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With the development of artificial intelligence(AI) in computer science and

statistics, it has been further applied to the medical field. These applications

include the management of infectious diseases, in which machine learning has

created inroads in clinical microbiology, radiology, genomics, and the analysis of

electronic health record data. Especially, the role of machine learning in

microbiology has gradually become prominent, and it is used in etiological

diagnosis, prediction of antibiotic resistance, association between human

microbiome characteristics and complex host diseases, prognosis judgment,

and prevention and control of infectious diseases. Machine learning in the field of

microbiology mainly adopts supervised learning and unsupervised learning,

involving algorithms from classification and regression to clustering and

dimensionality reduction. This Review explains crucial concepts in machine

learning for unfamiliar readers, describes machine learning’s current

applications in clinical microbiology and infectious diseases, and summarizes

important approaches clinicians must be aware of when evaluating research

using machine learning.
KEYWORDS

machine learning, artificial intelligence, clinical microbiology, infectious
diseases, application
Introduction

In 1956, John McCarthy and colleagues founded the field of artificial intelligence at an

artificial intelligence conference at Dartmouth College that spawned a new interdisciplinary

field of study (Kaul et al., 2020). AI is a new technical science that studies and develops

theories, methods, technologies, and application systems used to simulate, extend, and
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expand human intelligence. AI involves robotics, language

recognition, image recognition, natural language processing,

expert systems, machine learning, computer vision, etc. The

application of AI in medicine has two main branches: virtual and

physical. The virtual component is represented by machine earning

that uses mathematical algorithms for improving learning through

experience (Kaul et al., 2020). The second form of application

includes physical objects, medical devices, and increasingly

sophisticated robots taking part in the delivery of care

(Cornet, 2013).

Machine learning emerges at the intersection of statistics and

computer science, where the convergence of the two disciplines is

driven by the unique computational challenge of building statistical

models from massive data sets (Deo, 2015). There are three types of

machine learning algorithms: unsupervised learning, supervised

learning, and reinforcement learning. From the perspective of

medicine, machine learning’s substantial progress carries potential

implications across the scope of practice, including drug research,

disease diagnosis, risk stratification and prognosis, treatment

planning, and advances in precision medicine approaches (Deo,

2015; Radakovich et al., 2020). Data from various omics sources

such as genetics, proteomics, and metabolomics can be integrated to

unravel the intricate workings of systems biology using predictive

algorithms, such as the discovery of markers (Reel et al., 2021).

These new biomarkers have the potential to help in accurate disease

prediction, patient stratification, and delivery of precision medicine

(Reel et al., 2021). In addition, details of the building process of

machine learning can be seen in Figure 1, including data processing,

feature encoding, model training and model evaluation

The applications in clinical microbiology and infectious diseases

are quickly expanding, used in etiological diagnosis, prediction of

antibiotic resistance, association between human microbiome

characteristics and complex host diseases, prognosis judgment,

and prevention and control of infectious diseases (Asnicar et al.,

2024). In this Review, we want to help clinical staff grasp the
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important concepts and basic applications of machine learning

ranging from their experiments to the critical assessments of the

work. Firstly, we introduce supervised and unsupervised machine

learning techniques, especially focusing on muti-omics data

analysis. We also examine approaches for algorithms of machine

learning, for example, dimensionality reduction is frequently used

for exploratory microbiological investigations, and feature selection

is key to identifying the most relevant aspects of the microbiological

phenomenon. Secondly, we mainly summarized the application of

machine learning in clinical microbiology and infectious diseases,

from diagnosis, risk stratification, prognosis, treatment selection,

and response prediction to infectious disease prevention and

control, and multi-omics applications. Thirdly, we highlight the

key elements of machine learning for clinical staff, including how to

evaluate machine learning models and how to apply them to real-

world scenarios that minimize potential bias.
Supervised machine learning

Supervised machine learning, uses training sets of input/output

pairs to build machine learning models designed to make accurate

predictions about new data that have never been seen before.

Supervised learning usually requires a certain amount of

manpower to build the training set, mainly by labeling the

corresponding data features such as the sequence of the gene or

genome of the strain, or phenotypic information obtained by in

vitro experiments on the strain. Labeled data usually defines the

outcome of interest, for example, to train an algorithm for sepsis

prediction, we use a dataset in which patients are already defined as

having sepsis or not (Peiffer-Smadja et al., 2020). Besides,

supervised learning improves outbreak detection of Salmonella

and Campylobacter infections using routine surveillance data

(Zacher and Czogiel, 2022), diagnoses the childhood febrile illness

using a multi-class blood RNA molecular signature (Habgood-
FIGURE 1

The development and application for example machine learning model. The building process of machine learning model is mainly from data
processing, feature coding, model training, model evaluation and selection, and finally to test data prediction. The applications in clinical
microbiology and infectious diseases are included.
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Coote et al., 2023) and inflammatory bowel diseases using gut

microbiome (Manandhar et al., 2021), screens and types diabetes

using gut microbiome metagenomic hypervariable features

(Chavarria et al., 2025), etc. Supervised learning usually divides

labeled data into training sets and verification sets, and unlabeled

data into test sets. Common algorithms for supervised machine

learning include Decision Trees(DT), Ordinary Least Squares

Regression(OLS), Naive Bayesian classification(NB), Logistic

Regression(LR), Support Vector Machine(SVM), Ensemble

methods(EM), Random Forests linear regression(RF), Linear

Discriminant Analysis (LD), k-nearest neighbor algorithm(k-NN),

Multi-layer perceptron(MLP), Convolutional neural networks

(CNN)and so on.

There are two main types of supervised machine learning

problems, called classification and regression. When supervised

learning uses categorical labels (for example, taxonomic labels)

for the outcome variable, it is referred to as classification, whereas

regression refers to the case in which the outcome variable is a

numerical continuous variable (for example, the optimal pH for a

bacterium to grow) (Asnicar et al., 2024). Supervised learning

focuses on classification, which involves choosing among

subgroups to best describe a new instance of data, and prediction,

which involves estimating an unknown parameter (Deo, 2015). For

example, machine learning techniques through RF and gradient

boosting (GB) models can be successfully applied to predict malaria

using patient information (Lee et al., 2021). The graph-based MLP

and RF models effectively diagnosed influenza and hepatitis,

respectively (Alqaissi et al., 2023). In addition, machine learning

algorithms for taxonomic classification of 16S rRNA genes from

isolate sequences or of 16S rRNA gene fragments from microbiome

experiments have been developed for this task, including k-mer

profiling and support vector machines (SVMs) (McHardy et al.,

2007; Diaz et al., 2009; Gregor et al., 2016; Vervier et al., 2016).

However, different algorithms have their own advantages and

disadvantages. For example, the most important advantage of RF

is that training can be highly parallelized, which has advantages for

large-sample training speed in the era of big data (Hu and

Szymczak, 2023). However, RF models tend to fall into overfitting

with some noisy sample sets and features with more value division

(Hu and Szymczak, 2023). The SVM algorithm is very effective in

high-dimensional feature classification and regression problems,

and it still has a good effect when the feature dimension is larger

than the number of samples (Valkenborg et al., 2023). However,

SVM algorithm is not suitable for big data and sensitive to missing

data (Valkenborg et al., 2023). The main advantages of DT

algorithm are that data preprocessing is relatively simple and

missing data can be processed (Kingsford and Salzberg, 2008).

However, DT algorithm is very easy to overfit, resulting in poor

generalization ability, and is not suitable for complex relationships

and characteristic samples (Kingsford and Salzberg, 2008). The

KNN regression method, known for its nonparametric nature, is

highly valued for its simplicity and its effectiveness in handling

complex structured data, particularly in big data contexts

(Srisuradetchai and Suksrikran, 2024). However, this method is

susceptible to overfitting and fit discontinuity, which present
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significant challenges (Srisuradetchai and Suksrikran, 2024). The

naive Bayes algorithm is stable for classification efficiency, missing

data, and large data sets (Awaysheh et al., 2019). However, Bayesian

algorithms are often influenced by prior probability models

(Awaysheh et al., 2019). CNN has the high classification, and

strong robustness and fault tolerance to noise nerve (Shan et al.,

2021). However, CNN require a large number of parameters, such

as the network topology, weights, and initial values of thresholds

(Shan et al., 2021).
Unsupervised machine learning

Unsupervised learning can solve various problems in pattern

recognition based on training samples whose class is unknown (not

labeled), such as finding subsets of patients with similar expression

levels in a gene expression study (Altman and Krzywinski, 2017) or

predicting mutation effects from gene sequence co-variation (Hopf

et al., 2017). What’s more, the measurement of the gene expression

time point of each cell in the isogenic bacterial cell population in

liquid batch culture at different points should identify the cell

growth stage and the cell group with similar gene expression

could be divided by unsupervised learning algorithm to reflect the

overview of the growth pattern (Asnicar et al., 2024). There are two

types of unsupervised learning: unsupervised transformation and

clustering algorithm. Unsupervised transformation of a data set is

the creation of a new representation of the data that may be easier

for humans or other machine learning algorithms to understand

than the original representation of the data. The clustering

algorithm divides the data into different groups by identifying

similar items.

Dimensionality reduction, a common application of

unsupervised transformation, is a new way of accepting a high-

dimensional approach to data that contains many features, with fewer

features to generalize its important properties. For example,

dimensionality reduction could be applied to visualize single-cell

data (Amouzgar et al., 2022; Becht et al., 2018; Jiang et al., 2023),

investigate the diversity of Tuberculosis Spoligotypes (Senelle et al.,

2022), deconvolute gut microbial community dynamics (Martino

et al., 2021), distill complex evolutionary relationships in seasonal

influenza and SARS-CoV-2 (Nanduri et al., 2024), characterize

circulating innate lymphoid cell in inflammatory bowel disease

(Mazzurana et al., 2021), treat for human immunodeficiency virus

infection (Choi et al., 2023), etc. These techniques comprise both

linear and non-linear transformations of the data, including principal

component analysis (PCA) (Tsuyuzaki et al., 2020), Uniform

Manifold Approximation and Projection (UMAP) (Becht et al.,

2018) and t-distributed stochastic neighbor embedding (t-SNE)

(Kobak and Berens, 2019). PCA is a technique for reducing the

dimensionality of such datasets, increasing interpretability but at the

same time minimizing information loss (Jolliffe and Cadima, 2016).

Uniform Manifold Approximation and Projection (UMAP) is an

alternative method that can reduce the dimensionality of beta

diversity distance matrices, for example, UMAP can reveal

composite patterns and resolve visualization artifacts in
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microbiome data (Armstrong et al., 2021). Common data analysis

pipelines include a dimensionality reduction step for visualizing the

data in two dimensions, most frequently performed using t-

distributed stochastic neighbor embedding, for example, in single-

cell transcriptomics (t-SNE) (Kobak and Berens, 2019).

Dimensionality reduction can improve computing efficiency,

reduce storage space, remove redundant features, speed up follow-

up processing, and promote visualization. The main disadvantages of

dimensionality reduction in machine learning algorithms include loss

of information, decreased interpretability of and higher

technical barriers.

Clustering methods are used to predict groupings of similar

data points in a dataset and are usually based on some measure of

similarity between data points (Greener et al., 2022). For example,

clustering could be applied to analyze gene sequence (Ali et al.,

2022; He et al., 2023), visualize the sequence-structure-function

relationship of protein networks (Mai et al., 2016; Mirdita et al.,

2017; Yeung et al., 2023), densely sample human gut microbiome

time series (Benincà et al., 2023), categorize countries into

homogeneous subgroups based on the joint patterns of HIV/

AIDS and TB mortality rates (Mobaderi et al., 2025), detect

infectious disease transmission outbreaks from sequence variation

(McCloskey and Poon, 2017), etc. The clustering algorithm mainly

includes K-means clustering, agglomerative clustering, and density-

based spatial clustering of applications with noise (DBSCAN). K-

means clustering can identify diverse clinical phenotypes in

COVID-19 patients (Garcia-Vidal et al., 2024) and estimate

bacterial community composition (Koslicki et al., 2015). The

agglomerative clustering algorithm can reveal distinct community

types of the bacterial populations (Bezek et al., 2020; Ghosh et al.,

2022). Clustering algorithm has the advantages of flexibility and

simplicity, which can handle noise and no need to specify the

number of clusters in advance. However, the clustering algorithm

has high computational complexity and sensitive parameters, which

needs to determine the number of clusters in advance.
Other machine learning paradigms

Semi-supervised learning trains a model using not only labeled

data generally available in small amount, but also using unlabeled

data often available in large amount (Mourad, 2023). For example,

semi-supervised learning could be applied to predict virus-receptor

interactions (Yan et al., 2019), facilitate antibiotic stewardship for

urinary tract infections (de Vries et al., 2022), predict Lactobacillus

delbrueckii subsp. bulgaricus-Streptococcus thermophilus

interactions (Yang et al., 2025), segment the medical image (Tang

et al., 2023), etc. Key technical approaches include: 1) Consistency

regularization (e.g., Temporal Ensembling), which enforces stable

predictions under input perturbations or dropout variations

through loss terms like mean squared error between multiple

predictions (Laine and Aila, 2017); 2) Noise-aware frameworks

like DivideMix, which leverage Gaussian Mixture Models (GMM)

to separate clean and noisy labels by analyzing loss distributions,

achieving robustness in high-noise scenarios (>50% noise) but
Frontiers in Cellular and Infection Microbiology 04
struggling with low-noise cases due to overlapping distributions

(Li et al., 2020b). Advantages include reduced annotation costs and

improved generalization through pseudo-labeling unlabeled data,

while limitations involve sensitivity to noise thresholds (e.g., GMM

failures in <20% noise) and computational complexity from

iterative co-training.

Reinforcement learning is a learning paradigm concerned with

learning to control a system so as to maximize a numerical

performance measure that expresses a long-term objective (Mnih

et al., 2015). For example, reinforcement learning could be applied

to evaluate treatment policies for patients with hepatitis C virus

(Oselio et al., 2022), adjust dynamic treatment regimes in HIV (Yu

et al., 2019), push the boundaries of coarse-grained vaccine models

(Faris et al., 2022), support outbreak management (Kao et al., 2024),

etc. Key technical approaches include value functions (such as Q-

learning), policy gradient methods and deep reinforcement learning

models (such as DQN). For example, DQN combines empirical

playback and target networks to solve stability problems in high-

dimensional state Spaces (Mnih et al., 2015). Policy gradient

methods (such as PPO) directly optimize policy parameters and

are suitable for continuous action Spaces (Schulman et al., 2017).

However, the low sample efficiency and exploration-utilization

tradeoff of RL remain challenges. Lillicrap et al. proposed depth

deterministic strategy gradient (DDPG) for continuous control

tasks (Lillicrap et al., 2019). The advantages include the need for

prior knowledge and the ability to adapt to dynamic environments,

but the disadvantages are significant: high computational cost, long

training time, and unpredictable behavior may be generated in

complex scenarios, leading to safety and ethical risks (Kulkarni

et al., 2016).
Machine learning in clinical
microbiology and infectious diseases

The applications of machine learning in clinical microbiology

and infectious diseases include predicting drug targets or vaccine

candidates, diagnosing microorganisms causing infectious diseases,

classifying drug resistance against antimicrobial medicines,

predicting disease outbreaks, and exploring microbial interactions

(Goodswen et al., 2021). From the perspective of experienced

clinicians, machine learning’s substantial progress carries

potential implications across the scope of practice, including

diagnosis, risk stratification and prognosis, treatment selection,

response prediction, prevention, and control of infectious

diseases. The common infectious diseases in clinics mainly

include bacterial infection, viral infection, and fungal infection.

The Image analysis AI (IAAI) tools are beginning to penetrate

routine clinical microbiology practice, and their scope and impact

on routine clinical microbiology practice will continue to grow

(Burns et al., 2023). The use of machine learning as a means for the

discrimination of diseases from mass spectrometric data aims to

develop diagnostic and prognostic tools, treatment targets, and

patient management systems (Liebal et al., 2020). Representative

studies detailing machine learning’s applications in clinical
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microbiology and infectious diseases are summarized in Table 1. As

shown in the Figure 1, the applications of machine learning in

clinical microbiology and infectious diseases include etiology

diagnosis, risk stratification, prognosis, treatment selection,

treatment innovation, prevention and control.
Etiology diagnosis

In clinical microbiology and infectious diseases, machine

learning shows promise and practicability, both in doing existing

tasks and making broader applications of existing data than

traditional diagnosis does. As detailed in a review by Stephen and

colleagues, previous approaches to processing microbiological data

entailed identifying and sequencing pathogenic microorganisms,

algorithmically extracting features from them, and using those

features for classification (Goodswen et al., 2021).

Many studies have reported the practical application of machine

learning in the diagnosis of bacterial infections. Rare event detection

by machine learning can be used for screening purposes or final

identification of a microbe including microscopic detection of

mycobacteria in a primary specimen, detection of bacterial colonies

growing on nutrient agar, or detection of parasites in a stool

preparation or blood smear (Burns et al., 2023). Score-based image

analysis AI can be applied to a scoring system that classifies images in

toto as its output interpretation and examples include application of

the Nugent score for diagnosing bacterial vaginosis and interpretation

of urine cultures (Burns et al., 2023). Leveraging machine learning

can distinguish between bacterial and viral-induced pharyngitis using

hematological markers (Jin et al., 2023). Profiling of the conjunctival

bacterial microbiota reveals the feasibility of utilizing a microbiome-

based machine learning model to differentially diagnose microbial

keratitis and the core components of the conjunctival bacterial

interaction network (Ren et al., 2022).

Many studies have reported the practical application of machine

learning in the diagnosis of viral infections. Respiratory viruses can be

rapidly and quantitatively detected by using surface-enhanced Raman

spectroscopy and machine learning (Yang et al., 2022). Image-based

and machine learning-guided multiplexed serology test is developed

for SARS-CoV-2 diagnosis (Pietiäinen et al., 2023). Blood tests and

machine learning can predict the diagnosis of SARS-CoV-2 by

calculating the gravity of each feature, such as eosinophils,

monocytes, leukocytes, and platelets (Chadaga et al., 2022).

Hepatitis B virus(HBV) detection models are developed and

validated through a neural network algorithm by using routine

clinical data to improve the detection of HBV (Dong et al., 2024).

Gradient boosting machine(GBM) using clinical records can predict

the diagnosis of HIV and sexually transmitted infections among men

who have sex with men using (Bao et al., 2021). PCA-SVM (poly-5)

model is effective and robust for clinical prediction of DENV

infection in human blood sera (Saleem et al., 2022).

Many studies have reported the practical application of

machine learning in the diagnosis of fungal infections. The binary
Frontiers in Cellular and Infection Microbiology 05
logistic regression model is conducted for early detection of fungal

keratitis by learning twelve clinical signs of slit-lamp images and

collinear variables (Wei et al., 2023). Metabolomics and machine

learning approaches are combined in pursuit of more accurate

Paracoccidioidomycosis diagnoses (Lima et al., 2020). Interpretable

deep learning can diagnose fungal and acanthamoeba keratitis using

in vivo confocal microscopy images (Essalat et al., 2023).
Risk stratification and prognosis

Accurate prediction of risk stratification and prognosis is crucial

for balancing the upsides of therapy and the risk of side effects.

Although there are still many challenges in specific clinical practice,

machine learning provides a reliable way to create efficient models

for estimating risk and prognosis.

Machine learning-based clinical decision support is effective for

infection risk prediction (Feng et al., 2023). Development and

validation of a machine learning-driven prediction model is

applied for serious bacterial infections, such as bacterial

meningitis or sepsis, among febrile children in emergency

departments (Lee et al., 2022). Machine learning can be used for

the prediction of prognostic risk factors in patients with invasive

candidiasis infection and bacterial bloodstream infection (Li et al.,

2022). Virulence factors (VFs), which are crucial for pathogens to

successfully infect host tissue and evade the immune system, can be

predicted by using sequence alignment percentage and ensemble

learning models (Singh et al., 2024). Machine learning can stratify

methicillin-resistant Staphylococcus aureus risk among hospitalized

patients with community-acquired pneumonia (Rhodes et al.,

2023). COVID-19 automated risk assessment uses an ADA tree

boosting algorithm through metabolomics data from mass

spectrometry (Delafiori et al., 2021). A risk assessment framework

for multidrug-resistant Staphylococcus aureus shows high accuracy

by incorporating machine learning and mass spectrometry

technology (Wang et al., 2023).

The prognosis of infectious diseases is an important basis for

clinical adjustment of treatment and machine learning provides

important and efficient tools for infection prognosis. A machine

learning model for predicting prognosis in HIV-negative CM

patients was built and validated, and the model might provide a

reference for personalized treatment of HIV-negative CM

patients (Liu et al., 2023). Prognostic models in critically Ill

patients with sepsis-associated acute kidney injury can be

constructed and validated through an interpretable machine-

learning approach (Fan et al., 2023). Prediction of prognosis in

elderly patients with sepsis can be based on a random survival

forest model (Zhang et al., 2022). A simplified machine learning

model utilizes platelet-related genes for predicting poor

prognosis in sepsis (Diao et al., 2023). Prognosis in COVID-19

patients can be predicted by using machine learning and readily

available clinical data (de Fátima Cobre et al., 2022; Campbell et

al., 2021).
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TABLE 1 Representative machine learning in clinical microbiology and infectious diseases publications.

Study Application Method Results title

Weinan Dong et al.
(Dong et al.., 2024)

Diagnosis NN
A simplified model for HBV using patients' physical complaints and
parameters was developed with good discrimination (AUC = 0.78) and
calibration (goodness of fit test p-value >0.05).

Development and validation of
HBV surveillance models using
big data and machine learning

Yining Bao et al.
(Bao et al.., 2021)

Diagnosis GBM

Gradient boosting machine (GBM) achieved the highest area under the
receiver operator characteristic curve for HIV (76.3%) and sexually
transmitted infections(syphilis, 85.8%; gonorrhoea, 75.5%;
chlamydia, 68.0%).

Predicting the diagnosis of HIV
and sexually transmitted
infections among men who have
sex with men using machine
learning approaches

Zhenyu Wei et al.
(Wei et al.., 2023)

Diagnosis LR
The diagnostic model classified the external validation dataset with a
sensitivity of 0.907 (0.774, 1.000), specificity 0.899 (0.750, 1.000),
accuracy 0.905 (0.805, 1.000), and AUC 0.903 (0.808, 0.998).

Development and multi-center
validation of machine learning
model for early detection of
fungal keratitis

Estela et al. (Lima
et al.., 2020)

Diagnosis RF
The proposed combination of these two analytical methods resulted in
the identification of a set of 19 PCM biomarkers that show accuracy of
97.1%, specificity of 100%, and sensitivity of 94.1%.

Metabolomics and Machine
Learning Approaches Combined
in Pursuit for More Accurate
Paracoccidioidomycosis
Diagnoses

Mahmoud Essalat
et al. (Essalat
et al.., 2023)

Diagnosis CNNs
Densenet161 had the best performance among these models, with an
accuracy, precision, recall, and F1 score of 93.55%, 92.52%, 94.77%, and
96.93%, respectively.

Interpretable deep learning for
diagnosis of fungal and
acanthamoeba keratitis using in
vivo confocal
microscopy images

Jeany et al.
(Delafiori
et al.., 2021)

Diagnosis、
Risk
stratiffcation

(ADA tree
boosting
(ADA),
gradient tree
boosting
(GDB)

The best final results were obtained with gradient tree boosting (GDB)
to COVID-19 automated diagnosis with 96.0% of specificity and 83.1%
of sensitivity. The best results for risk assessment were obtained with
ADA Boosting algorithm with 80.3% of specificity and 85.4% of
sensitivity, from blind test.

Covid-19 Automated Diagnosis
and Risk Assessment through
Metabolomics and
Machine Learning

Ting Feng et al.
(T et al.., 2023)

Risk
stratiffcation

Ensemble-
based
boosted
decision trees

Our best performing infection risk model achieves a cross-validated
AUC of 0.88 at 1 h before clinical suspicion and maintains an AUC
>0.85 for 48 h before suspicion by aggregating information across
demographics and a set of 163 vital signs and laboratory measurements.

Machine learning-based clinical
decision support for infection
risk prediction

Zhuo Wang et al.
(Z et al.., 2023)

Risk
stratiffcation

Extreme
gradient
boosting
(XGBoost)

To validate the accuracy of our models, we externally tested on an
independent cohort and achieved impressive results with an area under
the receiver operating characteristic curve of 0. 94, 0.90, 0.86 and 0.91,
and an area under the precision-recall curve of 0.93, 0.87, 0.87 and 0.81,
respectively, for oxacillin, clindamycin, erythromycin and
trimethoprim-sulfamethoxazole.

A risk assessment framework for
multidrug-resistant
Staphylococcus aureus using
machine learning and mass
spectrometry technology

Nathaniel et al.
(Nj et al.., 2023)

Risk
stratiffcation

Classification
Tree
Analysis
(CTA)

The final machine learning model was highly accurate (receiver
operating characteristic [ROC] area = 0.775) in training and jackknife
validity analyses.

Machine Learning To Stratify
Methicillin-Resistant
Staphylococcus aureus Risk
among Hospitalized Patients
with Community-
Acquired Pneumonia

Zhiyan Fan et al.
(Z et al.., 2023)

Prognosis XGBoost

According to the areas under the ROC curve (AUC) and DCA results
for the training cohort, XGBoost model exhibited excellent performance
with F1 Score of 0.847, 0.715, 0.765 and AUC (95% CI) of 0.91 (0.90,
0.92), 0.78 (0.76, 0.80), and 0.83 (0.81, 0.85) in 7 days, 14 days and 28
days group, respectively.

Construction and validation of
prognostic models in critically
Ill patients with sepsis-
associated acute kidney injury:
interpretable machine
learning approach

Junyu Liu et al. (Liu
et al.., 2023)

Prognosis LR
An artificial intelligence (AI) model was trained to detect and count
cryptococci, and the mean average precision (mAP) was 0.993.

Development and validation of a
machine learning model to
predict prognosis in HIV-
negative cryptococcal meningitis
patients: a multicenter study

(Continued)
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Treatment selection and innovation

Infectious diseases need to take corresponding drug treatment

according to the specific cause, such as viral infection, bacterial

infection, and fungal infection. Therefore, accurate diagnosis is a

prerequisite for scientific selection of treatment plans and examples

of accurate diagnosis using machine learning have been described in

detail above. This section will focus on the contents of machine

learning in treatment selection and innovation.

The choice of treatment for infectious diseases depends first on

accurate diagnosis, and then critically on the strategies for drug

selection. The problem of antibiotic resistance varies with time,

environment, and region, and there are some differences between

in vitro and in vivo results of drug susceptibility tests. Hence, the
Frontiers in Cellular and Infection Microbiology 07
application of machine learning is an effective tool to solve the above

problems. Machine learning can be used for microbial identification

and antimicrobial susceptibility testing onMALDI-TOFmass spectra

(Weis et al., 2020). Machine-learning-based virtual screening can

repurpose drugs for the treatment of Candida albicans infection (Gao

et al., 2022). In addition, AI is gaining more and more attention for

drug combination discovery and optimization against a variety of

infectious agents in bacteria, viruses, parasites, and fungi. In general,

input variables that have been used by an AI system for drug

combination design can be divided into three groups, such as drug-

based, pathogen-based, and host-based (He et al., 2021). Regarding

bacteria, three- and four-drug combinations highly efficacious for

treating MDR and extensively drug-resistant TB have been identified

with the aid of an output-driven feedback system (Silva et al., 2016).
TABLE 1 Continued

Study Application Method Results title

Alexandre et al.
(de Fátima Cobre et
al., 2022)

Prognosis PLS-DA
The PLS-DA model presented the best performance for both datasets,
with accuracy rates to predict the diagnosis, severity and fatality of
COVID-19 of 93%, 94% and 97%, respectively.

Diagnosis and prognosis of
COVID-19 employing analysis
of patients' plasma and serum
via LC-MS and
machine learning

Mathew et al.
(Stracy et al.., 2022)

Prevention LR

The models predict the risk of resistance emergence well (the area under
the curve ranged from 0.89 for nitrofurantoin to 0.62 for amoxicillin/CA
in UTIs, and from 0.96 for amoxicillin/CA to 0.58 for cefuroxime in
wound infections.

Minimizing treatment-induced
emergence of antibiotic
resistance in bacterial infections

Andrew et al. (Gao
et al.., 2022)

Treatment
selection

RF
The model attained 96.72% accuracy for classifying between active and
inactive drug compounds.Several drugs, including goserelin and
icatibant, were detected as active with high confidence.

Machine-learning-based virtual
screening to repurpose drugs for
treatment of Candida
albicans infection

N M Smith et al.
(Smith et al.., 2020)

Treatment
selection

Genetic
algorithm
(GA)

A mechanism-based model of the data and population
pharmacokinetics of each drug were used to develop a GA to define the
optimal regimen parameters.Monotherapies resulted in regrowth to
~1010cfu/mL by 24 h, while combination regimens employing high-
intensity polymyxin B (PMB) exposure achieved complete bacterial
eradication (0 cfu/mL) by 336 h.

Using machine learning to
optimize antibiotic
combinations: dosing strategies
for meropenem and polymyxin
B against carbapenem-resistant
Acinetobacter baumannii

Felix et al. (Wong
et al.., 2024)

Treatment
innovation

NN

Of these structural classes of compounds, one is selective against
methicillin-resistant S. aureus (MRSA) and vancomycin-resistant
enterococci, evades substantial resistance, and reduces bacterial titres in
mouse models of MRSA skin and systemic thigh infection.

Discovery of a structural class of
antibiotics with explainable
deep learning

Célio et al.
(Santos-Júnior
et al.., 2024)

Treatment
innovation

Macrel—
(Meta)
genomic
AMP
Classification
and
Retrieval
system

To validate our predictions, we synthesized and tested 100 AMPs against
clinically relevant drug-resistant pathogens and human gut commensals
both in vitro and in vivo. A total of 79 peptides were active, with 63
targeting pathogens.

Discovery of antimicrobial
peptides in the global
microbiome with
machine learning

Jennifer et al.
(Dawkins
et al.., 2022)

Muti-omics LR, RF

Using predictive statistical/machine learning models, we demonstrated
that the metabolomic data, but not the other data sources, can accurately
predict future recurrence at 1 week (AUC 0.77 [0.71, 0.86; 95% interval])
and 2 weeks (AUC 0.77 [0.69, 0.85; 95% interval]) post-treatment for
primary CDI.

Gut metabolites predict
Clostridioides
difficile recurrence

Jing Cao et al.
(Cao et al.., 2023)

Muti-omics

A classifier (DPFs-DL) for viral versus bacterial infection discrimination
(AUC of 0.775) and coronavirus disease 2019 (COVID-2019) diagnosis
(AUC of 0.917) is also built. Furthermore, a metabolic biomarker panel
of two differentially regulated metabolites, which may serve as potential
biomarkers for COVID-19 management (AUC of 0.677-0.883),
is constructed.

Deep Learning of Dual Plasma
Fingerprints for High-
Performance
Infection Classification
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In addition, by using genetic algorithms, the dosing strategies of

meropenem/polymyxin B combination against carbapenem-resistant

A. baumannii were optimized (Smith et al., 2020). Concerning

viruses, AI platforms have been developed to discover the optimal

combination therapies for HIV, HBV, hepatitis C virus (HCV),

SARS-CoV-2, Ebola, vesicular stomatitis virus, herpes simplex

virus-1, using a series of machine learning models, such as decision

trees, SVM, Bayesian network, logistic regression, Random forest (He

et al., 2021; Churkin et al., 2022; Bukic et al., 2023). For fungi, a novel

computational algorithm termed Network-based Laplacian

regularized Least Square Synergistic drug combination prediction

has been developed to predict synergistic drug combinations for

fungal diseases where drug resistance is common (Chen et al., 2016).

The antibiotic resistance crisis is a major challenge facing

humanity today, and machine learning is one of the effective tools

to address it. A machine-learning-based approach is presented to

predict active antimicrobial peptides (AMPs) within the global

microbiome and leverage a vast dataset of 63,410 metagenomes

and 87,920 prokaryotic genomes from environmental and host-

associated habitats to create the AMPSphere, a comprehensive

catalog comprising 863,498 non-redundant peptides (Santos-

Júnior et al., 2024). Using explainable graph algorithms,

substructure-based rationales are identified for compounds with

high predicted antibiotic activity and low predicted cytotoxicity,

and after testing of 283 compounds, it is assumed that one is

selective against methicillin-resistant S. aureus (MRSA) and

vancomycin-resistant enterococci, evades substantial resistance,

and reduces bacterial titers in mouse models of MRSA skin and

systemic thigh infection (Wong et al., 2024). Leveraging machine

learning essentiality predictions and chemogenomic interactions to

identify the glutaminyl-tRNA synthetase Gln4 as the antifungal

targets of N-pyrimidinyl-b-thiophenylacrylamide (NP-BTA) (Fu et

al., 2021). In addition, the high variability of the virus is a difficulty

in the development of antiviral drugs. With the integrated efforts to

improve data quality and availability, ML is a promising approach

to developing next-generation antivirals and therapeutics for

infectious diseases (Kumari et al., 2023). For instance, ML

methods can design small molecules based on multiscale behavior

and interactions to selectively inhibit multiple influenza targets

while mitigating interaction with host proteins to minimize adverse

effects (Overhoff et al., 2021).
Prevention and control

Preventing and controlling infectious diseases remains a global

public health challenge, as it sometimes causes unexpected

pandemics, which are responsible for high morbidity, mortality,

and substantial economic impact. AI has had a pivotal role in the

prevention and control of infectious diseases. AI has shown great

potential in developing effective HIV prevention intervention

strategies (Xiang et al., 2022). Machine learning methods can

predict the epidemic of human-adaptive Influenza A Viruses

based on viral nucleotide compositions (Li et al., 2020a). As most

infections are seeded from a patient’s microbiota, these resistance-
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gaining recurrences can be predicted using the patient’s past

infection history and minimized by machine learning-

personalized antibiotic recommendations, offering a means to

reduce the emergence and spread of resistant pathogens (Stracy

et al., 2022). Furthermore, the DT models with alternative

sensitivity levels can be exploited in different stages of an

emerging infectious diseases(EID) disaster to optimize medical

resource allocation, which is crucial in the response to a large-

scale epidemic of emerging infectious disease (Chiu et al., 2022).

Vaccines are automatic immune preparations made by artificially

attenuated, inactivated, or genetically modified pathogenic

microorganisms (such as bacteria, rickettsia, viruses, etc.) and their

metabolites for the prevention of infectious diseases. Few developments

have done more to limit the spread of infectious disease and associated

mortality than the advent of vaccination (Dubé et al., 2021). Vaxign2 is

updated to the second generation of the first Web-based vaccine design

program using reverse vaccinology and machine learning (Ong et al.,

2021). The newly developed machine learning-based reverse

vaccinology tools are applied to design the COVID-19 vaccine (Ong

et al., 2020; Lv et al., 2021; Huffman et al., 2022). A random forest

model is used for active vaccine safety monitoring, such as anaphylaxis

and agranulocytosis (Kim et al., 2021). A combinatorial artificial-

neural-network design-of-experiment (ANN-DOE) model shows

great advantages in lipid nanoparticle-based mRNA vaccine

bioprocess (Maharjan et al., 2023). Supervised and unsupervised

machine learning approaches are used for monitoring subvisible

particles within an aluminum-salt adjuvanted vaccine formulation

(Greenblott et al., 2024).
Machine learning in multi-omic data

With the development of technologies such as next-generation

DNA and RNA sequencing, it becomes more feasible to obtain

personalized data about complex diseases. Data from various omics

sources such as genomics, proteomics, metabolomics, transcriptomics,

lipidomics, immunomics, glycomics, radiomics (Priya et al., 2022), and

ultrasonics can be integrated to unravel the intricate working of

systems biology using machine learning-based predictive algorithms

(Reel et al., 2021). Integrating multi-omics data with electronic health

records (EHRs) can be used for precision medicine by using advanced

artificial intelligence (Tong et al., 2024). Integrating multi-omics data

could reveal the host-microbiota interactome in inflammatory bowel

disease (Su et al., 2025), the interplay between gut microbiome and the

host following opioid use (Kolli et al., 2023), host responses to lethal

human virus infections (Eisfeld et al., 2024) and etc. HONMF, which is

the AI system for the integrative analysis of multi-modal microbiome

data, including bacterial, fungal, and viral composition profiles,

provides rich biological insights by implementing discriminative

microbial feature selection and bacterium-fungus-virus association

analysis (Ma et al., 2023). On the COVID-19 diagnosis task, omics-

based models performed better than image or physiological feature-

based models, proving the importance of the omics-based dataset for

future model development (Liu X. et al., 2023). A comprehensive

multi-omic blood atlas is presented for identifying immune signatures
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and correlates of host response with varying COVID-19 severity in an

integrated comparison with influenza and sepsis patients versus healthy

volunteers (David et al., 2022). Themuti-omic machine learning model

has implications for the development of diagnostic tests and treatments

that could ultimately short-circuit the cycle of Clostridioides difficile

infection (CDI) recurrence, by providing candidate metabolic

biomarkers for diagnostics development, as well as offering insights

into the complexmicrobial andmetabolic alterations that are protective

or permissive for recurrence (Dawkins et al., 2022). Deep learning of

dual plasma fingerprints is developed for high-performance infection

classification (Cao et al., 2023). Using lasso and sparse CCA to detect

specific associations between gut microbial taxa and host genes, the

study finds that Peptostreptococcaceae is associated with MAPK3 and

VIPR1 that are part of G protein-coupled receptors pathways in

inflammatory bowel disease; and Bacteroides massiliensis is associated

with the host gene PLA2G4A, a member of the prostaglandin

biosynthesis pathway, in irritable bowel syndrome (Priya et al., 2022).
The key to machine learning for
clinicians

Professional training in statistical and research methods has long

been a cornerstone of medical education for clinicians. However, it is

unrealistic and unnecessary for clinicians to completely understand

machine learning’s complexity and depth at the level of a computer

scientist. Owing to the diversity and complexity of data types

encountered, microbiological data often require individualized

solutions for dealing with them effectively, and this makes it

difficult to recommend common tools or guidelines for the

application of machine learning in these specific domains, as the

model selection, training procedure, and test data will reply highly on

the exact questions one wants to answer. Clinicians need to master

the basic concepts, core steps, general limitations, and common

applications of machine learning, such as data processing, feature

selection and extraction, model selection and evaluation,

generalization, overfitting, underfitting, etc.
Data processing

When available data are in larger quantities, clinicians need to

consider more highly parameterized models such as deep neural

networks. In supervised machine learning, the relative proportions

of each ground truth label in the dataset should also be considered,

with more data required for machine learning to work if some labels

are rare (Wei and Dunbrack, 2013). Considering the data leakage,

clinicians have to pay attention to the problem of having related

samples in the training and testing sets. It is usually necessary to use

70-80% of the total data set as the training set and 20-30% as the

independent test set (Collins and Moons, 2019). The’related’ here

depends on the nature of the study, which might be a case of sampling

data from the same patient or the same organism. The issue of data

leakage becomes a problem when a model that appears accurate on

some benchmark set performs poorly on new data that are different
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from the training set; in other words, the model does not generalize,

likely because it has not modeled the true relationship between the

variables, but rather remembered hidden associations present in the

data (Greener et al., 2022). Strategies to prevent data leakage include

proper data splitting (Kaufman et al., 2012), pipelines for

preprocessing (Fabian et al., 2011), time-aware validation (Bergmeir

and Benıt́ez, 2012), causal feature analysis (Pearl, 2009), potential leak

characteristics identification (Lundberg and Lee, 2017) and so on.
Feature selection and extraction

The main goal of feature selection is the minimization of the

original amount of input features, which is chosen for training the

machine learning model. It is different from feature extraction,

which refers to generating new features from a large number of

input features. The ‘omics’ technologies used for microbiome

analysis continuously evolve and, although much of the research

is still at an early stage, large-scale datasets of ever-increasing size

and complexity are being produced (Cammarota et al., 2020).

Facing the high-dimensional data, both feature selection and

feature extraction can generalize and simplify the input features

of the machine learning model.

There are some tips for feature selection and extraction

techniques. Firstly, the application of any learning tools for

evaluating prediction performance can promote the iterative

removal or addition of features to identify those that seem

redundant or provide no new information. Secondly, some

machine learning algorithms already contain feature selection

steps, for example, SVMs embed recursive feature elimination, RF

provides a feature importance score, and the LASSO constrains

most regression coefficients to be exactly zero. Thirdly,

dimensionality reduction is fairly effective for feature extraction

when extreme reduction of the high-dimension data is needed and

is unnecessary to retain the original features within the model.
Model selection and evaluation

Clinicians usually focus on accurate modeling, discovering

mechanisms and the factors responsible for modeling output. The

step of model selection exploits the training data to identify the best

machine learning model based on the evaluation of different types

of models, or across models of the same type but with different

hyperparameter settings (Asnicar et al., 2024). In machine learning,

the commonly used model evaluation metrics include accuracy,

precision, recall, F1 score, receiver operating characteristic (ROC)

curve, AUC, mean squared error(MSE), mean absolute error

(MAE), log loss, R-squared, cross-validation score, etc (Rainio

et al., 2024). Accuracy is the fraction of correct predictions overall

predictions. Precision is the fraction of true positives overall

positives. Recall or sensitivity is the fraction of true positives over

all correct predictions. Specificity is the fraction of true negatives

over all negatives. The F1 score is the harmonic mean of precision

and recall. ROC curve plots pairs of specificity and sensitivity values
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calculated at all possible threshold scores. The area under the ROC

curve (AUC-ROC) summarizes the performances regardless of the

threshold and ranges from 0.5 (random classification) to 1.0

(perfect classification). MSE is essentially finding the average

squared error between the predicted value and the true value.

MAE is the average of all absolute errors, which finds the average

absolute distance between the predicted value and the true value.

Log loss is mainly used in binary classification problems to measure

the difference between the predicted results of the model and the

real label. R (Cornet, 2013), also known as the coefficient of

determination, represents how well the model fits the data. An R

(Cornet, 2013) representation model close to 1.0 agrees well with

the data, while a model close to 0 does not. The cross-validation

score evaluates the performance of the model on the new data set by

dividing the data set into a training set and a test set to prevent

overfitting and improve the generalization ability of the model.

As a data science professional, it is essential to understand the

above important evaluation metrics. Clinicians need to understand

their uses, advantages, and disadvantages, which will help you

choose and implement them accordingly. Classification is one of

the most widely used problems in machine learning, with various

industrial applications, such as face recognition, image

classification, content review, text classification, etc. SVM, LR,

DC, RF, and other models are also some of the most popular

classification models. The most commonly used metrics for

classification problems are accuracy, precision, recall, F1 score,

ROC curve and AUC, log loss, etc. In addition, the commonly

used metrics for multi-label problems in classification are mainly

precision at k (P@k), average precision at k (AP@k), mean average

precision at k (MAP@k), etc. Regression models are used to predict

continuous target values and also have a wide range of applications,

such as house price forecasting, weather forecasting, stock price

forecasting, etc. LR, RF, XGboost, RNN, etc., are also some of the

most popular regression models. The most common metrics in

regression are MAE, MSE, Root mean squared error (RMSE), Root

mean squared logarithmic error (RMSLE), Mean percentage error

(MPE), Mean absolute percentage error (MAPE), R (Cornet, 2013),

etc. Choosing appropriate strategies to evaluate machine learning

models is important to provide robust and generalizable estimations

and avoid biased models (Topçuoğlu et al., 2020).
Conclusion

With the popularization and development of machine learning

technology, the medical field has also undergone subversive changes

and challenges. In the field of clinical microbiology and infectious

diseases, machine learning has greatly promoted the diversification

and accuracy of diagnostic methods, scientific decision-making of

treatment programs, accurate judgment of disease prognosis,

innovation of treatment means, and effective prevention of

diseases. While many of these applications are at the exploratory

stage and require further validation and generalization, they hold

substantial promise in furthering clinical practice. Different

algorithms of machine learning have their own advantages and
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disadvantages, which should be comprehensively judged and used

in combination with the actual situation.

Clinical microbiologists and infectiologists are deeply immersed

in the fields of data science and artificial intelligence, by focusing on

the general principles and guidelines and on avoiding frequent

potential issues affecting machine learning ranging from evaluation

issues to study design problems. Choosing the right machine

learning algorithm and scientific evaluation model is vitally

important because it can help to generalize the model and avoid

the problems of underfitting and overfitting. In clinical

microbiology and infectious diseases, a large number of multi-

omics data is a problem we have to face, which is also an important

direction to guide our future research and development.
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Bezek, K., Petelin, A., Pražnikar, J., Nova, E., Redondo, N., Marcos, A., et al. (2020).
Obesity measures and dietary parameters as predictors of gut microbiota phyla in
healthy individuals. Nutrients 12, 2695. doi: 10.3390/nu12092695

Bukic, E., Milasin, J., Toljic, B., Jadzic, J., Jevtovic, D., Obradovic, B., et al. (2023).
Association between combination antiretroviral therapy and telomere length in people
living with human immunodeficiency virus. Biol. (Basel) 12, 1210. doi: 10.3390/
biology12091210

Burns, B. L., Rhoads, D. D., and Misra, A. (2023). The use of machine learning for
image analysis artificial intelligence in clinical microbiology. J. Clin. Microbiol. 61,
e0233621. doi: 10.1128/jcm.02336-21

Cammarota, G., Ianiro, G., Ahern, A., Carbone, C., Temko, A., Claesson, M. J., et al.
(2020). Gut microbiome, big data and machine learning to promote precision medicine
for cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 635–648. doi: 10.1038/s41575-020-
0327-3

Campbell, T. W., Wilson, M. P., Roder, H., MaWhinney, S., Georgantas, R. W. 3rd,
Maguire, L. K., et al. (2021). Predicting prognosis in COVID-19 patients using machine
learning and readily available clinical data. Int. J. Med. Inform. 155, 104594.

Cao, J., Xiao, Y., Zhang, M., Huang, L., Wang, Y., Liu, W., et al. (2023). Deep learning
of dual plasma fingerprints for high-performance infection classification. Small 19,
e2206349. doi: 10.1002/smll.202206349

Chadaga, K., Chakraborty, C., Prabhu, S., Umakanth, S., Bhat, V., and Sampathila, N.
(2022). Clinical and laboratory approach to diagnose COVID-19 using machine
learning. Interdiscip Sci. 14, 452–470. doi: 10.1007/s12539-021-00499-4

Chavarria, X., Park, H. S., Oh, S., Kang, D., Choi, J. H., Kim, M., et al. (2025). Using
gut microbiome metagenomic hypervariable features for diabetes screening and typing
through supervised machine learning. Microb. Genom 11, 001365. doi: 10.1099/
mgen.0.001365

Chen, X., Ren, B., Chen, M., Wang, Q., Zhang, L., and Yan, G. (2016). NLLSS:
predicting synergistic drug combinations based on semi-supervised learning. PloS
Comput. Biol. 12, e1004975. doi: 10.1371/journal.pcbi.1004975

Chiu, H.-Y. R., Hwang, C. K., Chen, S. Y., Shih, F. Y., Han, H. C., King, C. C., et al.
(2022). Machine learning for emerging infectious disease field responses. Sci. Rep. 12,
328. doi: 10.1038/s41598-021-03687-w

Choi, Y., Choi, B. Y., Kim, S. I., Choi, J., Kim, J., Park, B. Y., et al. (2023). Effect of
characteristics on the clinical course at the initiation of treatment for human
immunodeficiency virus infection using dimensionality reduction. Sci. Rep. 13, 5547.
doi: 10.1038/s41598-023-31916-x
Churkin, A., Kriss, S., Uziel, A., Goyal, A., Zakh, R., Cotler, S. J., et al. (2022).

Machine learning for mathematical models of HCV kinetics during antiviral therapy.
Math Biosci. 343, 108756. doi: 10.1016/j.mbs.2021.108756
Frontiers in Cellular and Infection Microbiology 11
Collins, G. S., and Moons, K. G. M. (2019). Reporting of artificial intelligence
prediction models. Lancet 393, 1577–1579. doi: 10.1016/S0140-6736(19)30037-6

Cornet, G. (2013). Robot companions and ethics a pragmatic approach of ethical
design. J. Int. Bioethique 24, 49–58, 179–180. doi: 10.3917/jib.243.0049

David, J. A., Zhichao, A., Mark, A., Chris, A., Allcock, A., Brian, A., et al. (2022). A
blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 185,
916–938.e58.

Dawkins, J. J., Allegretti, J. R., Gibson, T. E., McClure, E., Delaney, M., Bry, L., et al.
(2022). Gut metabolites predict Clostridioides difficile recurrence. Microbiome 10, 87.
doi: 10.1186/s40168-022-01284-1

de Fátima Cobre, A., Surek, M., Stremel, D. P., Fachi, M. M., Lobo Borba, H. H.,
Tonin, F. S., et al. (2022). Diagnosis and prognosis of COVID-19 employing analysis of
patients’ plasma and serum via LC-MS and machine learning. Comput. Biol. Med. 146,
105659.

Delafiori, J., Navarro, L. C., Siciliano, R. F., de Melo, G. C., Busanello, E. N. B.,
Nicolau, J. C., et al. (2021). Covid-19 automated diagnosis and risk assessment through
metabolomics and machine learning. Anal. Chem. 93, 2471–2479. doi: 10.1021/
acs.analchem.0c04497

Deo, R. C. (2015). Machine learning in medicine. Circulation 132, 1920–1930.
doi: 10.1161/CIRCULATIONAHA.115.001593

de Vries, S., Ten Doesschate, T., Totté, J. E. E., Heutz, J. W., Loeffen, Y. G. T.,
Oosterheert, J. J., et al. (2022). A semi-supervised decision support system to facilitate
antibiotic stewardship for urinary tract infections. Comput. Biol. Med. 146, 105621.
doi: 10.1016/j.compbiomed.2022.105621

Diao, Y., Zhao, Y., Li, X., Li, B., Huo, R., Han, X., et al. (2023). A simplified machine
learning model utilizing platelet-related genes for predicting poor prognosis in sepsis.
Front. Immunol. 14.

Diaz, N. N., Krause, L., Goesmann, A., Niehaus, K., and Nattkemper, T. W. (2009).
TACOA: taxonomic classification of environmental genomic fragments using a
kernelized nearest neighbor approach. BMC Bioinf. 10, 56. doi: 10.1186/1471-2105-
10-56

Dong, W., Da Roza, C. C., Cheng, D., Zhang, D., Xiang, Y., Seto, W. K., et al. (2024).
Development and validation of HBV surveillance models using big data and machine
learning. Ann. Med. 56, 2314237. doi: 10.1080/07853890.2024.2314237
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