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Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China,
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Klebsiella variicola is a member of Klebsiella pneumoniae complex and an

emerging zoonotic pathogen. As part of the lymphatic system, the spleen plays

a pivotal role in destroying invading pathogens. Various microRNAs (miRNAs) are

involved in host resistance to pathogens. However, specific miRNAs that act

against K. variicola remain unknown. Therefore, RNA sequencing (RNA-Seq) of

the miRNA profile of the chicken spleen was conducted to further clarify the host

immune response to K. variicola infection. Challenge of 7-day-old chicks with K.

variicola strain AHKV-S01 caused severe damage and enlargement of the spleen.

In total, 22 differentially expressed (DE) miRNAs (fold change>2, q< 0.05) were

identified. Functional annotation analysis of the target genes of DEmiRNAs found

that signaling pathways related to innate immunity, inflammation, and

metabolism were significantly enriched. Notably, expression of gga-miR-2954

was significantly upregulated in the infection group as compared to the control

group. In vitro, gga-miR-2954 directly repressed luciferase reporter gene activity

by binding to the 3′ untranslated regions of STAB1. Overexpression of gga-miR-

2954 in HD11 macrophages significantly inhibited expression of STAB1, which is

involved in activation of several proinflammatory cytokines. K. variicola induced

damage to the spleen by over activation of inflammatory and innate immune

responses. The observed changes to themiRNA expression profile of the chicken

spleen elucidate host immune responses to K. variicola infection, providing

critical insights for developing novel therapeutic strategies to enhance chicken

resistance against this pathogen.
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Introduction

The Klebsiella pneumoniae complex consists of seven K.

pneumoniae-related species, including K. variicola, which is

capable of infecting plants, insects, animals, and humans (Li

et al., 2024). Moreover, K. variicola is considered an emerging

pathogen worldwide and is often more virulent than K. pneumonia

(Rodrıǵuez-Medina et al., 2019). The capsule serves as a core

virulence factor in Klebsiella, with its synthesis dynamically

regulated by environmental cues (e.g., osmolarity, temperature)

and host immune pressure. Studies demonstrate that capsular

polysaccharide synthesis (CPS) genes are highly expressed during

early infection stages to evade immune clearance, while their

expression is epigenetically downregulated in later colonization

phases through promoter-region IS element insertions or

methylation, thereby enhancing biofilm formation (Ernst et al.,

2020; Song et al., 2024). Additionally, pilus expression exhibits

tissue specificity: Type 1 pili, mediated by the fim gene cluster,

facilitate epithelial adhesion during intestinal colonization, whereas

Type 3 pili (mrk gene cluster) dominate endothelial invasion and

immune evasion in systemic infections (Fan et al., 2023). Klebsiella

orchestrates virulence factor expression to navigate host immune

pressure, achieving multifaceted adaptation across diverse host

environments. Pan-genome phylogenetic analyses showed that K.

variicola isolated from diseased chickens was evolutionarily closely

related to the human K. variicola strain X39 (Shen et al., 2021).

Thus, avian strains of K. variicola could be pathogenic to other

animals and even humans. In addition, K. variicola tends to be

highly resistant to multiple antimicrobials, thereby demonstrating

potential to complicate treatment (Ge et al., 2023). Therefore, to

reduce economic losses to the poultry industry and to protect

animal and human health, it is critical to elucidate the

mechanisms underlying host resistance and immune responses

against K. variicola infection.

MicroRNAs (miRNAs) are a class of small non-coding RNAs of

20–23 nucleotides that play key regulatory roles in host–pathogen

interactions by repressing or degrading target mRNAs at the post-

transcriptional level (Chen et al., 2024). Notably, a recent study

implicated miR-92a, TLR4, and various cytokines in the response of

bovine mammary epithelial cells to infection by Mycobacterium

avium subsp. Paratuberculosis (Shandilya et al., 2023). In addition,

gga-miR-181b-5p was reported to participate in host immune and

inflammatory responses against infection of chicken macrophages

by avian pathogenic Escherichia coli via activation of the TGF-b
signaling pathway (Yang et al., 2023). However, further clarification

of the changes to the miRNA expression profiles of host cells in

response to K. variicola infection is needed to advance current

knowledge of the mechanisms underlying resistance and

susceptibility to bacterial infection.

The degree of activation of the host immune response is largely

determined by the virulence of the pathogen and the spleen can

elicit prompt innate and adaptive immune responses upon

recognition of the specific antigen in the lymph and blood

(Bronte and Pittet, 2023; Hosseindoust et al., 2023). However, due

to the under developed nature of the lymphatic vessels and nodes of
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avian species, the spleen serves as the principal lymphatic organ,

thereby acquiring a more significant role in immune function as

compared to mammals via integration of the innate and adaptive

immune responses involving the generation, maturation, and

storage of lymphocytes (Smith and Hunt, 2004; Tiron and

Vasilescu, 2008). Given the pivotal role of the spleen in the

systemic immune response, it would be advantageous to identify

genes activated in response to K. variicola infection and pathology.

Therefore, the aims of the present study were to characterize the

miRNA expression profile of the chicken spleen in response to K.

variicola infection and further identify related miRNA-mRNA

regulatory networks. The results of this study will help to further

clarify the pathogenesis of K. variicola in chickens and other

avian species.
Materials and methods

Study approval

All animal experiments were approved by the Institutional

Animal Care and Use Committee of the Institute of Animal

Husbandry and Veterinary Science of Anhui Academy of

Agricultural Sciences (permit no: AAAS-IAHVS-Po-2022-0051)

and conducted in strict compliance with the guidelines of “Animal

Research: Reporting of In Vivo Experiments” (Kilkenny et al., 2010).
Bacterial strains and growth conditions

K. variicola strain AHKV-S01 (GenBank accession number:

CP047360) was isolated from diseased chickens in China and

verified by whole-genome sequencing. Two days prior to bacterial

challenge, cultured K. variicola cells were streaked onto Luria–

Bertani (LB) agar and incubated overnight at 37°C. Afterward,

individual colonies of K. variicola were further cultured in 10 mL of

LB broth overnight at 37°C with shaking. On the day of challenge,

the bacteria were centrifuged at 5000 × g for 15 min and the

resulting bacterial pellet was washed three times with phosphate-

buffered saline (PBS) and resuspended in PBS. The bacteria in

suspension were quantified with aspectrometer at a wavelength of

600 nm. Finally, the inoculum was adjusted with PBS to the desired

bacterial concentration of 108 CFU/mL (Shen et al., 2021).
Animal study

Embryonated eggs from specific pathogen-free (SPF) Leghorn

chickens were purchased from Beijing Merial Vital Laboratory

Animal Technology Co. Ltd. (Beijing, China). The SPF eggs were

hatched under a controlled environment and the chicks were raised

in negative-pressure isolators to protect against all pathogens. At the

age of 7 days, 30 SPF chickens were orally challenged with 108 CFU of

K. variicola (1 mL) and 15 others received 1 mL of PBS by the same

method as a control group (Yin et al., 2023). At 24 h post infection,
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the chickens were euthanized and the spleens were immediately

harvested, frozen in liquid nitrogen, and stored at -80°C. For

histopathological analysis, the spleens of chickens from the infected

and control groups were fixed with 4% paraformaldehyde for 48 h,

then dehydrated, embedded in paraffin, and cut into 4-mm-thick

sections, which were stained with hematoxylin and eosin as

previously described (Wang et al., 2017).
Cell culture

DF-1 chicken fibroblasts were cultured in Dulbecco’s modified

Eagle’s medium supplemented with 10% fetal bovine serum

(Gibco™; Invitrogen Corporation, Carlsbad, CA, USA). Chicken

HD11 macrophages were cultured in Roswell Park Memorial

Institute 1640 medium containing 20 mM L-glutamine (Gibco™;

Invitrogen Corporation) and 10% fetal bovine serum (Gibco™;

Invitrogen Corporation). All cells were incubated at 37°C under an

atmosphere of 5% CO2 (Yang et al., 2023).
MiRNA sequencing and bioinformatics
analysis of target genes

MiRNA profiling of the spleens of K. variicola-infected chickens

was performed by Shanghai OE Biotech Co., Ltd. (Shanghai, China;

http://www.oebiotech.com). Briefly, RNA was extracted, labeled,

and hybridized to a rat miRNA microarray (070154 R; V21.0 8 ×

15K; Agilent Technologies, Inc., Santa Clara, CA, USA).

GeneSpring software (v13.1; Agilent Technologies, Inc.) was used

to normalize the raw data for identification of differentially

expressed miRNAs (DEmiRNAs), which were defined as a fold

change ≥1.5 and probability (P) value ≤ 0.05. Target genes of

DEmiRNAs were identified in reference to the databases

TargetScan (https ://www.targetscan.org/vert_80/) and

microRNAorg (https://ngdc.cncb.ac.cn/) (Griffiths-Jones et al.,

2008). Functional and pathway enrichment analyses of all

putative genes were performed in reference to the Gene Ontology

(GO; https://geneontology.org/) and Kyoto Encyclopedia of Genes

and Genomes (KEGG; https://www.genome.jp/kegg/) databases

based on a threshold of significance of P ≤ 0.05 (Ye et al., 2018;

Pian et al., 2020). Cytoscape software (http://www.cytoscape.org/)

was used to identify potential regulatory relationships between the

DEmiRNAs and target genes (Ragueneau et al., 2021).
Integration analysis of the miRNA and
mRNA data

Two datasets of miRNA and transcriptome sequences were used

for integration analysis between the DEmiRNAs and mRNAs.

Pearson correlation coefficients (r values) between the DEmiRNAs

and related target genes were calculated using Excel software

(Microsoft Corporation, Redmond, WA, USA). Strong positive and
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negative correlations between the DEmiRNAs and mRNAs were

defined as r values > 0.8 or < -0.8, respectively (Jia et al., 2017).
Plasmid construction and cell transfection

HD11 macrophages were transfected with mimic miRNAs and

negative control ligonucleotides (Shanghai GenePharma Co., Ltd.,

Shanghai, China) using Lipofectamine 2000 transfection reagent

(Invitrogen Corporation) in accordance with the manufacturer’s

instructions. After 36 h of transfection, total RNA was isolated using

TRIzol reagent (Invitrogen Corporation).
Dual luciferase reporter assay

Target sites of gga-miR-2954 were validated using pmirGLO-

basic vectors (Wuhan Gene Create Biological Engineering Co., Ltd.,

Wuhan, China) with double-luciferase reporter genes. Fragments of

the 3’ untranslated regions (3′-UTRs) containing potential binding
sites of E2F2, STAB1, and DOK2 were cloned from chicken DNA

samples. DF-1 cells were transfected with either 500 ng of the wild-

type or mutant vector and 500 ng of the gga-miR-2954 mimic for 48

h using Lipofectamine 2000 transfection reagent (Invitrogen

Corporation). Then, the cells were collected and successful

transfection was validated using a Dual Luciferase Reporter Assay

Kit (Promega Corporation, Madison, WI, USA) in accordance with

the manufacturer’s instructions. Each experiment was repeated

three times (Sheedy et al., 2010).
Real-time quantitative polymerase chain
reaction

Total RNA was polyadenylated with poly-A polymerase and

reverse transcribed into complementary DNA using a poly (T)

adapter primer (Sangon, Shanghai, China). RT-qPCR was performed

with a StepOne™ Real-Time PCR System (Applied Biosystems,

Carlsbad, CA, USA), a miRcute Plus miRNA qPCR Kit (SYBR

Green) (Tiangen Biotech (Beijing) Co., Ltd., Beijing, China), SYBR ®

Green Realtime PCRMasterMix (Toyobo Co., Ltd., Osaka, Japan), and

the primers listed in Supplementary Material in Supplementary Table

S1 and S2 to measure the mRNA and miRNA expression levels,

respectively. Three independent biological replicates were assessed for

each gene. The relative expression levels of the miRNAs and mRNAs

were calculated with the 2−DDct method against GAPDH and U6 as

reference genes (Livak and Schmittgen, 2001).
Statistical analysis

All statistical analyses (Student’s t-test) were conducted with

Prism 5 software (GraphPad Software, Inc., San Diego, CA, USA). A

P value < 0.05 was considered statistically significant.
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Data availability

The chicken spleen mRNA and miRNA reads were

deposited in the GenBank database (https://www.ncbi.nlm.

nih.gov/) under the accession numbers PRJNA988896 and

PRJNA1006787, respectively.
Results

Anatomical and histological changes to
chicken spleens infected with K. variicola

Anatomical analysis revealed that K. variicola infection caused

significant enlargement of the spleen (Figure 1A), while histological

analysis revealed severe depletion of lymphoid cells in the follicles

and infiltration of inflammatory cells (Figure 1B).
Quality assessment of total miRNA
sequencing data

Total RNA from six samples (control 1, control 2, control 3,

infection1, infection 2, and infection 3) was isolated and sequenced.

Nearly 20.55–25.23 megabytes (MB) of raw reads were generated, of

which 20.9–24.05 MB of clean reads were obtained by removing

alllow-quality reads, sequences containing unknown bases (N), and

questionable Q20 values and lengths. In addition, 0.58–1.01 MB of

unique identifier reads were obtained (Table 1). After deduplication
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control, 19,516,698–24,047,450 reads were obtained, of which

94.81% (average, 20,594,524) were validated and successfully

mapped to the Gallus gallus reference genome (Table 2).
Identification and characterization of
miRNAs

The lengths of the six libraries varied from 15 to 27 nucleotides

(Figure 2A). Most of the miRNAs of the libraries were 22

nucleotides in length and the first nucleotide of the identified

miRNAs exhibited a strong preference for ′U′ at the 5′-end
(Figure 2B). In addition, the final small RNAs were annotated

based on the RNA families (Rfam) database, and classified as

miRNA, rRNA, snRNA, tRNA, Cis-region, repeat, other Rfam-

RNA, and unannotation (Figure 2C). Various miRNAs were

enriched in the chicken spleen in response to K. variicola

infection.
Identification of DEmiRNAs

A box-whisker plot (Figure 3A) based on normalized expression

of miRNAs in each sample and a volcano plot showing distinct

differences in the miRNA profiles of the control and infection

groups (Figure 3B) were generated. Using q< 0.05 and |log2

(expression level)|>1 as the cut off values, 22 DEmiRNAs (16 up-

regulated and 6 down-regulated) were identified between the

control and infection groups (Figures 3C, D).
FIGURE 1

Changes in the chicken spleens after K variicola infection. (A) Morphological characteristics of the spleens of healthy and infected chickens.
(B) Histopathological changes of the chicken spleens in the control and infected group.
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Functional annotation of potential target
genes of the DEmiRNAs

Functional annotation and pathway enrichment analyses of

the potential target genes of the identified miRNAs were

performed. The 10 most significantly enriched GO terms

(biological processes, cellular components, and molecular

functions) of the putative target genes of the DEmiRNAs

between the infection and control groups are presented in

Figure 4A. The biological processes were mainly involved in

regulation of transcription by RNA polymerase II, intracellular

signal transduction, cell differentiation, cell division, cell

adhesion, DNA-templated, protein phosphorylation, and the

cell cycle, while the cellular components were mainly involved

in cytoplasm, nucleus, plasma membrane, cytosol, integral

component of membrane, nucleoplasm, membrane, cell

junction, integral component of plasma membrane, and

cytoskeleton, and the molecular functions mainly involved

metal ion binding, ATP binding, DNA binding, calcium ion

binding, DNA-binding transcription factor activity, RNA

polymerase II-specific, RNA binding, protein homodimerization

activity, identical protein binding, zinc ion binding, and

actin binding.

KEGG pathway analysis demonstrated that the mRNAs

targeted by the DEmiRNAs were primarily enriched in

metabolism and immune signaling pathways (Figure 4B).
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The miRNA-mRNA regulatory relationships
in the chicken spleen after K. variicola
infection

Integrated miRNA and mRNA expression approaches were

performed by pairwise correlation coefficient analysis to

construct miRNA-mRNA regulatory networks. With a

threshold of r = -0.80, 45 potential miRNA-mRNA pairs were

identified, which included 34 pairs with 16 upregulated miRNAs

and 27 genes (Figure 5A) and 12 pairs with 6 downregulated

miRNAs and 12 genes (Figure 5B).
Validation of miRNA-seq and RNA-seq data
by RT-qPCR

The expression levels of five differentially expressed miRNAs

were determined with RT–qPCR to check the reliability of our

miRNA-seq data. The results showed that the trends in these

differentially expressed miRNAs determined with miRNA-seq

were consistent with those determined with RT–qPCR

(Figure 6A). In addition, the sequencing results revealed that gga-

miR-2954 expression was significantly increased in the infection

group as compared to the control group and the potential target

genes included E2F2, STAB1, and DOK2. To validate the reliability
TABLE 2 The mapping information of miRNA-seq data.

Sample Reads Uniq reads Aligned_reads Aligned
Uniq reads

Aligned(%)

Control 1 24,047,450 687,994 23,131,002 559,502 96.19%

Control 2 21,676,930 1,010,518 20,861,203 848,381 96.24%

Control 3 22,282,778 578,416 21,517,472 480,049 96.57%

Infection 1 19,516,698 773,057 17,943,816 596,024 91.94%

Infection 2 20,092,226 719,113 18,631,000 578,359 92.73%

Infection 3 22,399,402 1,009,914 21,482,654 855,707 95.91%
TABLE 1 Summary of the miRNA-seq data.

Sample RawReads Reads_trimmed_length Reads_
trimmed_Q20

Reads_
trimmed_N

CleanReads CleanReads_uniq

Control 1 25.23M 24.84M 24.05M 24.05M 24.05M 0.69M

Control 2 22.7M 22.41M 21.68M 21.68M 21.68M 1.01M

Control 3 23.29M 23.01M 22.29M 22.28M 22.28M 0.58M

Infection 1 20.55M 20.29M 19.52M 19.52M 19.52M 0.77M

Infection 2 21.15M 20.87M 20.1M 20.09M 20.09M 0.72M

Infection 3 23.46M 23.14M 22.4M 22.4M 22.4M 1.01M
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of the miRNA and mRNA expression profiles obtained from the

sequencing data, specific miRNA-mRNA pairs were selected for

RT-qPCR analysis. The results demonstrated that the expression

levels of E2F2, STAB1, and DOK2 were significantly decreased

following K. variicola infection, while gga-miR-2954 expression

was significantly increased (Figure 6B). These results revealed that

expression of gga-miR-2954 was negatively correlated to expression

of E2F2, STAB1, and DOK2 after K. variicola infection.
Validation of gga-miR-2954 target genes

The dual-luciferase assay was employed to confirm the ability of

gga-miR-2954 to pair with the 3′-UTR of the potential target genes

E2F2, STAB1, and DOK2 during K. variicola infection. The wild-

type and mutant 3′-UTR sequences of E2F2, STAB1, and DOK2

were each inserted into pmirGLO vectors (Figures 7A–C). Relative

luciferase activity of DF-1 cells co-transfected with a gga-miR-2954

mimic or negative control and pmirGLO vectors containing the 3′-
UTR of STAB1 was significantly decreased, but not those co-

transfected with the 3′-UTR of E2F2 and DOK2, suggesting that

gga-miR-2954 mediated transcription of STAB1 by directly

targeting the 3′-UTR (Figures 7D–F).
Frontiers in Cellular and Infection Microbiology 06
Overexpression of gga-miR-2954 in
chicken HD11 macrophages

An HD11 macrophage-like cell line derived from bone marrow

cells was used to further illustrate the association of gga-miR-2954

with STAB1 in vitro. After treatment with mimic miRNA, elevated

expression of gga-miR-2954 significantly repressed mRNA

expression levels of STAB1 as compared to the negative control

group (Figure 8A). Further investigation of the effects of gga-miR-

2954 on the expression levels of different inflammatory cytokines

showed that transfection with the gga-miR-2954 mimic suppressed

expression of the anti-inflammatory cytokine IL-10 and enhanced

expression of the pro-inflammatory cytokines TNF-a, IL1b and IL-

6, as compared to the mimic negative control (Figure 8B). These

results indicate that gga-miR-2954 plays a role in coordinated

cytokine production elicited against K. variicola infection.
Discussion

The bacterial pathogen K. variicola has become a threat to both

human and animal health (Giannattasio-Ferraz et al., 2022).

However, the responses of host cells to K. variicola infection
FIGURE 2

Characteristics of small RNA in the control and infected group. (A) Length distribution of the clean reads of the sequences. (B) Size range and base
bias at the first position of miRNAs identified in control and infected group. (C) The different RNA categories of the miRNA-seq data.
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FIGURE 3

Analysis of differentially expressed miRNA. (A) The expression patterns of total genes in different samples. (B) Volcano plot map of differentially
expressed miRNA. (C) The numbers of up- and down-regulated differentially expressed miRNAs (D) Heat map of differentially expressed miRNA.
FIGURE 4

GO and KEGG analysis of potential target genes of differentially expressed miRNAs. (A) The GO terms ranked by the fold enrichment and enrichment
score are shown. The terms related to biological process (BP), cellular component (CC), and molecular function (MF) are represented by green, blue,
and red, respectively. (B) The identified KEGG pathways ranked by the P-value are shown. The color of the circle represents the adjusted P-value for
each pathway. The size of the circle represents the number of genes enriched in each pathway.
Frontiers in Cellular and Infection Microbiology frontiersin.org07

https://doi.org/10.3389/fcimb.2025.1544506
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Yin et al. 10.3389/fcimb.2025.1544506
remain unclear. Mounting evidence indicates that miRNAs may

play critical roles in bacterial infection and the host immune

response by regulating various target genes (Kimura et al., 2023).

Therefore, the aim of the present study was to identify and

characterize key miRNAs involved in the immune response of

chickens infected with K. variicola in order to provide new ideas

for prevention and control.

The miRNA expression profiling data led to the identification of

22 DEmiRNAs and the functions of the associated target genes were

predicted by GO term and KEGG pathway enrichment analyses.

The results of GO enrichment analysis showed that some functions

related to cell structure changed after infection by K. variicola. The

effector proteins and toxins of pathogenic bacteria influence the

cytoskeleton of the host cell. The structural proteins of the
Frontiers in Cellular and Infection Microbiology 08
cytoskeleton protect the host cell against pathogen-induced

damage by signal recognition or transmission (Zhang et al.,

2023). Thus, the cytoskeleton plays a crucial role in cell-

autonomous immunity. KEGG pathway analysis showed that

various miRNAs are involved in the regulatory mechanisms of

host immunity in response to K. variicola infection. In the chicken

spleen, relevant signaling pathways are rapidly triggered upon

stimulation by an external pathogen. In the present study, the

target genes of DEmiRNAs were involved in regulation of the

MAPK, Wnt, and Hippo signaling pathways, as well as tight

junction proteins and metabolism of pyruvate, fructose, and

mannose. These signaling pathways participate in inflammation

(Kim et al., 2022; Zong et al., 2023; Jiang et al., 2024; Lei et al., 2024;

St Louis et al., 2024), apoptosis (Zong et al., 2019; Wang et al., 2023;
FIGURE 5

Integrated analysis of differently expressed miRNAs and mRNAs during K variicola infection. (A) Negatively correlated expression of upregulated
miRNAs and predicted targets. (B) Negatively correlated expression of downregulated miRNAs and predicted targets. The horizontal axis indicates
the miRNA and mRNA log2 ratio value of the infection versus control groups, and the vertical axis indicates inverse expression pairs between
miRNAs and mRNAs. The Pearson correlation coefficient was used to estimate the expression relationships of miRNAs and mRNAs. Only miRNA-
mRNA pairs with an r of less than -0.8 were considered to be strongly inversely correlated.
FIGURE 6

RT-qPCR detection of differentially expressed miRNA-mRNA pairs among the control and infected group. (A) Validation of miRNA-seq data by RT-
qPCR. (B) gga-miR-2954 versus target genes. Relative expression level of each mRNAs and miRNAs were calculated using the 2−DDCt method. Values
represent mean ± SEM from three independent experiments.
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Zhao et al., 2024; Zhuang et al., 2024), and immune defenses (Ren

et al., 2022; Huang and Huang, 2023; Tang et al., 2023; Vu et al.,

2023). Collectively, these findings suggest that K. variicola mediates

host responses via DEmiRNAs.
Frontiers in Cellular and Infection Microbiology 09
Previously reported RNA-seq transcriptome profiles were

referenced to identify miRNAs related to host resistance (Jia

et al., 2017). Interestingly, gga-miR-2954 and STAB1 were the

most significant miRNA–mRNA pair. Prior studies have
FIGURE 7

Validation of potential targets downregulated by gga-miR-2954 in DF-1 cell lines. (A) The binding site of gga-miR-2954 and the 3’ UTR of E2F2.
(B) The binding site of gga-miR-2954 and the 3’ UTR of STAB1. (C) The binding site of gga-miR-2954 and the 3’ UTR of DOK2. (D) Validation of the
targeting relationships between gga-miR-2954 and E2F2 by using dual luciferase reporter assay. (E) Validation of the targeting relationships between
gga-miR-2954 and STAB1 by using dual luciferase reporter assay. (F) Validation of the targeting relationships between gga-miR-2954 and DOK2 by
using dual luciferase reporter assay. ***P<0.001, NS: P>0.05.
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established that gga-miR-2954 plays important roles in various

diseases of chickens. For example, gga-miR-2954 was reportedly

associated with the immune response of chicken kidneys to the

infectious bronchitis virus (Yang et al., 2017). Similarly, gga-miR-

2954 expression was highly upregulated in chicken embryo

fibroblasts infected with the reticuloendotheliosis virus (Yu et al.,

2017). In the present study, gga-miR-2954 was associated with

production of inflammatory cytokines by targeting STAB1 during

K. variicola infection. STAB1 is a highly conserved type I

transmembrane protein mainly expressed in sinusoidal

endothelial cells of the spleen and liver (Goerdt et al., 1991). It

has been demonstrated that in L. monocytogenes-infected murine

macrophages and endothelial cells, reduced STAB1 expression

enhances bacterial uptake by recognising surface components of

the pathogen, thereby increasing macrophage phagocytic activity

(Pombinho et al., 2021). STAB1 deficiency triggers excessive release

of pro-inflammatory cytokines (e.g. IL-6, TNF-a), shifting

macrophage polarisation from an anti-inflammatory (M2) to a

pro-inflammatory (M1) phenotype. This imbalance exacerbates

tissue damage and disrupts immune homeostasis (Rantakari et al.,

2016). In the present study, gga-miR-2954 expression was

significantly upregulated in the K. variicola-infected group as

compared to the non-infected control group and might have

enhanced inflammation by inhibiting expression of STAB1.

Collectively, these data suggest that the DEmiRNAs, especially

gga-miR-2954, play important roles in host immune and

inflammatory responses against K. variicola infection.

In conclusions, This study characterized the miRNA expression

profile of the chicken spleen in response to K. variicola infection. In

total, 22 DE miRNAs were identified between the infected and

control groups. Integration analysis of DEmiRNAs and mRNA

found that gga-miR-2954 plays an important role in K. variicola

infection. Specifically, gga-miR-2954 directly targeted STAB1 to
Frontiers in Cellular and Infection Microbiology 10
further modulate expression of inflammatory cytokines. These

findings will help to clarify the miRNA expression profile of the

chicken spleen in response to K. variicola infection, provide

information about potential vaccine targets, and assist genetic

selection for resistance to K. variicola.
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