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Background: Colorectal cancer (CRC) is a prevalent and lethal malignancy, with

the role of gut microbiota in its development still unclear. This study examines

differences in gut microbiota between CRC patients and healthy controls and

explores their association with host gene expression to identify potential

diagnostic and therapeutic targets.

Methods: Fecal samples from 10 CRC patients and 13 healthy controls were

subjected to 16S rRNA sequencing. Transcriptome sequencing of tumor tissues,

normal mucosa, and colorectal polyps from same 10 CRC patients was

performed to identify differentially expressed genes (DEGs). Pearson

correlation analysis was employed to associate operational taxonomic units

(OTUs) with host gene expression.

Results: b-diversity analysis showed significant differences in microbiota

between CRC patients and controls (P < 0.01). LEfSe identified 38 distinct

bacterial taxa, with genera such as Bacteroides, Peptostreptococcus, and

Parabacteroides being enriched in CRC patients. Transcriptome analysis

uncovered 1,026 DEGs. Notably, TIMP1 and BCAT1 were positively correlated (r

> 0.76, P < 0.01) with pathogenic bacteria like Fusobacterium nucleatum and

Peptostreptococcus stomatis. Tumor-related genes TRPM4, MYBL2, and

CDKN2A were significantly upregulated and correlated with specific

bacterial taxa.

Conclusion: This study underscores the significant alterations in gut microbiota

associated with CRC and reveals novel correlations between specific microbes

and host gene expression, offering potential diagnostic markers and therapeutic

targets for CRC.
KEYWORDS

colorectal cancer, gut microbiota, 16S rRNA sequencing, OTU-gene correlation,
diagnostic markers
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Introduction

Colorectal cancer (CRC) ranks as the third most common cancer

globally and is the second leading cause of cancer-related mortality.

Data from the National Center for Health Statistics on Cancer for the

year 2024 indicate that there are approximately 1.93 million new

cases of CRC and 940,000 CRC-related deaths worldwide annually

(Siegel et al., 2024). The incidence of synchronous polyps in CRC

patients varies from 14% to 48% (Arenas et al., 1997), with a

predilection for the right or proximal colon. These polyps often

manifest as multiple adenomatous polyps, some of which may

demonstrate high-grade dysplasia or possess malignant potential

(Demetriades et al., 2004). The presence of synchronous polyps can

complicate treatment, potentially requiring more extensive surgical

interventions and signaling an increased risk for the development of

subsequent metachronous lesions (Li et al., 2019). Therefore,

preoperative and postoperative colonoscopic assessments are

crucial for the detection and management of synchronous polyps,

enabling optimized treatment strategies and improved patient

outcomes (Piñol et al., 2004).

The gut microbiota, an essential component of the human

gastrointestinal tract, plays a key role in maintenance of host

immunity, metabolism, and barrier functions (Valdes et al., 2018;

Tilg et al., 2020). Recent studies have demonstrated a strong

correlation between gut microbiota dysbiosis and the

development and progression of CRC (Wirbel et al., 2019; Wong

and Yu, 2019; Yachida et al., 2019). Despite this, research exploring

the interplay between the gut microbiota and host gene expression

is relatively scarce (Gopalakrishnan et al., 2018). Prior

investigations have predominantly compared microbiota and gene

expression profiles between colorectal polyps and cancer by

examining samples from distinct patient cohorts (Choi et al.,

2023; Zou et al., 2024). However, there is a paucity of research

that specifically addresses CRC patients with synchronous polyps,

creating an obvious gap in our understanding of the pathological

mechanisms specific to this subtype of CRC.

To bridge the identified research gap, we conducted a

comprehensive analysis by integrating microbiome and

transcriptome data. This approach allowed us to systematically

evaluate the differences in gut microbiota composition between CRC

patients presenting with synchronous polyps and a cohorts of healthy

controls. Furthermore, we investigated the correlations between

specific microbial taxa and differentially expressed genes (DEGs) to

uncover the potential roles of the gut microbiota in CRC pathogenesis.

Our study aims to offer fresh insights into the mechanisms specific to

this distinct patient group and to pinpoint potential therapeutic targets

and intervention strategies tailored to this population.
Methods

Sample collection and processing

In this study, tumor tissues (CC), adjacent normal mucosa

(NM), and synchronous colorectal polyp tissues (PP) were collected
Frontiers in Cellular and Infection Microbiology 02
from 10 patients diagnosed with both CRC and synchronous polyps

for transcriptomic sequencing. All tissue samples were immediately

flash-frozen in liquid nitrogen upon collection and stored at -80°C

until RNA extraction. Additionally, fecal samples were collected

from the same 10 CRC patients and 13 healthy controls for gut

microbiome analysis. The inclusion criteria were: (1) age between

18-80 years; (2) CRC group: diagnosis of colorectal cancer

confirmed by colonoscopy and pathology; control group: no

abnormalities detected in colonoscopy; and (3) voluntary

participation with signed informed consent. Exclusion criteria

included: (1) familial colorectal cancer or familial polyposis; (2)

history of diabetes; (3) use of antibiotics or probiotics in the past

three months; (4) symptoms of infection within the last week; and

(5) presence of other intestinal diseases. The study protocol was

approved by the Ethics Committee of Quanzhou First Hospital

(Ethics Approval Number: [2024] K189.

16S rRNA sequencing and analysis

Genomic DNA was meticulously extracted employing the

CTAB/SDS protocol. The quantification and assessment of DNA

purity were conducted using 1% agarose gel electrophoresis.

Subsequently, the DNA was adjusted to a uniform concentration

of 1 ng/ml using sterile water to standardize subsequent procedures.
To construct sequencing libraries, the V3-V4 hypervariable regions

of the 16S rRNA genes were selectively amplified. This was achieved

using the NEBNext® Ultra™ DNA Library Prep Kit for Illumina®

(New England Biolabs, Ipswich, MA, USA), adhering closely to the

manufacturer’s guidelines. Unique index codes were incorporated

to facilitate sample tracking. Post-quality control (QC), the libraries

were subjected to high-throughput sequencing on an Illumina

MiSeq platform, yielding 250 bp paired-end (PE) reads.

The sequences underwent stringent quality filtering using

Trimmomatic V0.33 (Bolger et al., 2014), ensuring that only

high-quality clean reads were retained for further analysis.

Sequence assembly was performed using FLASH (v1.2.11), and

the resulting contigs were clustered into operational taxonomic

units (OTUs) at a 97% similarity threshold using the VSEARCH

clustering algorithm (Rognes et al., 2016). For each OTU, a

representative sequence was selected for taxonomic annotation.

Taxonomic classification was conducted using QIIME2 (2019.4)

with a confidence threshold of 0.7, leveraging the comprehensive

Silva (Release 132) database for accurate species identification

(Quast et al., 2013). Diversity indices, specifically the Shannon

index, were calculated to assess alpha diversity for each sample.

Beta diversity was analyzed using non-metric multidimensional

scaling (NMDS) to visualize community structure differences

between samples. To identify differentially abundant features,

linear discriminant analysis effect size (LEfSe) was applied. The

analysis was conducted using the Python LEfSe package, with a

Wilcoxon p-value threshold set at 0.05 and a logarithmic LDA score

cutoff at 2.0 to ensure statistical robustness. Finally, the results were

visualized using bar plots and heatmaps generated with the R

package v3.4.1, providing a clear and concise graphical

representation of the data.
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Transcriptome sequencing and analysis

Total RNA extraction from tumor tissue, normal mucosa, and

colorectal polyps was conducted according to previously established

protocols (Liu et al., 2021). Subsequently, RNA-sequencing (RNA-

seq) libraries were meticulously prepared using the AHTS Universal

V8 RNA-seq Library Prep Kit for Illumina (Vazyme, China), strictly

adhering to the manufacturer’s instructions. These libraries were

then subjected to sequencing on the SURFSeq 5000 platform

(GeneMind Biosciences LTD., China) employing a 150-cycle

paired-end high-output sequencing protocol. Post-sequencing

reads were meticulously filtered to remove adapters, poly-N

sequences, and low-quality reads. The cleaned reads were

subsequently aligned to the human reference genome (GRCh38/

hg38) to ensure accurate mapping.

To explore the relationship between microbial community

composition and host gene expression, the Pearson correlation

coefficient was employed to assess the correlation between OTU

abundance and differential gene expression levels for each OTU-

gene pair across all 10 patients. To enhance computational

efficiency and precision, OTUs present in fewer than 2 patients

were excluded, resulting in a refined dataset of 298 OTUs that

accounted for 98% of the initial abundance. DEG analysis was

performed using DESeq2 to compare two groups per patient:

normal mucosa versus colorectal tumor tissue (NM-VS-CC) and

polyp tissue versus colorectal tumor tissue (PP-VS-CC) (Love et al.,

2014). Genes were considered DEGs if the fold change (|log2FC|)

between groups was >=1 and the differences were statistically

significant (P-adjust <=0.05).

In correlating differential gene expression with OTU

abundance, only the intersection genes of the two DEG sets were

selected for analysis. This approach was taken to quantify the

correlation between the host transcriptome and the microbiome.

The Pearson’s correlation was calculated using the corr.test function

and the results were visualized using the Pheatmap package. The

significance of each OTU-gene pair correlation was determined

with a P-adjust threshold of <=0.05, ensuring that only robust and

significant correlations were considered in the analysis.
Validation of key genes and gut
microbiome

We validated the key genes and gut microbiome identified in our

study using publicly available databases. Gene expression data were

sourced from TCGA (The Cancer Genome Atlas https://

www.cancer.gov/tcga) and GSE117606 from GEO (Gene

Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo) (https://

doi.org/10.1093/nar/gks1193), while gut microbiome data were

obtained from the GMrepo database (https://gmrepo.humangut.info/)

(Dai et al., 2022).
Frontiers in Cellular and Infection Microbiology 03
Results

Patient cohort characteristics

A total of 10 patients diagnosed with both CRC and

synchronous polyps were enrolled in this study, comprising 5

males and 5 females, with a mean age of 69.6 ± 9.3 years. Tumor

samples were collected from the rectum, sigmoid colon, and

ascending colon, and all patients were diagnosed with moderately

differentiated adenocarcinoma. The cancer staging was distributed

as follows: 1 patient in stage I, 5 in stage II, and 4 in stage IV. The

healthy control group comprised 13 participants, including 10

males and 3 females, with a mean age of 47.6 ± 10.3 years (see

Supplementary Table 1).
Differences in gut microbiota composition
between CRC patients and healthy
controls

In both CRC patients and healthy controls, four dominant

bacterial phyla—Firmicutes, Bacteroidetes, Fusobacteria, and

Proteobacteria—accounted for 94% to 98% of the OTUs on

average (Figure 1A). Compared to the healthy controls, the

relative abundance of Bacteroidetes and Fusobacteria was

significantly increased in CRC patients, while the relative

abundance of Firmicutes was significantly decreased (P < 0.05)

(Figure 1B). Alpha diversity, evaluated using the Shannon diversity

index, indicated a trend toward reduced gut microbial diversity in

CRC patients, although this trend was not statistically significant

(Figure 1C). Beta diversity analysis, conducted using NMDS,

demonstrated a significant difference in microbial community

composition between CRC patients and healthy controls (P <

0.01) (Figure 1D).
Identification of differentially abundant
bacterial taxa

LEfSe analysis identified 38 significantly different taxa across

five taxonomic levels (phylum, class, order, family, and genus)

(Figure 2A). CRC patients showed significant enrichment of 30

taxa, including the genera Bacteroides, Peptostreptococcus,

Parabacteroides, and the family Porphyromonadaceae. In

contrast, healthy controls exhibited significant enrichment of 8

taxa, predominantly from the family Lachnospiraceae and genus

Blautia. At the genus level, the Wilcoxon rank-sum test

substantiated the differential abundance. The relative abundance

of genera Alistipes, Bacteroides, and Parabacteroides was

significantly higher in CRC patients (all P < 0.05), with

Bacteroides and Parabacteroides showing highly significant
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differences (P < 0.01) (Figure 2B). In the healthy controls, the

relative abundance of genera Blautia , Faecalibacterium ,

Phocaeicola, and Roseburia was significantly elevated (all P < 0.05).
Differential gene expression across CRC
tissues, normal mucosa, and polyp tissues

Transcriptome sequencing was performed on CC, NM, and PP

samples from 10 CRC patients. The 2D PCA plot illustrates the gene

expression disparities among CC, NM, and PP groups (Figure 3A).

Notably, CC group exhibited a markedly distinct distribution in the

principal component space when compared to both NM and PP

groups, suggesting that the transcriptomic profiles of CC divergent

from those of NM and PP. In the comparison between CC and NM,

a total of 3,501 DEGs were identified, while 1,099 DEGs were

identified between CC and PP (Figure 3B). After excluding genes

unique to each comparison, 1,026 common DEGs were selected for

further analysis.

GO analysis revealed a significant enrichment of genes related

to bacterial molecular responses in CC tissue (Figures 3C, D). This

finding suggests that the gut microbiota may play a crucial role in
Frontiers in Cellular and Infection Microbiology 04
cancer tissues, with distinct differences in bacterial-related

responses between cancerous and non-cancerous tissues. These

findings bolster our understanding of the potential role of the gut

microbiome in CRC pathogenesis and provides new insights for

exploring the interplay between the gut microbiota and

cancer development.
Correlation analysis between gut
microbiota and host gene expression

This study conducted Pearson correlation analysis between

1,026 DEGs and 298 OTUs, retaining data with adjusted P values

(P-adjust) less than 0.05 for network visualization (Figure 4A). The

network plot provided a clear view of the interactions between

OTUs and genes, identifying 64 significant OTU-gene pairs,

involving 29 mRNAs and 7 OTUs (Figure 4B). Within this set, 17

pairs had P-adjust <0.05, 17 pairs had P-adjust < 0.01, and 30 pairs

had P-adjust < 0.001, with the majority of correlations

being positive.

The study found that the genes tissue inhibitor of
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FIGURE 1

Gut bacterial composition and diversity in colorectal cancer (CRC) patients (P) and healthy controls (H). (A) Relative abundance at the phylum level
and (B) genus level in CRC patients (blue) and healthy controls (yellow). (C) alpha-diversity assessed by the Shannon index for healthy controls
(yellow) and CRC patients (blue), with p > 0.05 (T-test). (D) Non-metric multidimensional scaling (NMDS) of the 16S rRNA gene sequences from fecal
samples in CRC patients (P) and healthy controls (H). The NMDS plot features a stress value of 0.1970 and a correlation coefficient (R) of 0.53,
calculated using Bray-Curtis distances, with a highly significant P-value of 1e-04.
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aminotransferase 1 (BCAT1) were significantly positively correlated

(correlation coefficient r > 0.76, P < 0.01) with pathogenic bacteria

such as Fusobacterium nucleatum, Peptostreptococcus stomatis, and

Parvimonas micra. Additionally, the gene transient receptor

potential cation channel subfamily M member 4 (TRPM4)

showed significant correlations with multiple pathogenic bacteria.

Other genes, including MYB proto-oncogene like 2 (MYBL2), cyclin

dependent kinase inhibitor 2A (CDKN2A), and stathmin 3

(STMN3) were significantly upregulated in tumor tissues from

CRC patients and were significantly associated with specific

bacterial genera (Figure 4B).
Validation of key gene expression and gut
microbiome

The results show that among the eight bacteria, Bacteroides

fragilis exhibits a particularly strong association with colon
Frontiers in Cellular and Infection Microbiology 05
adenomas. Notably, the relative abundance of Porphyromonas

asaccharolytica and Porphyromonas somerae is the highest among

the analyzed species (Supplementary Figure S1).

Expression analysis of five key genes in CC, NM, and PP

revealed that BCAT1, MYBL2, CDKN2A, and TIMP1 were

significantly upregulated in CC compared to NM and PP (all P <

0.05). Conversely, TRPM4 was significantly downregulated in CC

relative to NM and PP (P < 0.05). Analysis of TCGA database

showed that CDKN2A, MYBL2, and TIMP1 were significantly

upregulated in cancer tissues, while TRPM4 was significantly

downregulated; BCAT1 expression did not show a significant

difference (Figure 5). GEO database analysis indicated that

TIMP1 and BCAT1 were significantly upregulated in cancer

tissues, whereas TRPM4 was significantly downregulated, with no

significant differences in MYBL2 and CDKN2A expression.

Additionally, TCGA data revealed that high expression of

CDKN2A and TIMP1 were significantly associated with poorer

survival outcomes (P = 0.036 and P = 0.0045, respectively). In
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contrast, the expression of TRPM4, BCAT1, and MYBL2 was not

significantly correlated with survival (all P-values > 0.05).
Discussion

In this study, we conducted a comprehensive analysis of

patients with CRC accompanied by synchronous polyps, revealing

alterations in gut microbiota composition and host gene expression,

and their interrelationships. To our knowledge, this is the first study

to collect CC, NM, and PP from the same patient, thereby

eliminating inter-individual variability and more precisely

reflecting the biological changes during disease progression. This

approach contrasts sharply with previous studies that treated CRC

patients, polyp patients, and healthy controls as separate groups,

providing fresh insights into the mechanisms underlying CRC

initiation and progression.
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Our findings demonstrated significant changes in the gut

microbiota composition of CRC patients with synchronous

polyps, characterized by an increase in pathogenic bacteria and a

decrease in beneficial bacteria. This result is consistent with

previous studies, further validating the crucial role of gut

microbiota in the pathogenesis of CRC (Liu et al., 2020; Silva

et al., 2021). For instance, we observed a significant increase in

the abundance of phyla the Bacteroidetes and Fusobacteria, and a

significant decrease in Firmicutes in these patients. This aligns with

previous findings, which reported decreased gut microbial diversity

and dysbiosis in CRC patients (Yeoh et al., 2020; Shariati et al.,

2021; Cui et al., 2022). However, regarding a-diversity, our study
showed a decreasing trend in gut microbial diversity in CRC

patients with synchronous polyps, but it did not reach statistical

significance. This finding contrasts with other studies that reported

a significant reduction in a-diversity among CRC patients

(Gataullin et al., 2021; Zhao et al., 2021), which reported a
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significant reduction in a-diversity in CRC patients. The

discrepancy may be attributed to our relatively small sample size,

which could reduce the power of statistical tests.

Additionally, we confirmed the enrichment of Fusobacterium

nucleatum in CRC patients with synchronous polyps, a bacterium

associated with tumor invasiveness and poor prognosis, supporting

its pivotal role in CRC progression (Xu et al., 2021a). F. nucleatum

interacts with host E-cadherin through its adhesin FadA, activating

the b-catenin signaling pathway and upregulating the oncogene

MYC (Rubinstein et al., 2019). Additionally, it interacts with the

TIGIT receptor on T cells via its surface protein Fap2, inhibiting the

antitumor activities of natural killer cells and T cells, leading to

immune evasion (Galaski et al., 2021). F. nucleatum can also induce

the release of pro-inflammatory cytokines such as IL-6 and TNF-a,
creating an inflammatory microenvironment that promotes tumor

development (Bostanghadiri et al., 2023). Other pathogenic

bacteria, such as Parvimonas micra, Prevotella intermedia,

Bacteroides fragilis, and Enterococcus faecalis, are also believed to

promote CRC through various mechanisms, consistent with

previous studies (Lavoie et al., 2020; Kabwe et al., 2021; Osman

et al., 2021; Lee et al., 2022). In contrast, beneficial bacteria enriched

in the healthy control group, such as Blautia, Faecalibacterium, and

Roseburia, typically exhibit anti-inflammatory effects and maintain

intestinal barrier function (Mohebali et al., 2020; Xia et al., 2021).
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Reducing these beneficial microbes may lead to an imbalance in the

intestinal microenvironment, thereby promoting tumorigenesis.

Abnormal host gene expression was also observed.

Transcriptome analysis revealed that genes such as TIMP1,

BCAT1, and MYBL2 were significantly upregulated in CRC

tissues compared to normal mucosa and polyp tissues. Previous

study has confirmed that overexpression of BCAT1 in CRC is

associated with tumor progression and poor prognosis (Symonds

et al., 2022). Our study further emphasizes the critical role of this

gene in CRC. BCAT1, as a key enzyme in branched-chain amino

acid metabolism, promotes tumor cell proliferation (Mao et al.,

2021). The methylation status of BCAT1 has also been used as a

biomarker for non-invasive CRC diagnosis, highlighting its

potential in early tumor detection (Xu et al., 2021b). Conversely,

we observed that TRPM4 was significantly downregulated in cancer

tissues compared to normal mucosa and polyp tissues. This finding

is consistent with analyses from TCGA and GEO databases,

suggesting that TRPM4 may act as a tumor suppressor in CRC.

However, a previous study indicated that TRPM4 is highly

expressed in tumor buds of human colorectal tumors and is

associated with proliferation, cell cycle regulation, and invasion of

colorectal cancer cells (Kappel et al., 2019). This contradiction may

stem from differences in sample types, detection methods, or patient

populations, warranting further investigation in future studies.
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Furthermore, we found a significant correlation between the

expression of TIMP1 and the abundance of Porphyromonas

somerae. TIMP1, as an endogenous inhibitor of matrix

metalloproteinases, participates in the degradation and remodeling

of the extracellular matrix (Guccini et al., 2021). TIMP1 predicts colon
Frontiers in Cellular and Infection Microbiology 08
cancer progression and metastasis through the FAK-PI3K/AKT and

MAPK pathways (Song et al., 2016). Our results show that TIMP1

expression in CRC tissues is higher than in polyp and normal mucosa

groups, validated in TCGA and GEO databases, and that high TIMP1

expression is significantly associated with poorer survival outcomes.
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Functional enrichment analysis of high TIMP1 expression suggests

that TIMP1 may influence tumor invasion and metastasis by

regulating ECM remodeling, cell adhesion, cell migration, and

related signaling pathways (such as ECM-receptor interaction and

cytoskeleton regulation). P. somerae, a Gram-negative anaerobic

bacterium belonging to the Porphyromonas genus, is commonly

found in the oral microbiota and has been associated with various

human diseases, particularly periodontitis and systemic inflammation

(Lundmark et al., 2019). Study has found that in lean CRC, P. somerae

is considered a characteristic microbe and is associated with functional

metabolic pathways such as mucin O-glycan biosynthesis,

glycosaminoglycan degradation, and butyrate metabolism (Zhu

et al., 2024). Although direct studies linking P. somerae to CRC are

relatively scarce, other species within the genus, such as

Porphyromonas gingivalis, have been extensively studied and

reported to play important roles in CRC pathogenesis (Wang et al.,

2021; Kerdreux et al., 2023). P. somerae shares genomic similarities

with P. gingivalis, including genes involved in energy metabolism and

intracellular survival, suggesting that P. somerae may possess similar

pathogenic mechanisms (Crooks et al., 2021). The gingipain virulence

factors of P. gingivalis promote cell proliferation, inhibit apoptosis, and

accelerate inflammatory responses by regulating the PI3K/AKT and

MAPK signaling pathways, which are also involved in TIMP1-

mediated colon cancer progression and metastasis (Liu et al., 2018).

Additionally, gingipains can activate pro-inflammatory factors such as

interleukins and tumor necrosis factors, further promoting tumor cell

growth and invasion (Kerdreux et al., 2023). Regarding the impact of

P. gingivalis on TIMP1 expression, studies have shown that P.

gingivalis infection can enhance the secretion of MMP-1 and

TIMP1 in human periodontal ligament fibroblasts, leading to an

imbalance in the MMP-1/TIMP1 ratio and further promoting tissue

destruction (Herath et al., 2013). Based on the aforementioned studies

on P. gingivalis, we speculate that P. somerae may influence CRC

occurrence and progression through similar mechanisms. This

provides a novel perspective for considering P. somerae or its

related inflammatory pathways as potential therapeutic targets for

CRC. However, further research is necessary to elucidate the specific

molecular mechanisms by which P. somerae affects TIMP1 expression

and to verify its role in CRC pathogenesis.

Additionally, increasing evidence suggests that P. somerae can

modulate other key genes via metabolic pathways. For instance,

Crooks demonstrated in an endometrial cancer model that P.

somerae can invade epithelial cells, evade immune recognition, and

secrete metabolic intermediates such as succinate, which stabilize

hypoxia-inducible factors (HIF) (Crooks et al., 2021). Through this

process, P. somerae promotes carcinogenesis by inducing chronic

inflammation and enhancing angiogenesis. With respect to BCAT1,

branched-chain aminotransferases (BCAT) are pivotal in the

catabolism of branched-chain amino acids (BCAAs), and BCAT1 is

the predominant isoform in human primary macrophages

(Papathanassiu et al., 2017). Notably, P. somerae often exhibits

esterase, esterase lipase, leucine arylamidase, and valine arylamidase

activities (Summanen et al., 2005), the latter two being able to

hydrolyze aromatic amine compounds containing leucine or valine,

thereby supplying additional leucine or valine substrates to the host.
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Under these conditions, the demand for BCAT by host cells likely

increases, potentially resulting in BCAT1 upregulation to facilitate

BCAA transamination. Hence, we hypothesize that P. somerae

indirectly induces BCAT1 overexpression by altering the metabolic

milieu or providing surplus substrates, in line with our observed

positive correlation between P. somerae abundance and BCAT1

expression. Further in vitro and in vivo investigations are

warranted to validate this hypothesis and elucidate the precise

molecular mechanisms involved.

Our study’s findings have potential clinical significance. First,

our innovative study design, comparing different pathological

tissues within the same patient, avoids inter-individual differences

and more accurately reflects the biological changes during disease

progression. Second, detecting specific pathogenic bacteria such as

P. somerae may serve as biomarkers for early diagnosis or risk

assessment of CRC. Interventions targeting these pathogens, or

their associated pathways could provide new strategies for CRC

prevention and treatment. For example, probiotic therapies that

modulate the gut microbiota or antimicrobial treatments targeting

specific bacterial populations may influence host gene expression

and slow tumor progression. Finally, expression levels of genes like

TIMP1 could serve as reference indicators for prognostic evaluation

and personalized treatment.

Despite providing important insights, our study has several

limitations. First, the sample size is relatively small, including only

10 CRC patients, which may limit the generalizability of the results.

However, our findings are consistent with mainstream research,

supporting the reliability of our conclusions. Second, the study

primarily focuses on correlational analyses and lacks in-depth

exploration of the causal relationships between microbiota and

gene expression. Future studies should incorporate in vivo and in

vitro experiments to investigate the specific mechanisms by which

particular microbes affect host gene expression. Additionally, due to

the absence of longitudinal data, we could not assess the dynamic

changes of microbiota and gene expression during disease

progression. Future longitudinal studies will help elucidate the

roles of these changes in CRC development and progression.
Conclusion

Through a pioneering study design, our research conducted an

in-depth analysis of the alteration in gut microbiota and host gene

expression in CRC patients with synchronous polyps. We revealed,

for the first time, a significant association between the abundance of

P. somerae and the high expression of TIMP1. These findings shed

new light on the mechanisms underlying the onset and progression of

CRC and suggest potential avenues for early diagnosis, prevention,

and the development of personalized treatment strategies.
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