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Background: Sepsis associated encephalopathy (SAE) is prevalent among elderly

patients in the ICU and significantly affects patient prognosis. Due to the

symptom similarity with other neurological disorders and the absence of

specific biomarkers, early clinical diagnosis remains challenging. This study

aimed to develop a predictive model for SAE in elderly ICU patients.

Methods: The data of elderly sepsis patients were extracted from the MIMIC IV

database (version 3.1) and divided into training and test sets in a 7:3 ratio. Feature

variables were selected using the LASSO-Boruta combined algorithm, and five

machine learning (ML) models, including Extreme Gradient Boosting (XGBoost),

Categorical Boosting (CatBoost),Light Gradient Boosting Machine(LGBM),

Multilayer Perceptron (MLP), and Support Vector Machines (SVM), were

subsequently developed using these variables. A comprehensive set of

performance metrics was used to assess the predictive accuracy, calibration,

and clinical applicability of these models. For the machine learning model with

the best performance, we employed the SHapley Additive Explanations(SHAP)

method to visualize the model.

Results: Based on strict inclusion and exclusion criteria, a total of 3,156 elderly

sepsis patients were enrolled in the study, with an SAE incidence rate of 48.7%.

The mortality rate of elderly sepsis patients who developed SAE was significantly

higher than that of patients in the non-SAE group (28.78% vs. 12.59%, P < 0.001).

A total of 18 feature variables were selected for the construction of the MLmodel

using the LASSO-Boruta combined algorithm. Compared to the other four

models and traditional scoring systems, the XGBoost model demonstrated the

best overall predictive performance, with Area Under the Curve(AUC)=0.898,

accuracy=0.830, recall=0.819, F1-Score=0.820, specificity=0.840, and

Precision=0.821. Furthermore, the results from the Decision Curve Analysis

(DCA) and calibration curves demonstrated that the XGBoost model has
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significant clinical value and stable predictive performance. The ten-fold cross-

validation method further confirmed the robustness and generalizability of the

model. In addition, we simplified the model based on the SHAP feature

importance ranking, and the results indicated that the simplified XGBoost

model retains excellent predictive ability (AUC=0.858).

Conclusions: The XGBoost model effectively predicts SAE in elderly ICU patients

and may serve as a reliable tool for clinicians to identify high-risk patients.
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1 Introduction

Sepsis-associated encephalopathy (SAE) is a severe neurological

syndrome characterized by sepsis-induced acute diffuse cerebral

dysfunction (Bleck et al., 1993; Gofton and Young, 2012; Heming

et al., 2017). Early clinical features of SAE include impaired

consciousness, cognitive decline, altered mental status, and, in

severe cases, coma, which may lead to long-term neurocognitive

deficits and a high mortality rate (Sonneville et al., 2023). The onset

of SAE involves complex mechanisms, including abnormal

neuroinflammatory and immune responses, blood-brain barrier

damage, and microcirculatory disorders (Ren et al., 2020; Hong

et al., 2023). Previous studies have reported a significant correlation

between the occurrence and severity of SAE and patient prognosis,

with even mild alterations in consciousness (GCS score of 13 or 14)

significantly increasing the risk of death (Sonneville et al., 2017).

With the aging population, elderly patients with septic

encephalopathy have garnered increased attention (Manabe and

Heneka, 2022). Existing research suggests that the incidence of

sepsis and SAE is notably higher among elderly ICU patients, with

age being a significant high-risk factor affecting short-term survival

in patients who have developed SAE (Ljungström et al., 2019; Chen

et al., 2020; Zhang et al., 2024). This reciprocal causality adds

significant complexity to the clinical treatment and management of

elderly patients with SAE. Additionally, it has been reported that

even among elderly patients who survive sepsis, many develop long-

term cognitive deficits during recovery (Iwashyna et al., 2010;

Muzambi et al., 2021). Although early recognition of high-risk

patients and prompt interventions can substantially enhance

prognosis, factors such as atypical clinical symptoms and

comorbidities associated with elderly SAE complicate the

identification and early prediction of risk factors. Therefore, an

in-depth analysis of the clinical characteristics of this patient group

is essential.

In recent years, machine learning (ML) techniques have

demonstrated significant potential for predicting, diagnosing, and

assessing the risk of sepsis and its associated complications (Yue

et al., 2022; Li et al., 2024; Lin et al., 2024; Prithula et al., 2024). ML
02
is a computational method that builds data models by analyzing

large and multidimensional datasets to make predictions. It works

by using historical data (such as patient age, medical history, and lab

results) to identify variables that may significantly impact the onset

and progression of diseases, rather than relying on predefined

programming rules. As a result, ML can provide more accurate

diagnosis and prognosis assessments compared to traditional

predictive models, helping clinicians identify early risks and

intervention opportunities. In diagnosing and prognosticating

SAE, researchers have utilized machine learning models to

conduct comprehensive analyses of clinical, laboratory, and

demographic characteristics, providing more personalized

prediction tools for clinical risk screening of SAE patients (Lu

et al., 2022; Peng et al., 2022). However, evidence supporting the

superiority of ML models in the early prediction of SAE occurrence

in elderly sepsis patients remains limited. This study aims to

develop several ML models for the early prediction of SAE

occurrence in elderly sepsis patients in ICU and identify the

model with the highest predictive performance.
2 Materials and methods

2.1 Data source

The data used to construct the model were obtained from the

single-center database of the Medical Information Marketplace in

Intensive Care IV (MIMIC-IV, version v3.1). This database

contains clinical information on all patient hospitalizations

admitted to the ICU at Beth Israel Deaconess Medical Center

from 2008 to 2022, including demographics, length of

hospitalization, ICU admissions and discharges, vital signs,

laboratory data, medications, and nursing care records (Johnson

et al., 2024, Johnson et al., 2023). To request access to the database,

the author of this study (YP.H.) completed the Collaborative

Institutional Training Initiative (CITI) program exam and

received a certificate (ID: 59425375). Because the MIMIC

database is de-identified and does not contain private patient
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information, the Institutional Review Board at Beth Israel

Deaconess Medical Center waived the requirement for

informed consent.
2.2 Participants

The study included patients who fulfilled the following criteria: (1)

age ≥65 years; (2) met Sepsis-3.0 criteria and were admitted to the ICU;

(3) no diagnosis of sepsis-associated encephalopathy at the time of ICU

admission; (4) length of stay in the ICU ≥24 hours; (5) for patients with

multiple ICU admissions, data were collected only for the first

admission. In addition, we excluded the following categories of

patients: (1) patients with combined brain parenchymal injury

(cerebral infarction, cerebral hemorrhage, traumatic brain injury) and

other cerebrovascular diseases; (2) patients with mental disorders or

dementia; (3) patients with alcohol or drug addiction; (4) patients with

hepatic or renal encephalopathy and suspected metabolic

encephalopathy (e.g., hyponatremia [<120 mmol/L], hyperglycemia

[>180 mg/dL], or hypoglycemia [<54 mg/dL]); and (5) patients with

missing delirium assessment or missing data >30%.

The primary outcome of the study was the occurrence of SAE in

elderly sepsis patients after the first day of ICU admission. The

diagnostic criteria for SAE included meeting the SEPSIS 3.0 criteria,

along with a GCS score <15 or a positive ICU delirium assessment

(Hong et al., 2023; Sonneville et al., 2023; Kurtz et al., 2024). The
Frontiers in Cellular and Infection Microbiology 03
Delirium Assessment Scale for the ICU (CAM-ICU) was used to

assess delirium in ICU patients. Based on the aforementioned

diagnostic criteria and to ensure baseline consistency among

study participants, we excluded patients who were diagnosed with

altered consciousness (GCS < 15) or delirium within the first 24

hours of admission. Additionally, because this was a hypothesis-

driven epidemiological study, no attempt was made to estimate the

sample size, and all eligible elderly septic patients in the dataset were

included to maximize statistical power. The flow chart of patient

selection is shown in Figure 1.
2.3 Data extraction

Structured Query Language in PostgreSQL was used to extract

case information from the database for patients who met the

inclusion criteria. The extracted data for this study included the

following variables: (1) Demographic information: age, gender, and

race; (2) Comorbidities: hypertension (HTN), type 1 diabetes

(T1DM), type 2 diabetes (T2DM), hyperlipidemia (HLD),

coronary artery disease (CAD), chronic obstructive pulmonary

disease (COPD), chronic kidney disease (CKD), and Charlson

Comorbidity Index; (3) Vital signs and disease scores at the time

of admission: heart rate (HR), respiratory rate (RR), non-invasive

mean arterial pressure (MAP), oxygen saturation (SpO2), and

disease scores including Sequential Organ Failure Assessment
FIGURE 1

Flow chart of the patient selection.
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(SOFA), Oxygenation Assessment Index Score (OASIS), Simplified

Acute Physiology Score II (SAPS II), and Acute Physiology Score III

(APS III); (4) Laboratory indices within 24 hours of admission:

white blood cell count (WBC), platelet count (PLT), red blood cell

count (RBC), red cell distribution width (RDW), hemoglobin,

hematocrit, PCO2, pH, glucose, potassium, sodium, chloride,

anion gap, lactate, prothrombin time (PT), international

normalized ratio (INR), creatinine, and blood urea nitrogen

(BUN); (5) Prognostic data included therapeutic measures during

hospitalization (e.g., Ventilation, continuous renal replacement

therapy (CRRT), vasopressors, sedatives and analgesics,

Glucocorticoids drugs), length of ICU stay, and 28-day mortality.

Additionally, to minimize the impact of missing data on model

construction, variables with less than 20% missing data were

interpolated using the KNNImputer (KNN) method, while those

with more than 20% missing were discarded. The advantage of the

KNNImputer method lies in its ability to fill missing values by

leveraging the similarity between data points, thereby preserving the

inherent structure and relationships of the data. Compared to

traditional methods like mean or median imputation,

KNNImputer handles complex, nonlinear data distributions more

effectively, particularly in cases with multiple missing features.

Furthermore, KNNImputer does not require specific distribution

assumptions, offering greater flexibility and enhancing the accuracy

and stability of predictive models (Akter et al., 2024; Guan

et al., 2024).
2.4 Feature selection

After including patients based on strict adherence to the inclusion

and exclusion criteria, we split the dataset into training and test sets in

a 7:3 ratio using the Bootstrap sampling technique. The Bootstrap

method is a robust and flexible tool for statistical inference and model

evaluation. Bootstrap generates a large volume of sample data through

repeated sampling, which helps balance differences in sample

distributions and enables the full modeling of the sampling

distributions for both the model and control groups, thus facilitating

the assessment of differences or relationships between groups.

Additionally, the final feature variables used in the logistic

regression and machine learning models were selected using LASSO

regression and Boruta methods based on the validation set (Li et al.,

2024). The LASSOmethod selects features and reduces dimensionality

by shrinking coefficients, retaining features with larger contributions

and eliminating redundant ones. The Boruta algorithm identifies the

most important features by comparing the Z-value of each feature to

that of the “shadow features.” The common feature variables identified

by both methods were selected as the final feature set for the model.

This approach enhances model accuracy while reducing the risk of

overfitting and excluding irrelevant predictors. Considering that

variables within the first 24 hours of admission better reflect the

patient’s initial health status and disease severity, which are crucial for

predicting early risks and clinical outcomes, while daily treatment

measures during hospitalization are more influenced by changes in the

patient’s condition and are less effective in predicting early SAE
Frontiers in Cellular and Infection Microbiology 04
occurrence, this study included only monitoring data from the first

24 hours of admission in the variable selection.
2.5 Construction and validation of machine
learning models

After feature selection, fivemachine learningmodels were employed

for constructing and validating the diagnostic model using identical

training and validation sets. These models include three ensemble

algorithms—Categorical Boosting (CatBoost), Extreme Gradient

Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM)

—and two conventional base algorithms: Multilayer Perceptron (MLP)

and Support Vector Machine (SVM). The models were trained on the

training set, and the test set was used for model validation.We evaluated

the performance of the ML prediction models using metrics such as

Area Under the Curve (AUC), specificity, recall, F1 score, and accuracy

to identify the best diagnostic model. Additionally, calibration curves,

precision-recall (PR) curves, and Decision Curve Analysis (DCA) were

used to evaluate the calibration and clinical applicability of the ML

models. Finally, for the best-performing diagnostic models, we

revalidated their generalization ability and robustness using 10-fold

cross-validation to prevent overfitting.
2.6 Model interpretation and feature
importance

SHapley Additive Explanations(SHAP) is a game-theory-based

model interpretation method used to explain the output of machine

learning models. SHAP interprets the impact of each feature on the

final prediction by considering all possible combinations and orders of

features and calculating each feature’s contribution in those

combinations (Wang et al., 2021). The SHAP feature importance

ranking and SHAP bees plot show each feature’s contribution to the

final prediction, while the SHAP force diagram offers an intuitive

visualization of how different features influence individual predictions.

In our work, we use the aforementioned SHAP methods to visualize

the best-performing ML models in terms of efficacy, thereby

enhancing their interpretability.
2.7 Comparison of the optimal model with
traditional scoring systems

To assess whether predictive models outperform traditional

methods in early prediction of SAE in elderly ICU patients, We

evaluated the best models against traditional scoring systems using

the same dataset.
2.8 Simplification of the best machine
learning prediction model

In this study, we aim to simplify the model with the highest

predictive efficacy based on the SHAP feature importance ranking
frontiersin.org
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results. The simplified model not only reduces the complexity of

clinical decision-making but also enables clinicians to quickly assess

the patient’s condition in daily practice, thereby enhancing the

efficiency and accuracy of clinical decision-making.
2.9 Statistical analysis

Data analysis was performed using DecisionLinnc1.0 software, a

platform that integrates multiple programming language

environments for data processing, analysis, and machine learning

model construction through a visual interface (DecisionLinnc Core

Team, 2023). The Kolmogorov-Smirnov test was used for

continuous variables. As these variables were non-normally

distributed, they are presented as median (interquartile range),

with differences between groups assessed using the Mann-

Whitney U test. Categorical variables are presented as percentages

(%), and group differences were compared with the Pearson chi-

square test, with p-values < 0.05 considered statistically significant.
3 Results

3.1 Comparison of clinical information of
patients

A total of 3,156 elderly sepsis patients were included in the study

based on rigorous inclusion and exclusion criteria, with 1,620 patients
Frontiers in Cellular and Infection Microbiology 05
in the non-SAE group and 1,536 in the SAE group, resulting in an

SAE incidence rate of 48.7%.The overall missing data situation is

shown in Supplementary Table 1. Patients in the SAE group had a

higher median age compared to those in the non-SAE group (P <

0.05). In terms of comorbidities, the SAE group exhibited a higher

Charlson Comorbidity Index, a greater proportion of patients with

comorbid COPD and AKI, and a lower proportion of those with

hyperlipidemia and ischemic heart disease (IHD) (P < 0.05).

Concerning vital signs upon admission and disease severity scores,

the SAE group had significantly higher median values for MAP, RR,

HR, and disease scores (SOFA, OASIS, SAPS II, and APS III), while

their median SpO2 was lower compared to the non-SAE group (P <

0.05). Above results are presented in detail in Table 1.

Laboratory data comparison (Table 2) showed that WBC,

PLT, RBC, RDW, Hemoglobin, Hematocrit, PCO2, Glucose,

Sodium, Anion gap, Creatinine, and BUN levels were higher in

the elderly SAE group compared to the non-SAE group (P < 0.05).

In contrast, PCO2, pH, and chloride levels were lower in the SAE

group (P < 0.05). No significant differences were found in

coagulation function indices, including PTT, PT, INR,

potassium, and lactate (P > 0.05).

Regarding treatment, a higher proportion of patients in the SAE

group received vasopressin, sedatives, analgesics, and corticosteroids (P

< 0.05). The SAE group also had a greater proportion of patients

requiring ventilation and CRRT (P < 0.05). Moreover, the ICU stay

duration, and 28-day mortality rate were significantly higher in the

SAE group compared to the non-SAE group (P < 0.05). The results are

presented in Table 3.
TABLE 1 Comparison of baseline characteristics in the NonSAE and SAE groups.

Overall NonSAE SAE P

n=3156 n=1620 n=1536

Age(year) 76 (70,83) 75 (70,82) 76 (70,83) 0.015

Gender 0.064

Female, n(%) 1329 (42.11) 656 (40.49) 673 (43.82)

Male, n(%) 1827 (57.89) 964 (59.51) 863 (56.18)

Race 0.002

White, n(%) 2069 (65.55) 1122 (69.30) 947 (61.65)

Black, n(%) 190 (6.02) 82 (5.06) 108 (7.03)

Asian, n(%) 74 (2.34) 43 (2.65) 31 (2.02)

Hispanic, n(%) 62 (1.96) 34 (2.10) 28 (1.82)

Others, n(%) 761 (24.11) 339 (20.93) 422 (27.47)

Complications

Hypertension, n(%) 1492 (47.28) 787 (48.58) 705 (45.90) 0.141

T1 Diabetes, n(%) 17 (0.54) 10 (0.62) 7 (0.46) 0.707

T2 Diabetes, n(%) 822 (26.05) 430 (26.54) 392 (25.52) 0.54

Hyperlipidemia, n(%) 1630 (51.65) 903 (55.74) 727 (47.33) <0.001

(Continued)
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TABLE 1 Continued

Overall NonSAE SAE P

n=3156 n=1620 n=1536

Icoronary heart disease, n(%) 1560 (49.43) 853 (52.65) 707 (46.03) <0.001

COPD, n(%) 605 (19.17) 269 (16.60) 336 (21.88) <0.001

Chronic kidney disease, n(%) 752 (23.83) 351 (21.67) 401 (26.11) 0.004

Charlson 6 (4,8) 5 (4,7) 6 (4,8) <0.001

Admission vital signs

MAP (mmHg) 75 (66,87) 74 (65,84) 77 (67,90) <0.001

Respiratory rate (beats/minute) 18 (15,22) 17 (14,21) 19 (16,23) <0.001

Heart rate (beats/minute) 83 (73,96) 81 (74,93) 85 (73,99) 0.01

SPO2(%) 99 (96,100) 99 (96,100) 98 (95,100) <0.001

System score

SOFA 5 (3,7) 4 (3,6) 5 (3,8) <0.001

OASIS 32 (27,38) 30 (25,35) 34 (29,39) <0.001

SapsII 39 (32,46) 36 (31,43) 41 (34,49) <0.001

ApsIII 41 (31,53) 38 (30,48) 44 (34,56) <0.001
F
rontiers in Cellular and Infection M
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COPD, Chronic obstructive pulmonary disease; SOFA, Sequential Organ Failure Assessment; OASIS, Outcome and Assessment Information Set; SAPS II, Simplified Acute Physiology Score II;
Charlson, Charlson Comorbidity Index; APSS III, Acute Physiology Score System III.
TABLE 2 Comparison of laboratory examination data between two groups of patients on admission.

Overall NonSAE SAE P

n=3156 n=1620 n=1536

WBC(109/L) 11.3 (8.075,16) 11.2 (7.9,15.8) 11.4 (8.1,16.1) 0.006

PLT(109/L) 162 (119,230) 152 (114.75,213) 176 (127,244.25) <0.001

RBC (109/L) 3.37 (2.87,3.89) 3.3 (2.86,3.79) 3.44 (2.89,4) <0.001

RDW(%) 14.5 (13.4,15.9) 14.2 (13.3,15.6) 14.7 (13.6,16.1) <0.001

Hemoglobin(g/dL) 10.1 (8.6,11.7) 10 (8.6,11.4) 10.3 (8.7,11.908) <0.001

Hematocrit(%) 31 (26.5,35.8) 30.3 (26.2,34.6) 31.7 (27,36.7) <0.001

PCO2(mmHg) 40.9 (36,46) 40.25 (37,45) 41 (36,47) <0.001

PO2(mmHg) 149.2(68,275) 191(82,311) 115.54(61,212) <0.001

Glucose (mg/dl) 122 (104,143) 120 (103,139) 125 (104,146.25) <0.001

Potassium(mmol/L) 4.1 (3.8,4.6) 4.2 (3.8,4.6) 4.1 (3.7,4.6) 0.112

Sodium(mmol/L) 139 (136,141) 139 (136,141) 139 (136,142) 0.004

Chloride(mmol/L) 106 (101,109) 106 (102,110) 105 (101,109) <0.001

Aniongap(mmol/l) 14 (11,16) 13 (11,16) 14 (12,17) <0.001

Lactate (mmol/l) 1.885 (1.3,2.6) 1.96 (1.4,2.6) 1.8 (1.2,2.6) 0.184

PTT (seconds) 31.42 (27.9,37.6) 31.28 (27.8,37.2) 31.7 (28,38.3) 0.367

(Continued)
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3.2 Feature selection

We sequentially used Lasso regression and the Boruta method

to identify relevant features from the training set. In LASSO

regression, the variable coefficients are presented in Figure 2A,

and the relationship between the regularization parameter (l) and
the mean cross-validation error (CVM) is depicted in Figure 2B.

These results indicate that l = 0.0009 (i.e., Logl-min = -6.968) is the

optimal value for achieving the model’s highest efficacy. The 18

variables identified in the LASSO regression as strongly associated

with the occurrence of SAE in elderly sepsis patients included MAP,

RR, HTN, COPD, CKD, SOFA, OASIS, SAPS II, Charlson, WBC,

sodium, PLT, hematocrit, glucose, anion gap, PCO2, PTT, and

BUN. The regression coefficients for the variables in the LASSO

regression are provided in Supplementary Table 2. Subsequently,

the Boruta method identified only T1DM as an irrelevant variable

(Figure 2C). Ultimately, the 18 variables identified above were

included in the subsequent analysis.
3.3 Model performance comparisons

Five ML models were developed to assess the risk of SAE in

elderly sepsis patients in our study. The ROC curves demonstrated

that the three models from the integrated algorithm (XGBoost,

LGBM, and CatBoost) exhibited good predictive performance for

new SAEs in elderly sepsis patients, outperforming the MLP and

SVM models based on the common algorithm (Figure 3A). Among
Frontiers in Cellular and Infection Microbiology 07
these models, the XGBoost model (AUC=0.898) demonstrated the

best performance, followed by LGBM (AUC = 0.882), CatBoost

(AUC = 0.872), MLP (AUC = 0.691), and SVM (AUC = 0.672). In

terms of clinical applicability, the three models from the integrated

algorithm demonstrated consistent net benefits across various

threshold probabilities, with the XGBoost model providing the

greatest net benefit (Figure 3B), demonstrating the significant

clinical value of our developed ML model. Additionally, the

calibration curves confirmed the stability of the results for each

model (Figure 3C). We also examined the detailed performance

metrics of the aforementioned ML models (shown in Table 4), and

the results indicated that the XGBoost model outperformed the other

four models.

Furthermore, to assess the robustness and generalization ability of

the three models—XGBoost, LGBM, and CatBoost—we re-examined

the predictive efficacy of the models using ten-fold cross-validation.

The detailed performance metrics (Table 5) and ROC curve results

(Figure 4) confirm that our constructed model demonstrates good

robustness and generalization ability, with no signs of overfitting or

underfitting. Based on these results, the XGBoost model was identified

as the best-performing model in this study.
3.4 Comparison of the optimal model with
traditional scoring systems

We compared the XGBoost model with traditional scoring systems

using the same dataset. Our results revealed that traditional scoring
TABLE 3 Comparison of treatment and prognosis between two groups of patients.

Overall NonSAE SAE P

n=3156 n=1620 n=1536

Vasopressin, n (%) 2296 (72.75) 1125 (69.44) 1171 (76.24) <0.001

Sedative and analgesic drugs, n (%) 2328 (73.76) 1021 (63.02) 1307 (85.09) <0.001

Glucocorticoids drugs, n (%) 784 (24.84) 344 (21.23) 440 (28.65) <0.001

ventilation, n (%) 2833 (89.77) 1397 (86.23) 1436 (93.49) <0.001

CRRT, n (%) 209 (6.62) 54 (3.33) 155 (10.09) <0.001

ICU Duration (day) 3.11 (1.79-6.13) 2.01 (1.32-3.08) 5.53(3.29-9.85) <0.001

ICU 28 day mortality, n (%) 646 (20.47) 204 (12.59) 442 (28.78) <0.001
TABLE 2 Continued

Overall NonSAE SAE P

n=3156 n=1620 n=1536

PT (seconds) 14.6(12.9,17.025) 14.9 (13.2,17.178) 14.3 (12.7,17) 0.15

INR 1.3 (1.2,1.6) 1.4 (1.2,1.6) 1.3 (1.2,1.6) 0.146

Creatinine (mg/dl) 1 (0.8,1.6) 1 (0.8,1.5) 1.1 (0.8,1.7) 0.003

BUN(mg/dl) 22 (15,34) 20 (15,30) 24 (16,39) <0.001
WBC, White Blood Cell; PLT, Platelet; RBC, Red Blood Cell; RDW, Red Cell Distribution Width; PCO2, Partial Pressure of Carbon Dioxide; PO2, Partial Pressure of Oxygen; PH, Potential of
Hydrogen; APTT, Activated Partial Thromboplastin Time; PT, Prothrombin Time; INR, International Normalized Ratio; BUN, Blood Urea Nitrogen.
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systems (SOFA, OASIS, SAPS II, APS III) exhibited poor predictive

efficacy, with all AUC values falling below 0.7 (Table 6).
3.5 Model visualization based on SHAP
principle

We focus on visualizing the contribution of feature variables in

the XGBoost model using the SHAP (Shapley Additive

Explanations) principle. The SHAP feature importance ranking

and swarm plots display the relative contribution of each feature

to the model’s global prediction outcomes, while the SHAP force

plots illustrate the contribution of these factors for a specific

individual. The SHAP-based feature importance ranking plot

(Figure 5A) and the swarm plot (Figure 5B) show the global

contribution of feature variables incorporated in the XGBoost

model, with the horizontal axis representing the SHAP values,

indicating each feature’s contribution to the model’s predicted

outcomes. The vertical axis ranks the features based on the

impact of their cumulative SHAP values. Our results demonstrate

that OASIS, MAP, PCO2, SOFA, and PLT are the five most

important features influencing new-onset SAEs in elderly patients

with sepsis. The SHAP force plot (Figure 5C) highlights the

direction and magnitude of each feature’s influence on the
Frontiers in Cellular and Infection Microbiology 08
prediction for a specific elderly patient with SAE, based on the

XGBoost model for this particular outcome. In this visualization,

red indicators represent a positive impact, while blue indicators

denote a negative impact. Notably, our results show that for this

particular patient, the critical values influencing the likelihood of an

SAE are PLT = 199, Oasis = 32, Sodium = 147, PCO2 = 54, and

MAP = 73. In addition, we further simplified the XGBoost

predictive model by utilizing these five metrics. The results

indicate that the simplified model maintains excellent predictive

ability (AUC=0.858), and the DCA curve, along with the calibration

curve, validate the reliability of the findings (Figure 6).
3 Discussion

In this study, we constructed a prediction model based on ML

models for the risk of SAE in elderly sepsis patients admitted to

ICU. We identified 18 clinical variables through the use of LASSO

combined with the Boruta method and constructed six machine

learning models using these variables. Subsequent results

demonstrated that the XGBoost algorithm model exhibited the

best predictive performance among all ML models and provided

substantial clinical utility, as confirmed by the DCA curve analysis.

The ten-fold cross-validation results provided additional
FIGURE 2

Feature selection. (A) The relationship between Lambda (regularization parameter) and CVM (mean cross validation error) in Lasso regression;
(B) Lasso regression Lambda and Coefficients Plot. (C) Feature selection based on Boruta principle.
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FIGURE 3

Machine learning model construction and diagnostic energy efficiency evaluation. (A) ROC Curve Plot; (B) DCA Curve Plot; (C) Calibration Plot.
TABLE 4 Performances of the machine learning models for predicting SAE in elderly ICU patients.

Model Accuracy AUC Recall F1-Score Precision Specificity

XGBoost 0.830 0.898 0.819 0.820 0.821 0.840

LGBM 0.820 0.882 0.803 0.809 0.814 0.836

CatBoost 0.800 0.872 0.781 0.787 0.793 0.818

SVM 0.628 0.672 0.642 0.620 0.599 0.616

MLP 0.626 0.691 0.720 0.645 0.584 0.542
F
rontiers in Cellular an
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TABLE 5 Ten fold cross validation evaluation of three ensemble algorithm ML models.

Model Accuracy AUC Recall F1-Score Precision Specificity

XGBoost 0.852 0.922 0.847 0.847 0.847 0.856

LGBM 0.844 0.915 0.836 0.838 0.842 0.852

Catboost 0.816 0.891 0.852 0.799 0.817 0.833
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TABLE 6 Comparison of the optimal model with traditional scoring systems.

Variable Accuracy AUC Recall Precision Specificity

SOFA 0.568 0.563 0.368 0.627 0.775

OASIS 0.614 0.651 0.506 0.654 0.725

SapsII 0.603 0.618 0.572 0.617 0.635

APSIII 0.578 0.593 0.641 0.575 0.513

XGBoost 0.830 0.898 0.819 0.820 0.821
F
rontiers in Cellular and In
fection Microbiology
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FIGURE 4

Ten fold cross validation evaluation. (A) ROC Curve Plot of XGBoost; (B) ROC Curve Plot of LGBM; (C) ROC Curve Plot of CatBoost.
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FIGURE 5

Model interpretation and feature importance. (A) SHAP Importance Plot; (B) SHAP Bees Plot; (C) SHAP Heat Force Plot.
FIGURE 6

Simplification of the XGBoost Prediction Model construction and diagnostic energy efficiency evaluation. (A) ROC Curve Plot; (B) DCA Curve Plot;
(C) Calibration Plot.
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confirmation of the stability and clinical utility of the XGBoost

algorithm model for predicting SAE diagnosis in elderly patients.

SAE is recognized as the most common encephalopathy in the

ICU, with incidence rates varying across studies and populations,

typically ranging from 10% to 50% globally (Gofton and Young,

2012; Sonneville et al., 2017, Sonneville et al., 2023). In our study,

the incidence was 48.7%, which is relatively high. Compared to

elderly sepsis patients without neurological disorders, those with

SAE had significantly longer ICU stays and higher 28-day mortality

risk, highlighting the severity and complexity of sepsis in the elderly.

Several previous studies have identified age as an important risk

factor in the onset and progression of SAE (Ljungström et al., 2019;

Chen et al., 2020; Zhang et al., 2024). Therefore, Prompt detection

of high-risk patients at risk of developing SAE is crucial for elderly

sepsis patients admitted to ICU. Unfortunately, although existing

guidelines for sepsis management emphasize early recognition and

prompt treatment of sepsis (Evans et al., 2021), they mainly focus

on signs of sepsis, source of infection control, and organ function

support, and fail to provide an in-depth analysis of elderly septic

patients, including those with SAE (Gamboa-Antiñolo, 2021).

Traditional sepsis scoring systems such as SOFA, Oasis, Saps II,

and Aps III are widely used in the critical care assessment of sepsis

(Qiu et al., 2023; Fan and Ma, 2024), but our results demonstrated

limited effectiveness in identifying elderly SAE, with AUC values

consistently below 0.7. In fact, these traditional scoring systems

primarily focus on physiological parameters and organ failure.

Therefore, despite their validity in assessing the severity and

short-term prognosis of sepsis, they are not well-suited for

diagnosing and predicting sepsis-associated encephalopathy.

In recent years, ML has demonstrated great potential in the

diagnosis and prognosis of sepsis and its associated complications. By

analyzing comprehensive clinical data, MLmodels are able to identify

potential risk factors for the development of sepsis and predict the

progression of the disease, with primary applications in early

prediction, risk assessment, and the development of personalized

treatment strategies (Fleuren et al., 2020; Komorowski et al., 2022;

Upadhyaya et al., 2025). The introduction of machine learning has

improved the accuracy and efficiency of sepsis management and

offered robust support for clinical decision-making. For example, Li

et al. constructed an ML-based model from the data of 1,663 patients

receiving RRT in the MIMIC database and found that the LR model

exhibited outstanding performance in predicting the risk of clinical

prognosis in patients with sepsis-associated acute kidney injury

undergoing RRT (Li et al., 2024). Notably, ML methods have also

demonstrated significant potential in the diagnosis and prognosis of

the SAE, and several researchers have built models for early diagnosis

and short-term prognostic risk assessment of high-risk patients with

SAE using ML approaches (Ge et al., 2022; Lu et al., 2022; Peng et al.,

2022; Guo et al., 2023). However, there remains a gap in machine

learning models specifically for predicting SAE risk in elderly

sepsis patients.

Among the five ML prediction models developed in this study,

the three integration algorithm-based models—XGBoost, LGBM,

and CatBoost—outperform the MLP and SVM models that utilize

standard algorithms. This finding suggests that the integrated
Frontiers in Cellular and Infection Microbiology 12
learning approach performs more effectively for this type of

prediction task, likely due to its ability to combine multiple weak

learners and enhance the generalization and accuracy of the model.

Our results demonstrate that the geriatric SAE prediction model

based on the XGBoost algorithm exhibits the best overall

performance, surpassing the other four ML models and the

traditional ICU condition scoring tool. This outcome is consistent

with findings from previous studies (Lu et al., 2022; Zhang et al.,

2023). XGBoost is an efficient, gradient boosting algorithm widely

used for classification, regression, and ranking tasks. It has the

advantage of combining multiple weak predictive models to

generate accurate predictions. Due to its superior comprehensive

performance, XGBoost ML has garnered increasing attention for

predicting adverse clinical outcomes (Yue et al., 2022; Guan

et al., 2024).

SHAP is a method used to explain the degree of contribution of

feature variables in ML models and provides a clearer visual

interpretation of model predictions. The global analysis utilizing

SHAP identifies OASIS, MAP, PCO2, SOFA, and platelets as the

top five factors influencing the occurrence of SAE in elderly sepsis

patients. OASIS and SOFA are commonly employed in ICUs to

assess patient condition (He et al., 2022; Fan and Ma, 2024), with

higher scores typically indicating more severe disease states. This

suggests that the patient’s physiological systems are under greater

stress, leading to a significantly increased risk of SAE. Elevated

MAP generally reflects higher blood pressure, which may impact

cerebral blood flow, causing endothelial damage in cerebral vessels

and exacerbating neurological symptoms or cerebral complications

(Slessarev et al., 2020; Wang et al., 2022). This, in turn, increases the

risk of SAEs in elderly patients with sepsis. Our modeling results

also indicated that elevated blood indicators, such as platelets and

PCO2, were associated with the occurrence of SAEs. Platelets, key

cells in blood coagulation, are often activated in septic conditions,

promoting thrombosis. When platelet counts are elevated, they not

only raise the risk of thrombosis but also contribute to SAE by

aggravating microvascular damage and promoting an inflammatory

response, which can lead to organ failure (Fodil and Zafrani, 2022;

Leung and Middleton, 2024). Finally, elevated PCO2 may be linked

to brain tissue hypoxia and inadequate cerebral perfusion during

sepsis. Sepsis-induced metabolic disturbances lead to carbon

dioxide accumulation, raising PCO2 levels, which may worsen the

mismatch in cerebral blood flow regulation (Carr et al., 2023;

Caldwell et al., 2024), thereby impairing neurological function

and the normal metabolism of brain cells. In summary, the

combination of multiple physiological indicators and pathological

states in elderly septic patients significantly increases the risk of

SAE. Meanwhile, we further simplified the model using the above

five indicators. The results indicate that the simplified model retains

excellent predictive ability (AUC=0.858). The simplified model

enables clinicians to quickly access and evaluate these key

indicators, thereby improving prediction efficiency. These findings

also underscore the significance of machine learning models in

developing disease prediction systems.

This study has several limitations. First, patients with SAE often

require sedation to control agitation, reduce metabolic demand, or
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improve ventilation tolerance (Helbing et al., 2018); however,

sedation can obscure symptoms of delirium and cognitive

impairment, potentially distorting assessment scores. The patient

consciousness assessment data in this study were derived from

electronic medical records available in the MIMIC database;

however, they lacked key information, such as the sedation-to-

assessment interval and the state of recovery of consciousness,

which may have led to biased results. Second, the retrospective

nature of this study, based on a single database, may restrict the

applicability and generalizability of the findings. Future studies

should incorporate multicenter ICU data and conduct prospective

investigations to stratify patient populations more effectively (e.g.,

considering the timing of SAE onset and the type and timing of

sedative medication use), allowing for a more comprehensive

evaluation and refinement of the model. Moreover, this

retrospective study is based on the MIMIC database, which

primarily includes ICU patients from the United States. Its

demographic composition may not fully represent global

populations, limiting the generalizability of our findings. Ethnic

differences can influence SAE presentation, treatment response, and

outcomes (Haddad et al., 2020), while disparities in healthcare

access and comorbidities may affect the external validity of our

model. Future studies should validate these findings in diverse

populations and assess whether race-specific model adjustments

enhance performance across demographic groups. Finally, although

the SHAP method was used to visually illustrate the high-risk

factors for SAE occurrence in elderly patients, aiding physicians

in identifying and understanding the most relevant clinical

characteristics, further optimization of the model is needed.

Future efforts should focus on optimizing the model, developing

user-friendly interfaces (e.g., a mobile application or web tool), and

exploring its integration with electronic medical record systems.

This would enable clinicians to input patient data and retrieve

predictive results without requiring programming expertise, thereby

facilitating clinical decision-making.
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