2 DNA extraction, 16S rRNA gene
amplification and sequencing

DNA was extracted immediately from the collected frozen swabs

using commercial DNA kit (Nanjing Vazyme Biotech Co., Ltd.,

Nanjing, China) and following the manufacturer’s instructions.

PCR amplification of the V3-V4 region of 16S rRNA was using the

primers: 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and 806R (5’
Frontiers in Cellular and Infection Microbiology 03
GGACTACHVGGGTWTCTAAT-3’). Paired-end 2 × 250 bp

sequencing of the bacterial 16S rRNA gene was performed using

the Illumina MiSeq sequencing platform. The reaction of PCR was

carried out in the 25 mL system that contained Buffer (5×, 5 μl), Fast

pfu DNA Polymerase (5 U/μl, 0.25 μl), dNTPs (2.5 mM, 2 μl),

Forward and Reverse primers (10 uM, 1 μl), DNA Template (1 μl)

and ddH2O (14.75 μl). The amplification procedure consisted of

initial denaturation at 98°C for 5 min, degeneration at 98°C for 30 s

with 25 cycles, annealing at 53°C for 30 s, extension at 72°C for 45 s,

and a final extension at 72°C for 5 min. PCR amplicons were purified

and quantified using Vazyme VAHTSTM DNA Clean Beads

(Vazyme, Nanjing, China) and a Quant-iT PicoGreen dsDNA

Assay Kit (Invitrogen, Carlsbad, CA, USA), respectively.
2.3 Analysis of sequencing data

The QIIME2 (v2023.9.1, https://qiime2.org) pipeline and

various built-in plugins were used to perform bioinformatic

analysis of the sequencing data (Bolyen et al., 2019). The demux

plugin, cutadapt plugin (Martin, 2011), and DADA2 plugin
FIGURE 1

Experimental design and subject demographics. (A) Schematic of cohort characteristics and skin site location of skin microbiota collection. (B) IGA
score for each subject with acne, ** indicates p<0.01. (C) The rarefaction curves tend to attain the saturation plateau showing that the skin
microbiota of all samples was large enough to estimate the phenotype richness and microbial community diversity. M, male; F, female; A, acne; N,
normal; Y, negative emotions; N, no negative emotions; IGA, investigator global assessment of acne disease.
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(Callahan et al., 2016) were used to demux sequencing and cut

primers from the original data, and carry out quality filtering,

denoising, merging, as well as the removal of chimeric sequences.

DADA2 was also used to denoise the reads into amplicon sequence

variants (ASVs) and obtain a profile of the feature sequence. The

ASVs were aligned to construct a phylogeny between ASVs and

fasttree2 (Price, 2009). Finally, taxonomy were annotated using the

feature-classifier plugin (Price, 2009) based on the Navier Bayes

classifier and SILVA 138 database reference sequences (Quast et al.,

2012). The PICRUSt2 plugin for the QIIME2 and KEGG Orthology

databases was used for further predictive functional analyses

(Douglas et al., 2020; Kanehisa and Goto, 2000). STAMP was

used to identify differential pathways (Parks and Beiko, 2010).
2.4 Statistical analyses

The following analysis was performed using R-studio software

(V4.3.1). Briefly, the ‘diversity’ function was used to calculate Shannon

index of samples, the ‘vegdist’ function was used to calculate the Bray-

Curtis distance between samples, and the ‘adonis’ function was used to

implement permutational multivariate analysis of variance

(PERMANOVA). The functions are included in the vegan package

(2.6-4.1). Visualization and principal component analysis (PCoA)

were performed using the ggplot2 package (3.5.0). The Wilcoxon

rank-sum test was employed to measure difference for alpha diversity

index and relative abundance of taxa. PERMANOVA (999

permutations) was employed to identify significant differences

between groups (Li et al., 2022). Student’s t-test was adopt to test

for significance of microbial function between the two groups. The

random-forest clarification model was based on the randomForest

package (v4.7–1.1). Pearson correlation coefficient was used to

evaluate the correlation between IGA score and depression and

anxiety. A linear regression model was used to predict IGA scores.

The functions of correlation coefficient and linear regression model

are included in the tidyverse package (2.0.0).
3 Results

3.1 Human subjects and DNA sequencing
and screening

Adolescents (aged 15–18 years) with and without acne were

enrolled, with a total of 166 participants. Demographic data and

clinical parameters are shown in Supplementary Table S2. Among

acne subjects, the severity of acne in people with negative emotions

(mean ± SEM; IGA 2.675 ± 0.090, 72.5% is IGA of 3) was

significantly higher than that in people without negative emotions

(mean ± SEM; IGA 1.952 ± 0.136, 35.7% is IGA of 3, Figure 1B;

Supplementary Table S2). There were 38 adolescents with

depression (mild 13 cases, moderate 14 cases, severe 11 cases)

and 44 adolescents with anxiety (mild 19 cases, moderate 9 cases,

severe 16 cases). The Pearson correlation coefficient revealed that
Frontiers in Cellular and Infection Microbiology 04
the correlation between depression and IGA score was 0.1609 (p <

0.05), the correlation between anxiety and IGA score was 0.3191 (p

< 0.001, Supplementary Table S3). The regression model further

supports these findings, with an overall significant fit (p < 0.001,

Supplementary Table S3). Approximately 14.51% of the variance in

IGA Score can be explained by depression and anxiety. Both anxiety

(b = 0.4750, p < 1.46E-06) and depression (b = 0.3056, p = 0.00156)

were found to be significant predictors of IGA Score, with anxiety

showing a stronger effect (Supplementary Table S3). The 16S rRNA

raw sequence data have been deposited in the Genome Sequence

Archive under the accession code (GSA: CRA019782). A total of

13,291,498 raw reads were acquired after 16S rRNA sequencing of

the 166 samples. The datasets were then subjected to quality

filtration procedures, resulting in 11,291,331 clean reads for

subsequent analysis. The average number of sequences per sample

was 68,020 and 13850 amplicon sequence variants (ASVs) were

identified in the skin bacterial communities of the adolescents

(Supplementary Table S4). Of the 13,850 bacterial ASVs observed

across all samples, 13,571 (98.99%) were identified as phyla, 13,548

(97.82%) as classes, 13,433 (96.99%) as orders, 13,148 (94.93%) as

families, and 11,966 (86.40%) as genera (Supplementary Table S5).

The rarefaction curve, produced by the R software, tended to attain

a saturation plateau, showing that the microbiota of the 166 samples

were large enough to estimate phenotype richness and microbial

community diversity (Figure 1C). Thus, the results showed that the

sequencing data obtained in this study are reasonable and accurate.
3.2 The diversity of skin microbiome
of adolescents

We assessed the changes in facial microbiome diversity. To

assess the a-diversity, indices for Shannon, Simpson and Observed

features were calculated. The indices change across the patient

groups, the three indices in YS was significantly higher than in the

NC group (Figure 2A). Shannon, Simpson, and Observed features

in the acne group were higher than those in the non-acne group,

regardless of negative emotions. To visualize the structural

characteristics of the skin bacterial communities among the

different groups, principal coordinate analysis (PCoA) based on

Bray-Curtis distances was performed. The PCoA results indicated

that axes 1 and 2 accounted for 23.07% and 8.26% of the total

variation, respectively. The four groups formed clusters with partial

overlap as observed in the plot (Figure 2B). Further analysis using

permutation multiple variance analysis (PERMANOVA) showed

that the facial microbiota composition of adolescents exhibited

significant differences (p<0.05, Figure 2B).
3.3 Composition in skin microbiome
structure of adolescents

Next, we visualized the microbial composition of the facial

microbiota. At the phylum level, 28 taxa were observed in all

samples, of which 4 different taxa were most common (relative
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abundance >1%). Actinobacteria (50.75-65.47%), Firmicutes (17.70-

25.53%), Proteobacteria (11.84-19.91%), and Bacteroidetes (1.19-

1.79%) were the first, second, third and fourth most dominant phyla,

respectively (Figure 3A; Supplementary Tables S5, S6). At the family

level, 345 taxa were detected in all samples, of which the top 5 for

average relative abundance were Propionibacteriaceae (40.49-58.57%),

Staphylococcaceae (12.37-21.08%), Corynebacteriaceae (4.45-5.76%),

Neisseriaceae (2.50-4.75%), and Moraxellaceae (1.23-4.14%, Figure 3B;

Supplementary Tables S5, S6). At the genus level, 972 taxa were

detected in all samples, of which the top 10 for average relative

abundance were Cutibacterium (40.35%-58.53%), Staphylococcus

(12.36%-21.06%), Corynebacterium 1 (2.72%-3.41%), Streptococcus

(0.90%-3.09%), Lawsonella (1.19%-2.17%), Sphingomonas (1.07%-

2.06%), Enhydrobacter (0.74%-1.55%), Acinetobacter (0.42%-2.53%),

Paracoccus (0.90%-1.23%), Xanthomonas (0.61%-1.07%, Figure 3C;

Supplementary Tables S5, S6). Among the top 10 genera,

Cutibacterium evidently decreased in the YS (p < 0.01, Figure 3C).
3.4 Unique, shared, and core ASVs in skin
microbiota of four groups

To investigate the distribution of skin microbiota in the

different groups, a Venn diagram was used to analyze the
Frontiers in Cellular and Infection Microbiology 05
common, unique, and core ASVs (Figure 2C). Each group had a

unique ASV: NS (2965, 21.46%), YC (2734, 19.79%), YS (2765,

20.01%), and NC (1806, 13.07%). Adolescents with negative

emotions from the two groups shared 1853 ASVs, and

adolescents without negative emotions shared 1453. Excluding

the influence of emotion, 1970 ASVs were shared between

adolescents with acne and 1562 ASVs were shared between

those with healthy skin. The concept of “core microbiota” is

used to identify and describe key microorganisms that are stable

and permanent in a microbial community (Astudillo-Garcia et al.,

2017). Here, 958 ASVs were shared by all groups. These ASVs

primarily belonged to the phyla Proteobacteria (356),

Actinobacteria (221), and Firmicutes (203), or the families

Corynebacteriaceae (62), Staphylococcaceae (51), and

Burkholderiaceae (49).
3.5 Skin microbiota as biomarkers for
emotion and acne status

To determine whether members of skin microbiota can be

used as biomarkers to differentiate between emotional and acne

status, we established models using the machine learning random

forest approach to correlate the emotions and acne status of
FIGURE 2

Diversity in adolescents with different characteristics. (A) Alpha diversity of four groups. Wilcoxon rank-sum test: *p<0.05; **p<0.01. (B) Principal
coordinate analyses (PCoA) and permutation multiple variance analysis (PERMANOVA) show the structural differences in the communities of skin
bacteria. (C) Distribution of amplicon sequence variants (ASVs) across different groups.
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adolescents with genus-level skin microbiota data. We performed

a five-fold cross-validation with five repeats to evaluate the

importance of the indicator bacterial genera (Supplementary

Figure S1). This method has been recognized and applied by

other researchers (Zhang et al., 2019). Thus, we defined the top

eight genera as biomarkers in the model for all group pairs in the

order of group-discriminatory importance (Mean Decrease

Accuracy , MDA) (Figure 4) . As shown in Figure 4,

Acinetobacter, Roseomonas, Sphingomonas, Massilia, Cnuella,

Dermabacter, Aquipuribacter, Bosea differentiated YS from NS.

Hymenobacter, Sphingorhabdus, Leptotrichia, Actinomycetospora,

Sphingobium, Terrisporobacter, Negativicoccus, Hydrogenophilus

differentiated YS from NC. Sphingomonas, Bacillus, Delftia,

Sh imwel l ia , Lactobac i l lu s , Qipengyuania , Ce l lv ibr io ,

Stenotrophomonas differentiated NC from NS. Escherichia-

Shigella, Bacteroides, Dermabacter, Anaerococcus, Oribacterium,

Rumino co c c a c ea e UCG-014 , Glo eo cap sa PCC-7428 ,

Mycobacter ium were the most important genera for

discriminating the acne status (differentiating YS from YC).
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3.6 Functional predictions of
facial microbiota

To further understand the biological functions of the microbial

community, metagenomic functions of the bacteria were predicted

using the PICRUSt2 pipeline. A total of 7753 predicted metagenomic

functions were obtained and annotated using KEGG Orthology (KO,

Supplementary Table S7). KO exists primarily in metabolism,

organismal systems, human diseases, and cellular processes.

Various functional pathways of microbiota were observed in the

different groups, as shown in the heatmap (Supplementary Figure

S2), suggesting discrepant microbial functional potential among the

microbiota of several groups. In the YS & NC and NS & NC groups,

21 and 7 pathways differed significantly (p < 0.05), respectively; these

were significantly higher than the differences observed in the other

two comparisons (Figure 5). Compared with the NC group, pathways

were more abundant in the YS group, including protein families:

metabolism, Digestive system, Drug resistance: antimicro, and the

excretory system. Compared with NC, protein families metabolism,
frontiersin.or
FIGURE 3

Community relative abundance in different characteristics of adolescents. (A, B) Community composition of the skin microbiota among four groups
of adolescents at the phylum and family levels, respectively. (C) The top ten genera in the skin of adolescents.
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signaling molecules and interaction, excretory system, cellular

community, and prokaryotes showed a preference for NS (p <

0.05). In addition, 22 pathways were found to differ significantly (p

< 0.05) between YS and YC.
4 Discussion

Negative emotions and skin problems such as acne are two

important characteristics of adolescents; however, the relationship
Frontiers in Cellular and Infection Microbiology 07
between the skin microbiome, mood, and acne remains unclear.

Therefore, a better understanding of the skin microbiome

composition of adolescents with acne and negative emotions will

be helpful for managing the facial microbiome of specific

populations, by providing evidence to support targeted acne

treatment in the future. Focusing on negative emotions and acne,

this study characterized the composition and diversity patterns of

facial skin microbes in adolescents with and without negative

emotions and acne, compared the differences, and detected

important bacterial genera that could distinguish different groups.
FIGURE 4

Random forest based on machine learning to explore biomarker of genera between each group pair. Bar plot showed relative abundance of
biomarkers in groups.
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In addition, the metagenomic function of the skin microbiota of

adolescents was predicted, and functional differences between the

groups were compared. Research suggests that negative emotions

aggravate acne in adolescents, and this process may be related to the

skin microbiota.

The results of this study are consistent with those of previous

reviews, adolescents with negative emotions have more severe acne

(Cunliffe, 1980). The forehead was selected as the skin sampling

point to eliminate the influence caused by different skin sites (Sun
Frontiers in Cellular and Infection Microbiology 08
et al., 2024). Completely opposite results regarding the difference in

skin microbial diversity between patients with and without acne

have been reported. There are two reports investigating the skin

microbiota of acne patients in China, showing that the a-diversity
of skin microbiota in the acne group is greater than that in the

healthy control group, and there is a difference in b-diversity, which
is consistent with this study (Li et al., 2019; Shi et al., 2021).

However, there is also evidence showed that patients with acne

have significantly reduced alpha diversity in their skin microbiota
FIGURE 5

Several functions were detected existing significant difference in groups.
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(Cavallo et al., 2022). There are even studies that show no difference

in the diversity of skin microbiota between an acne group and a

healthy group has also been reported (Kim et al., 2021). Shannon,

Simpson, and observed features indexes were used to evaluate the

a-diversity of facial microbiota of adolescents. The results showed

that the a-diversity in the acne group was higher than that of the

healthy group with or without negative emotions, although not all

differences were significant, and YS was significantly higher than

NC in three indexes. In some cases, individuals with acne may

exhibit a higher microbial richness and diversity than healthy

individuals (Huang et al., 2023). Negative emotions can

exacerbate skin inflammation and disrupt skin balance, making

the skin more susceptible to environmental influences, allowing

more microbial colonization and increasing the abundance of

harmful bacteria (Sandoval and Ayres, 2017). In b-diversity,
significant differences were observed among the four groups.

Compared to the other groups, negative emotions had minimal

effects on the facial microbiome of adolescents with healthy skin but

increased facial microbiome differences between people with acne.

Compared with healthy people, people with acne generally have a

more unstable microbiota structure and show higher sensitivity to

negative factors, such as negative emotions (Yang et al., 2022).

Interestingly, YS had a completely different microbial community

structure than NS, which may be related to more severe acne in

people with negative emotions. The IGA scores and diversity results

suggest that the facial microbiome of adolescents with negative

emotions and acne deserves further attention. The key reason for

the different results in the literature may be difference in origin of

the subjects, and the different backgrounds of the subjects, such as

work, lifestyle, and age, may have increased sample diversity. In

addition, operational differences may have affected the results.

Therefore, in the future, a more detailed record of the various

factors that may affect skin microorganisms should be made during

the research implementation to provide more references for

subsequent researchers.

The species composition results in the present study were

consistent with those of other studies on facial skin microbes

(Filaire et al., 2019; O’Sullivan et al., 2019; Yamazaki et al., 2017).

Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes were

the predominant phyla in the skin of the adolescent population,

accounting for at least 97.6% of the total abundance in all samples

(Figure 3A; Supplementary Table S5). Considering the present results

and those from previous studies leads to the conclusion that, no

matter what factors affect the skin, these bacteria are core

components of the skin microbial community (Filaire et al., 2019).

At the genus level, Cutibacterium was the most abundant bacterium

in the facial skin, which may be because the sample site in this study

was the forehead. The forehead is one of the most densely populated

parts of the facial sebaceous glands and is suitable for Cutibacterium

to survive and breed (Spittaels et al., 2020). The acne group had a low

abundance of Cutibacterium, whereas the adolescents with negative

emotions and acne had the lowest abundance of Cutibacterium.

Cutibacterium comprises a variety of harmful and beneficial strains

that carry different virulence genes. C. acnes, for example, is thought
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to be significantly associated with the development of acne, but

whether it plays a positive or negative role remains debatable (Dreno

et al., 2017). Staphylococcus and Corynebacterium 1 were the second

and third most abundant bacteria on teenagers’ faces, respectively,

perhaps because the study was conducted in southern China where a

humid environment is more suitable for colonization by

Staphylococcus and Corynebacterium 1 (Grice et al., 2009; Grice

and Segre, 2011). Notably, the presence of Bacillus, a genus known

to form symbiotic relationships with Demodex, has been observed in

the skin microbiome of adolescents. It has been documented that the

Demodex-associated bacterial proteins were implicated in the

inflammation induction (Kubiak et al., 2018). The species

composition analysis suggest that the facial community structure of

adolescents with negative emotional acne should be detailed in the

future, especially Cutibacterium. This group were not only likely to

have more severe acne, but may also have new mechanisms for the

development of acne. Simultaneously, the presence of Bacillus

suggests that greater attention should be directed toward Demodex

in future studies. Considering the host-endosymbiotic relationship

and its interactions may provide valuable insights into the

pathogenesis of acne.

Individual characteristics of the skin microbiome are often

driven by low-abundance species that are critical for maintaining

physiological functions of the skin (Fierer et al., 2010). Therefore,

we selected random forest, an analytical method that has advantages

for analyzing low-abundance microorganisms, to mine biomarkers

(Ren et al., 2019). Completely different biomarkers were observed in

the group comparison. A Venn diagram also showed that at least

14.07% of the ASVs in the different groups were group-specific

microorganisms (Figure 2C), indicating significant differences in

facial skin microbial characteristics among the four groups.

Compared with the NS, there was a higher abundance

Acinetobacter and a lower abundance Roseomonas in the YS.

Acinetobacter is an important pathogen in skin diseases and is

widely present in infected or wounded skin (Loomis et al., 2021).

Interactions between Acinetobacter and other microorganisms

(C. acnes or Staphylococcus) may further complicate the skin

immune response (Lee et al., 2019). Roseomonas is a beneficial

bacterium that regulates the immune response and supports the

skin barrier function, which can maintain skin health (Ito and

Amagai, 2022). Roseomonas mucosa, in particular, has been used to

treat conditions such as atopic dermatitis (Myles et al., 2018).

Negative emotions can lead to more severe acne (Figure 1B;

Supplementary Table S3), when acne is accompanied by negative

emotions, the bacterial biomarkers of the disease change.

Acinetobacter and Roseomonas may play an important role in the

imbalance of the skin microbiome caused by negative emotions and

the inflammatory induction of more severe acne. Hymenobacter,

Sphingorhabdus, Leptotrichia and five genera were identified as

biomarkers for comparing YS and NC. In addition, eight HP&YP

biomarkers were identified in YS&YC and NS&NC to distinguish

the different groups. In the future, more methods should be

developed to identify key microorganisms and combine the

various characteristics of clinical acne. If the mechanism
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underlying acne is not fully understood, this practice can provide

more directions for relevant in-depth research.

Changes in the composition of the skin microbiota lead to

changes in the function of the skin microbiota, which inevitably

affect the occurrence and development of skin diseases (Guo et al.,

2023). A total of 7,753 predicted biological functions were obtained

in this study, and the characteristics of the function in skin

microbiota changed in different groups, as shown in the heat

map. The primary changes in NS and NC in the KEGG pathway

involved the following biological processes: energy metabolism,

signaling molecules, and interactions, which is consistent with a

previous study in healthy rats with acne (Zhu et al., 2022).

Compared with NC, YS had more differential metabolic pathways

than NS, indicating a more complex microbial metabolism in YS

facial microorganisms. In addition to most of the differential

metabolic pathways that contain NS&NC, differences in the

metabolism of amino acids between YS and NC were also

observed. Alterations in these substances may significantly disrupt

host skin homeostasis by stimulating skin keratinocytes and

immune cells (Chen et al., 2018). This may explain why YS acne

is more severe than NS acne. In addition, some comparisons did not

reveal significant differences in metabolic pathways, such as

YS&NS. This may be because the prediction was incorrect, certain

metabolic pathways were masked, or the study sample did not

reflect the true level of metabolism.

Although potential associations exist between acne, negative

emotions, and the skin microbiome, this study has several

limitations. First, unexamined factors, such as skin care (including

the frequency of facial cleansing, the type of cleansers used, and

traditional therapies for acne etc.) and diet (including different

glucemic index foods etc.), may influence acne severity, negative

emotions, and the skin microbiome. Second, individuals experiencing

negative emotion states may exhibit lower adherence to skincare

routines, potentially affecting the skin microbiome. Therefore, it is

necessary to expand the data further to investigate the association and

causality between adolescent acne and negative emotions, as well as to

examine the role of skin microbes in this relationship. Providing more

data on dermatological, psychological, and microbial characteristics in

adolescents is crucial for advancing research in this field.
5 Conclusion

This study explored the association between skin microbiome

composition, the presence of negative emotions, and acne in an

adolescent cohort. The results suggest that individuals experiencing

both acne and negative emotions possess a unique skin microbiome

profile, which potentially contributes to the heightened severity of

acne observed in this group. Notably, Cutibacterium, Acinetobacter,

and Roseomonas have been identified as key microbial taxa that may

play a role in the pathogenesis of acne linked to emotional stress.

Therefore, uniform management of adolescent acne problems may be

inappropriate. The skin microbiome of adolescents with negative
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emotions deserve more detailed attention. Interventions tailored to

the microbial characteristics of this population, such as the application

of probiotics, prebiotics, and customized skincare regimens, could

help alleviate acne severity triggered by emotional stress while

promoting skin microbiome homeostasis. However, the use of 16S

rRNA gene sequencing did not allow species-level biomarker

identification, highlighting the need for future research to employ

metagenomic and metabolomic approaches to uncover specific

biomarkers. Further investigations of Cutibacterium, Acinetobacter,

and Roseomonas are recommended to identify probiotic candidates or

pathogenic bacteria, ultimately providing a scientific basis for the

development of personalized microbiome-focused acne therapies.
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