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Introduction: Since the first discovery and reporting of the COVID - 19 pandemic

towards the end of 2019, the virus has rapidly propagated across the world. This

has led to a remarkable spike in the number of infections. Even now, doubt

lingers over whether it has completely disappeared. Moreover, the issue of

restoring normal life while ensuring safety continues to be a crucial challenge

that public health agencies and people globally are eager to tackle.

Methods: To thoroughly understand the epidemic’s outbreak and transmission traits

and formulate timely preventionmeasures to fully safeguard human lives andproperty,

this paper presents an agent - based model incorporating individual - level factors.

Results: The model designates Xi'an—where a characteristic disease outbreak

occurred—as the research area. The simulation results demonstrate substantial

consistency with official records, effectively validating the model’s applicability,

adaptability, and generalizability. This validated capacity enables accurate

prediction of epidemic trends and comprehensive assessment of disease risks.

Discussion: From late 2021 to early 2022, it employs a one - to - one population

simulation approach and simulates epidemic impacts and disease risks. Initially,

using building statistical data in the study area, the model reconstructs the local

real - world geographical environment. Leveraging data from the seventh national

population census, it also replicates the study area’s population characteristics.

Next, the model takes into account population mobility, contact tracing, patient

treatment, and the diagnostic burden of COVID - 19 - like influenza symptoms. It

integrates epidemic transmission impact parameters into the model framework.

Eventually, the model’s results are compared with official data for validation, and

it’s applied to hypothetical scenarios. It provides scientific theoretical tools to

support the implementation of government - driven prevention and control

measures. Additionally, it facilitates the adjustment of individual behavioral

guidelines, promoting more effective epidemic management.
KEYWORDS

COVID-19, individual factor, agent model, government macro intervention policy,
simulation and prediction
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1 Introduction

The emergence of the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) pandemic at the end of 2019 severely

disrupted life globally, negatively affecting the mental and physical

wellbeing of people around the world (Aldhawyan et al., 2024). The

sudden emergence of coronavirus disease 2019 (COVID-19) as a global

public health concern not only impacted the global economy but also

led to social instability. This pandemic necessitates global unity (Dietz

and Brondstater, 2024). Understanding the rapid progression of the

COVID-19 epidemic and effectively translating this understanding into

government policies has become an urgent requirement for

governments worldwide. Rajagopal et al. (2020) developed a SEIRD

model with fractional derivatives and validated it using epidemic data

from Italy. The results demonstrated that the fractional model

exhibited smaller prediction errors compared to the traditional SIR

series model. Maier and Brockmann (2020) developed a concise

susceptible-infected-recovered-X (SIR-X) model. This model aimed

to explore the impacts of isolation measures, containment policies, and

unidentified patients, including asymptomatic individuals, on epidemic

progression. Truszkowska et al. (2021) constructed an agent-based

model. They used it to examine the effects of different vaccination

strategies on epidemic prevention and control in New Rochelle, a town

in the United States. Beira and Sebastiao (2021) devised a

comprehensive protected-susceptible-exposed-infectious-recovered-

deceased (s) [PSEIRD(S)] model. They fitted the model using data

on the number of infected individuals, deaths, and hospitalizations

during the post-Christmas 2020 outbreak in Portugal. The fitting

results showed that some model parameters underwent discrete

temporal changes, reflecting the multi-phase nature of the epidemic.

A comprehensive protected-susceptible-exposed-infectious-recovered-

deceased (s) [PSEIRD(S)] model was devised. They fitted the model

using data on the number of infected individuals, deaths, and

hospitalizations during the post-Christmas 2020 outbreak in

Portugal. The fitting results showed that some model parameters

underwent discrete temporal changes, reflecting the multi-phase

nature of the epidemic.

Building on the basic SIR model of COVID-19 transmission,

Dehning et al. (2020) proposed a Bayesian framework based on

Markov chain Monte Carlo (MCMC) sampling. This framework was

used to characterize key epidemiological parameters, time-varying

transmission rates, and potential change points. It also helped identify

the optimal timing for intervention effectiveness. Bertrand and Pirch

(2021) developed the susceptible-exposed-infectious-quarantined-

recovered-deceased (SEIRQD) model. They explored the optimal

control of the second-phase COVID-19 lockdown in Morocco and

analyzed the impact of optimal control strategies on the pandemic in

the country. Wijesekara and Wang (2022) employed the proposed

susceptible, transmitted, quarantined, non-diagnosed infected,

hospitalized diagnosed infected, recovered, dead, susceptible

(SEQIJRDS) model. They predicted mortality rates under various

lockdown procedures, vaccination scenarios, quarantine measures,

and mask-usage cases. Additionally, they projected hospital resource

utilization to identify the most effective interventions that would

prevent over-straining hospital resources. Building on the SEIR
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model of disease transmission, they (Liu et al., 2021) put forward an

adaptive model named SEAIRD, which incorporates internal sources

and isolation interventions. This model simulates the evolving behavior

of SARS-CoV-2 in the United States. Neural networks are applied to

enhance the fit of the SEAIRD model. Schlosser et al. (2020)

demonstrated that lockdown measures in Germany not only

significantly reduced population mobility but also led to a substantial

decrease in the long-term connectivity of the mobility network. The

study revealed that these structural changes could flatten the epidemic

curve and slow down disease transmission. Cacciapaglia et al. (2021)

proposed a continuous waveform graph based on the epidemic severity

normalizing group framework (eRG). They concluded that

understanding the relaxation periods between different epidemic

phases is crucial for controlling future major outbreaks. Aleta et al.

(2020) constructed an agent-based COVID-19 epidemic dynamics

model. By integrating anonymous mobile phone location data from

the entire Boston area with census statistics, they found that agents

adhered strictly to social distancing requirements for a specific period.

Contact tracing, nucleic acid testing, and isolation measures effectively

curbed the spread of COVID-19. These measures also alleviated the

burden on the healthcare system, enabling it to handle current

medical demands.
2 Materials and methods

2.1 Data collection

This study amassed diverse fundamental epidemiological

parameters, including those of the COVID-19 virus. A Python web

crawler was utilized to gather and analyze the most recent daily

COVID-19 epidemic data publicized by the Xi’an Health

Commission on its official website. These data encompasses the

number of new cases, cumulative confirmed cases, and new deaths

on each given day. The number of deaths are accumulated, and the

missing data are further supplemented through the network platform.

Through the API interface of AMAP (2022), the geographic

coordinates, building categories, and population capacity of various

buildings in Xi ‘an, such as houses, schools, hospitals, nursing homes,

workplaces, leisure, and entertainment venues, were collected and

counted, and the above data were checked and corrected by manual

collection on Google Map (Google, 2022). The population data were

sourced from China’s seventh national population census in 2020,

along with relevant government-released macro-policy data. These

were organized into datasets for use in the model. Transmission

parameters of the COVID-19 virus, clinical parameters, and patient

hospitalization parameters were drawn from research conducted by

global scholars and official announcements of Xi’an. Parameters were

adjusted in accordance with the actual situation in Xi’an.
2.2 Agent model

In this study, the classical SEIR epidemiological infection model

underwent improvement. The model’s states were both increased in
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number and refined. Concurrently, it was integrated with the

discrete-event simulation model and extended on the GIS

platform, enabling the construction of a comprehensive agent-

based model.

Within this study, agents are categorized into Sicken Individual

Agent (SIA), Healthy Individual Agent (HIA), and Intervention

Agent (VA). The attributes and behaviors of these agents are

precisely defined in Table 1.

During each simulation step (Ds), agents switch locations

among the six types of places generated by the model, guided by

their own requirements. The model assigns distinct propagation

parameters to different locations. For simulated travelers, the flow

of various vehicles between different regions is factored in. Travel

modes are interconnected through the Haversine equation—an

algorithm calculating distances between two points using latitude

and longitude data. This mimics real-world scenarios where people

select travel modes based on distance and time constraints.

Six typical locations are denoted as Q={1,2,3,…., q}, while

residents in the study area are C={1,2,3,….}, A transfer function

fk: C → Q is defined using the semi-positive vector formula. Here,

k∈{F, B, S, Rt, Hp} is used to allocate generated inhabitants to

various locations. The function fk sends each agent i ∈C to its

corresponding location q. Locations q include homes (F), public

places (B), schools (S), nursing homes (Rt), and hospitals (Hp).
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Given that an agent may not be connected to all locations, when

agent i has no connection with location q, we denote it as fk(i) = ∮,
and Cq represents the total number of agents connected to

location q.

The Haversine formula (Baskar and Anthony Xavior, 2021) is as

follows:

d = 2Rarcsin ( √ sin2 () + cos(lat2) cos(lat1) sin2 ()) (1)

This paper builds an Agent model across three dimensions:

individuals, settings, and the epidemic itself. At the individual level,

Agents represent real-world people as embodied entities. The

setting dimension pertains to the environment where Agents

interact and carry out actions. Regarding the epidemic, it

encompasses the age distribution of hospitalized patients, the

proportion of ICU hospitalizations, and the age-specific mortality

ratio. This paper conducts research at three levels. At the city level,

Xi’an is chosen as a representative city for epidemic outbreaks. At

the community level, research focuses on family units. Using census

data from the study area, data such as the total number of

household accounts, age ratio, total population, age distribution

of household heads, proportion of single-parent families,

proportion of childless families, and proportion of families with

the elderly are integrated with official data for model calculation,

demonstrating local community structure characteristics. Building
TABLE 1 Agent attributes and behavior definition.

Agent sort Common
attribute

Concrete attribute Behavior Infectious disease
influencing factors

Individual
agent

SIA
HIA

Time attribute

Age Flow in the location where the model
is generated

Location migration
Sex

Whether to become a close contact

Whether to become a close contact

Whether to become a close contact Behavior trajectory

No exposure history (no contact with
confirmed patients, suspected cases)

Have a history of travel (i.e., have you
ever traveled or lived in a place where
a confirmed case has been reported)

Social travel

Have fever, cough, and
other symptoms

VA Spatial attribute When the model is started, an
appropriate time attribute value is
selected for initialization according to
the start and end time of the local
government intervention

The VA treats patients with fever
and cough

Traffic control

VA restricts the public activities of
agents with a history of exposure
and residence

Stay-at-home order

VA observed and detected agents with
exposure history and travel history

No workplace business

VA controls the traffic of agents with
a history of exposure and residence

No gathering, no public
activities

VA conducted standardized isolation
therapy for SIA
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data in the study area is retrieved via the AMAP API interface to

recreate the real-world environment. Starting from community

characteristics and combining the total number of working

people, working hours, and the proportion of different

transportation methods, the local population mobility model is

analyzed and simulated.

Relevant model parameters are integrated. Infection-related

parameters, family size, and age-related proportions of agents

after exposure are incorporated into the SEIR model as code. This

enables their specific impact on the spread of infectious diseases.

The model architecture is illustrated in Figure 1.
3 Result

3.1 Simulation and verification of agent
model based on Xi’an City

The model amasses and organizes data including geographical

latitude and longitude coordinates, building types, population

capacities, and similar information for various buildings such as

houses, schools, workplaces, hospitals, and leisure and

entertainment venues in all districts of Xi’an, China. The

population data come from Xi’an’s 2020 seventh national census.

With this data, a population-related model is established. The

number of students and school employees is retrieved from

statistical results publicized by the Xi’an Education Bureau. The

number of hospital employees and hospitalized patients is sourced

from statistical announcements by the Xi’an Health Bureau.

The model assigns housing to individual agents statistically. It

bases this on data from the seventh national census, like the number

of existing families, average family size, and housing vacancy rate in

Xi’an. The model generates 13,078,200 agents and forms 5,577,852

households. At the start of model operation, the entire generated

population of Xi’an is initialized as susceptible individuals. A
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specific number of agents are set in the exposed state. During

subsequent simulations, agents change states. When the model is

initialized, Figure 2 presents the relevant locations of the created

buildings. Figure 3 shows the age distribution generated by the

model using census data.

The study applies evenly distributed random sampling to

perform nucleic acid testing on agents within the susceptible

population. Agents can be in diverse states, such as the healthy

state, undergoing testing, or receiving treatment. Both individuals

with influenza-like symptoms similar to confirmed infection and

exposed persons must undergo nucleic acid testing. The daily

volume of nucleic acid testing is scheduled according to actual

timelines. Once the test results are available, decisions on

hospitalizing patients are made based on positive or negative

outcomes, although there are also some false-negative and false-

positive cases.

Specifically, nucleic acid detection is conducted on individuals

who were within the same 800 m × 800 m spatio-temporal range as

confirmed patients. The study does not involve explicit and specific

tracking. Case detection is achieved on an average-significance

basis, and nucleic acid detection for a particular agent is

determined through even distributed random sampling.

According to test results, infected individuals are classified into

two categories: asymptomatic carriers and confirmed cases. The

model arranges routine hospitalization for ordinary confirmed

cases. For agents with deteriorating conditions, the model assigns

ICU treatment. For agents in centralized isolation, when they

exhibit symptoms of COVID-19 infection, their status changes to

routine hospitalization or ICU treatment. For agents requiring

treatment, their treatment status can be adjusted based on clinical

observations. Considering the patient’s age and the probabilities of

routine and ICU hospitalization, initial treatment plans are derived

from clinical data (Eubank et al., 2020; Verity et al., 2020). For

patients admitted to the ICU, their recovery status is recalculated

based on ICU mortality (Verity et al., 2020). After diagnosis, the
FIGURE 1

Model architecture diagram.
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treatment type of agents will be changed. Since cured and deceased

patients no longer influence the spread of COVID-19, the model

will remove them. The model also takes into account a category of

agents with a high mortality rate: patients who have not undergone

nucleic acid testing yet still require ICU treatment. In line with our

policy, the number of such agents is set to zero in the model.

When susceptible agents contract the common cold or seasonal

influenza, they are quarantined due to symptoms resembling those

of COVID-19 (Verity et al., 2020). If the nucleic acid test result is

negative, the quarantine is lifted (Verity et al., 2020).

The model simulated the spread of COVID-19 in Xi’an from 1

December 2021 to 29 January 2022—from the onset of the epidemic

to the reopening of Xi’an. This aimed to demonstrate the model’s

practicality. In this study, three types of COVID-19-related data

released by the Xi’an Municipal Health Commission were selected:

the daily number of newly confirmed cases, the cumulative number

of confirmed cases, and the total number of deaths. Using these

data, weekly new cases and deaths in the study area were extracted

to validate the model.

For instance, by altering the daily nucleic acid detection rate and

the number of initially infected people in the model, it was observed
FIGURE 2

Map of different types of buildings in Xi’an.
FIGURE 3

Distribution of population age characteristics created by the model.
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that the infection rate in public places decreased during Xi’an’s

complete lockdown. Conversely, the infection rate increased after

Xi’an reopened. In line with the actual situation, the number of

agents undergoing nucleic acid testing daily changed over time.

The model simulation was run 100 times. Figure 4 presents the

model validation results. The model’s output data were verified and

compared with Xi’an’s real-world data from four aspects: a) the

total number of COVID-19 confirmed cases during the simulation

period, b) the total number of deaths during the simulation period,

c) the average weekly number of new cases during the simulation

period, and d) the average weekly number of deaths during the

simulation period. The total number of COVID-19 confirmed cases

represents the sum of false positives detected during model

operation and all positive agents. Some diseased agents died

because they could not be admitted to the ICU due to medical

resource constraints. Introducing weekly averages helps avoid

spurious fluctuations caused by uneven data collection.

The model’s output regarding the total number of COVID-19

confirmed cases, weekly new cases, and weekly deaths aligns closely
Frontiers in Cellular and Infection Microbiology 06
with the actual data reported by the Xi’an Health Commission. This

validates the model’s effectiveness in predicting daily new cases. The

simulated 95% confidence interval for the cumulative number of

confirmed cases was (1526.059982, 1076.640018), while the actual

95% confidence interval was (1458.295568, 990.1377655). The 95%

confidence interval for the simulated weekly new confirmed cases

was (470.6553997, 117.5946003), compared to the actual 95%

confidence interval of (464.8929787, 117.3570213). The

simulation and prediction accuracy for the cumulative number of

confirmed cases and mask-wearing rate reached 100%.

The model exhibits generality. To apply it to different cities,

parameters need to be determined based on each city’s specific

circumstances, enabling city-specific simulation and prediction.

During a certain period, the cumulative number of confirmed

cases output by the model is slightly higher than the actual

official data. This could be attributed to the frequency of official

data reporting. It may also be due to the implementation of patient

nucleic acid testing and active contact tracing at the start of model

operation, corresponding to the early stage of the epidemic. Thus,
a) Total number of confirmed COVID b) Total number of deaths during
         the simula�on period 

c) The average number of new cases
per week during the simula�on period 

d) Average number of deaths per week 

FIGURE 4

Comparison between the COVID-19 epidemic in Xi’an simulated by the model and the official reported data. (a) Comparison of cumulative
confirmed cases; (b) comparison of cumulative deaths; (c) comparison of the average weekly number of new cases; (d) comparison of average
weekly deaths. The cyan lines in the figure represent 100 implementations of the model, the blue lines represent the average of the model
implementations, and the o represents the official reported data.
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under the model-provided practical scenario of patient nucleic acid

testing, discrepancies between simulated and actual data may occur.

Regarding weekly new cases and simulations under a 100% mask-

wearing rate scenario, spikes in real-world data may be associated

with variations in hospital reporting frequency or delays.
3.2 Simulation and effect evaluation of
agent epidemic prevention scenario

The virus exists in droplets or aerosols. When air carries and

spreads particles contaminated with the virus, people can inhale

them directly, resulting in infection. Infected individuals exhale

virus-laden particles while breathing, communicating, coughing,

sneezing, or singing. This easily infects those in their vicinity.

Therefore, wearing masks stands as a crucial measure to prevent

virus spread.

To demonstrate the model’s value and the impact of mask

wearing on the COVID-19 epidemic, the model simulated a

scenario where all Xi’an residents wore masks in public places

during the outbreak. This means that the mask-wearing rate was set

at 100%, and a 1-m social distance was maintained. According to

the health-behavior survey of Xi’an citizens, 90% of them wear

masks when going out. Figures 5 and 6, respectively, display the

simulated COVID-19 situation in Xi’an regarding the cumulative

number of confirmed cases and the weekly new cases, compared

with official data under a 100% mask-wearing rate.

Figures 5 and 6 depict the simulated COVID-19 situation and

official reported figures in Xi’an during scenario simulations

involving mask-wearing and social distancing: a) comparison of

cumulative confirmed cases and b) comparison of cumulative

deaths. In the figures, cyan lines denote 100 model simulations.

The blue line represents the average of model implementations,

while circles (o) represent officially reported data.

When the mask-wearing rate hits 100%, both the cumulative

number of confirmed cases and the weekly increment in the model’s

output decline slightly although not substantially. This may stem

from some individuals’ casual approach to the epidemic, leading to

imperfect execution of mask wearing.
4 Discussion

In late December 2019, Wuhan, a city in Hubei Province,

emerged as the first location where the COVID-19 virus was

detected and reported. Shortly thereafter, the virus began to

spread swiftly, reaching numerous countries worldwide (Marcel

et al., 2020). This caused significant harm globally. To effectively

contain the COVID-19 outbreak in China, it is essential to carry out

efficient testing, promptly trace patient contacts, and identify related

cases. Targeted prevention and control and rational public health

intervention strategies will play a positive role in reducing the

spread of COVID-19 (Aleta et al., 2020; Marcel et al., 2020; Unwin

et al., 2020; Adriana et al., 2021). Identifying infected individuals

and tracing their subsequent contacts represents a crucial aspect of
Frontiers in Cellular and Infection Microbiology 07
the testing process. To address these challenges, it is necessary to

gain a more in-depth understanding of community composition,

the location and context of COVID-19 outbreaks, and people’s daily

habits (Singh et al., 2020; Heidarzadeh et al., 2021). To maximize

the alignment between the experimental environment and the

population characteristics and geographical environment of the

study area, this research drew on relevant data from the seventh

national population census of Xi’an. Data including the total

number of permanent residents in Xi’an, the total number of

household accounts, the age ratio, the age-distribution

characteristics of household heads, the average family size, and

the proportions of childless families, single-parent families, and

families with the elderly were collected.

The population agents of Xi’an in the model were generated

using data that reflect the local community structure. Based on these

data, family units were created for the agents. Subsequently, family

members were assigned to each family, with the granularity

reaching individual level. This approach aimed to achieve one-to-
FIGURE 5

Cumulative number of confirmed cases in Xi’an with masks.
FIGURE 6

Number of new cases per week in Xi’an with masks.
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one modeling of residents in the study area and reconstruct the

community characteristics of the study area to the greatest extent

possible. Accurate and comprehensive map data are essential for

reconstructing the real-world geographical environment of the

study area. On the one hand, the map data were sourced from

the basic map data of the study area. On the other hand, leveraging

AMAP and Baidu Map is crucial for acquiring detailed statistical

data on all buildings in the study area. These data include building

types, names, precise locations, and their latitudes and longitudes.

The data are generated onto the study area’s basic map using Point

of Interest (POI) data, facilitating the creation of a comprehensive

study area map. This, in turn, maximally restores the real-world

geographical environment of the study area.

To conduct simulation research on the impact of macro-

intervention behavior on epidemic transmission and disease risk,

considering individual factors, it is essential to gather data on

individual influencing factors and relevant government macro-

policy data. Individual-factor data encompasses an individual’s

age, occupation, travel mode, history of traveling in areas with

suspected cases, contact with confirmed patients, presence of

symptoms like fever, cough, and fatigue, population density at

their location, and implementation of traffic control and public-

activity restrictions. Government macro-policy data cover

containment and quarantine measures, promotion of mask-

wearing and avoidance of social activities, and closure and

reopening of schools and workplaces. Beginning with the unique

community characteristics of the study area and integrating the

total number of working individuals and the data on the proportion

of different transportation modes that they select for commuting,

the local population’s movement patterns and behavior trends can

be analyzed. When residents commute to work, attend school, or

visit the hospital, their movements contribute to crowd mobility,

thereby forming the crowd movement model. Given that infection

rates vary across different settings, this paper primarily focuses on

residents at home, during crowd movement, and in locations such

as schools, hospitals, and workplaces. By integrating the infection

rates specific to these relevant settings, the simulation of the

epidemic transmission process is completed. For confirmed

patients, the model classifies them into general hospitalization

and ICU treatment categories based on predefined age

parameters. Confirmed patients undergoing treatment in general

hospital wards will experience improvement and recovery,

influenced by factors such as the COVID-19 recovery time. For

patients receiving ICU treatment, the model predicts the number of

deaths among confirmed patients by considering relevant

parameters like the ICU treatment mortality rate and patient age.

The model no longer includes recovered and deceased confirmed

patients in its calculations. Subsequently, a comprehensive agent

model is constructed. In this study, a model is developed within a

simulated spatial environment that closely resembles the real-world

geographical landscape. This achieves a seamless integration of

agent entities and the geospatial environment.

Building on existing research, Zhou et al. (2022)and his team

effectively demonstrated the transmission process of COVID-19.

They integrated data from mobile network operators with the
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space–time simulation technology of gravity models. Through this

approach, they identified four primary transmission modes. These

modes are constrained by the specific spatial layout and geographical

location of the city. In this study, the simulation of human behavior is

not only accurate at the individual level but also provides highly

accurate spatiotemporal representation for each individual (Ferguson

et al., 2005, 2006; Perez and Dragicevic, 2009; Ajelli et al., 2010; Perra

and Gonçalves, 2015; Aleta et al., 2020), In the agent-based model,

various physical locations are considered, including enterprises,

hospitals, residences, nursing homes, and schools. Simultaneously,

by integrating the unique attributes of the community, this research

delves into the behavior patterns of local residents and population

movement trends. This approach aims to overcome the limitations

imposed by relying on specific spatial layouts and geographical

locations. By integrating population density and spatial density

across different regions to predict outbreak times, the

corresponding mathematical model is developed to achieve

epidemic early warning. An agent-simulation prediction model is

designed and implemented, considering the unique spatial structures

and community characteristics of Chinese cities and the interactions

of government macro-intervention measures. In the control and

prevention of disease spread, the construction and analysis of

mathematical models are of crucial importance. The compartment

model serves as the foundation for understanding the complex

dynamics of epidemics (Jiao et al., 2020). This model can be

employed to analyze the impact of influencing factors, transmission

routes, and population susceptibility on disease progression. It offers

scientific theoretical support for the rational formulation of

prevention strategies. Koo et al. (2020) utilized a model simulating

the influenza epidemic to explore the impact of four interventions on

the transmission of the COVID-19 epidemic in Singapore under

three scenarios with different basic reproductive numbers. Compared

to previous studies, this paper’s advantage lies in its straightforward

coding approach. This enables more efficient presentation of the

effects of various macro-interventions. It facilitates public health

institutions in quickly and promptly evaluating current strategies

and provides direction for subsequent policy adjustments. The

compartment model is also an invaluable tool for understanding

epidemics and evaluating pre-conceived strategies (Baldea, 2020;

Della Rossa et al., 2020; Estrada, 2020; Gilbert et al., 2020;

Vespignani et al., 2020). This research model builds upon the SEIR

model. By incorporating the patient’s death state, nucleic acid

detection state, and treatment state, and integrating with the

discrete-event simulation model, it expands based on GIS. This

results in the formation of the entire agent model. Currently, many

agent models focus on specific settings such as university campuses.

For instance, Gressman and Peck (2020) investigated an agent model

centered on a university campus. This model was used to explore

small-scale micro-environments, like the strategies for universities to

reopen during the epidemic, or to construct agents for simulating an

entire country as the research context. This paper conducts numerical

simulations in a medium-scale environment to explore interactions

between agents themselves and between agents and their

environment. Tatapudi et al. (2021) developed an agent model

based on population and social data from an urban community in
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the United States with 2.8 million residents. They used it to study the

impact of vaccine prioritization strategies on curbing COVID-19. A

large number of experimental studies have validated the advantages

of agent models. These studies have demonstrated their technical

feasibility and expandability in cross-scenario research (Adler et al.,

2020; Gopalan and Tyagi, 2020; Keskinocak et al., 2020; Kuzdeuov

et al., 2020; Kerr et al., 2021). By integrating relevant elements, this

paper addresses the scarcity of medium-scale agent simulations in

existing research. It also develops an agent model suitable for Chinese

cities, incorporating the unique characteristics of Chinese community

structures. This model can more accurately and comprehensively

reflect the distinct lifestyles of Chinese residents. Moreover, it enables

refined population representation when simulating large-scale

activities, making it highly relevant to the epidemic outbreak,

prevention, and control processes in China. Although this paper

has certain limitations, its fitting results are generally consistent with

official data. This provides scientific reference for public health

departments to adopt more comprehensive, rigorous, and detailed

measures to safeguard public health.
5 Conclusions

Acknowledging the complexity and uncertainties within human

society, human behavior, and the continuous mutation of the

COVID-19 virus, this paper gathered 60 days’ worth of epidemic

case data from Xi’an. The data collection period extended from late

November 2020 to early 2021 and encompassed cumulative

confirmed cases, cumulative deaths, daily new cases, and daily

deaths. Taking Xi’an’s epidemic situation as a case study, the

research incorporated geographic information technology. It

delved into the attributes and characteristics of typical clustered

epidemic scenarios. This investigation relied on population census

statistical data, which enabled one-to-one population modeling. It

also made use of basic geographic data including longitude and

latitude information of homes, schools, hospitals, public areas,

nursing homes, Xi’an’s basic map data, and epidemic big data.

Spatial structures closely related to the COVID-19 transmission

path, such as homes, schools, hospitals, nursing homes, public

areas, and leisure and entertainment venues, were identified. One-

to-one high-precision modeling of geographical buildings was

carried out. This created a physical environment for simulating

the “human” (agent) and “epidemic” (virus transmission process)

scenarios of COVID-19. During the modeling process, the model

offers two distinct nucleic acid detection methods based on

residents’ travel status: hospital-based detection and home-

isolation detection. The model precisely tracks and performs

nucleic acid testing on individuals who have had spatio-temporal

intersections with patients. Patients are classified into general

hospitalization, ICU hospitalization, and home isolation (after

treatment completion) based on the severity of their symptoms

and hospitalization requirements. Special scenarios, such as agents
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working in schools, hospitals, and nursing homes, are modeled

separately. The daily number of nucleic acid tests varies over time.

Moreover, accounting for the additional burden of nucleic acid

testing imposed by influenza patients with virus-like symptoms,

Xi’an was simulated to undergo complete lockdown, isolation, and

reopening. This aimed to simulate the impact of different

government policies and measures on virus transmission during

the movement and interaction of urban residents. In addition, a

prediction model for the spread of COVID-19 in urban space was

proposed. This model incorporates individual factors, geospatial

structures, and macro-intervention behaviors. The dynamic

transmission patterns of the disease were explored within spatial

distribution units, focusing on the interaction between agents and

intervention agents. Finally, the model’s results were compared with

official epidemic data released by the Xi’an Health Commission.

This study effectively developed a COVID-19 agent-based

disease risk prediction model. The model can capture the

influence of individual factors on the epidemic and the impact of

macro-intervention measures. It utilizes multi-source data, such as

influenza statistics, building data, and population data. By

comprehensively applying the agent-based model, it enables long-

term and dynamic simulation and prediction of the COVID-19

epidemic transmission trend in Xi’an, the disease risk faced by

residents, and the effectiveness of intervention strategies. This

model serves as a reference for the government to anticipate

epidemic development, optimize the allocation of prevention and

control resources, and evaluate prevention and control measures.
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: https://www.kingcounty.gov/depts/health/covid-

19/data.aspx.
Author contributions

WD: Funding acquisition, Writing – review & editing. HY:

Conceptualization, Data curation, Methodology, Validation,

Visualization, Writing – original draft. W-NW: Resources,

Supervision, Writing – review & editing.
Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This research was

supported by the National Natural Science Foundation of China

(Grant nos. 42161071 and 41661087). This work was supported

by the project funding of the “Support Program of Xingdian

Talents”.
frontiersin.org

https://www.kingcounty.gov/depts/health/covid-19/data.aspx
https://www.kingcounty.gov/depts/health/covid-19/data.aspx
https://doi.org/10.3389/fcimb.2025.1547601
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Dong et al. 10.3389/fcimb.2025.1547601
Acknowledgments

Thanks to the National Nature Foundation for the financial

support of the article and the teacher’s advice and guidance in

writing too much.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Cellular and Infection Microbiology 10
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Adler, S., Bodeit, O., Bonn, L., Goldenbogen, B., Haffner, J., Karnetzki, M., et al.
(2020). Geospatially referenced demographic agent-based modeling of SARS-CoV-2-
infection (COVID-19) dynamics and mitigation effects in a real-world community[J].
medRxiv, 2020: 2020.05. 03.20089235.

Adriana, R. L., David, S. P., Sergio, G., Clara, G., Matamalas., J. T., Benjamin, S., et al.
(2021). Virus spread versus contact tracing: Two competing contagion processes. Phys.
Rev. Res. 3 (1), 013163.

Ajelli, M., Goncalves, B., Balcan, D., Colizza, V., Hu, H., Ramasco, J. J., et al. (2010).
Comparing large-scale computational approaches to epidemic modeling: Agent-based
versus structured metapopulation models. BMC Infect. Dis. 10, 1–13. doi: 10.1186/
1471-2334-10-190

Aldhawyan, A. F., BuSaad, M. A., Almaghlouth, N. E., Alnasser, A. H., Alnasser, J. A.,
Almansour, A. H., et al. (2024). Understanding long COVID: prevalence,
characteristics, and risk factors in the Eastern Province of Saudi Arabia. Front. Med.
11. doi: 10.3389/fmed.2024.1459583

Aleta, A., Martin-Corral, D., Pastore y Piontti, A., Ajelli, M., Litvinova, M., Chinazzi,
M., et al. (2020). Modelling the impact of testing, contact tracing and household
quarantine on second waves of COVID-19. Nat. Hum. Behav. 4, 964–96+. doi: 10.1038/
s41562-020-0931-9

AMAP, N (2022). NASDAQ: AMAP. Available online at: https://mobile.amap.com/
(Accessed October 16, 2023).

Baldea, I. (2020). Suppression of Groups Intermingling as an Appealing Option for
Flattening and Delaying the Epidemiological Curve While Allowing Economic and
Social Life at a Bearable Level during the COVID-19 Pandemic. Advanced Theory
Simulations 3 (12), 2000132.

Baskar, A., and Anthony Xavior, M. (2021). A four-point direction search heuristic
algorithm applied to facility location on plane, sphere, and ellipsoid surfaces. J.
Operational Res. Soc. 73, 2385–2394. doi: 10.1080/01605682.2021.1984185

Beira, M. J., and Sebastiao, P. J. (2021). A differential equations model-fitting analysis
of COVID-19 epidemiological data to explain multi-wave dynamics. Sci. Rep. 11 (1),
16312.

Cacciapaglia, G., Cot, C., and Sannino, F. (2021). Multiwave pandemic dynamics
explained: how to tame the next wave of infectious diseases. Sci. Rep. 11 (1), 6638.

Dehning, J., Zierenberg, J., Spitzner, F. P., Wibral, M., Neto, J. P., Wilczek, M., et al.
(2020). Inferring change points in the spread of COVID-19 reveals the effectiveness of
interventions. Science 369 (6500), eabb9789. doi: 10.1126/science.abb9789

Della Rossa, F., Salzano, D., Di Meglio, A., De Lellis, F., Coraggio, M., Calabrese, C.,
et al. (2020). A network model of Italy shows that intermittent regional strategies can
alleviate the COVID-19 epidemic. Nat. Commun. 11 (1), 5106.

Dietz, T. K., and Brondstater, K. N. (2024). Long COVIDmanagement: a mini review
of current recommendations and underutilized modalities. Front. Med. 11.
doi: 10.3389/fmed.2024.1430444

Estrada, E. (2020). COVID-19 and SARS-CoV-2. Modeling the present, looking at
the future. Phys. Reports-Review Section Phys. Lett. 869, 1–51.

Eubank, S., Eckstrand, I., Lewis, B., Venkatramanan, S., Marathe, M., and Barrett, C.
L. (2020). Commentary on Ferguson, et al., “Impact of Non-pharmaceutical
Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand. Bull.
Math. Biol. 82, 52.

Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A.,
et al. (2005). Strategies for containing an emerging influenza pandemic in Southeast
Asia. Nature 437, 209–214. doi: 10.1038/nature04017
Ferguson, N. M., Cummings, D. A. T., Fraser, C., Cajka, J. C., Cooley, P. C., and
Burke, D. S. (2006). Strategies for mitigating an influenza pandemic. Nature 442, 448–
452. doi: 10.1038/nature04795

Gilbert, M., Pullano, G., Pinotti, F., Valdano, E., Poletto, C., Boelle, P.-Y., et al. (2020).
Preparedness and vulnerability of African countries against importations of COVID-
19: a modelling study. Lancet 395, 871–877. doi: 10.1016/S0140-6736(20)30411-6

Google, G. m (2022). Google maps. Available online at: https://www.google.com/
maps (Accessed October 16, 2023).

Gopalan, A., and Tyagi, H. (2020). How reliable are test numbers for revealing the
COVID-19 ground truth and applying interventions? J. Indian Institute Sci. 100, 863–
884. doi: 10.1007/s41745-020-00210-4

Gressman, P. T., and Peck, J. R. (2020). Simulating COVID-19 in a university
environment. Math. Biosci. 328, 108436. doi: 10.1016/j.mbs.2020.108436

Heidarzadeh, A., Narayanan, K., and IEEE (2021). “Two-stage adaptive pooling with
RT-QPCR for COVID-19 screening,” in 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). (IEEE), 8148–8152.

Jiao, J., Liu, Z., and Cai, S. (2020). Dynamics of an SEIR model with infectivity in
incubation period and homestead-isolation on the susceptible. Appl. Mathematics Lett.
107, 106442. doi: 10.1016/j.aml.2020.106442

Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Rosenfeld, K., Hart, G. R.,
et al. (2021). Covasim: An agent-based model of COVID-19 dynamics and
interventions. PloS Comput. Biol. 17 (7), e1009149. doi: 10.1371/journal.pcbi.1009149

Keskinocak, P., Oruc, B. E., Baxter, A., Asplund, J., and Serban, N. (2020). The impact
of social distancing on COVID19 spread: State of Georgia case study. PloS One 15 (10),
e0239798. doi: 10.1371/journal.pone.0239798

Koo, J. R., Cook, A. R., Park, M., Sun, Y., Sun, H., Lim, J. T., et al. (2020).
Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling
study. Lancet Infect. Dis. 20, 678–688. doi: 10.1016/S1473-3099(20)30162-6

Kuzdeuov, A., Baimukashev, D., Karabay, A., Ibragimov, B., Mirzakhmetov, A.,
Nurpeiissov, M., et al. (2020). A network-based stochastic epidemic simulator:
controlling COVID-19 with region-specific policies. IEEE J. Biomed. Health Inf. 24,
2743–2754. doi: 10.1109/JBHI.6221020

Liu, X. X., Fong, S. J., Dey, N., González Crespo, R., and Herrera-Viedna, E. (2021). A
new SEAIRD pandemic prediction model with clinical and epidemiological data
analysis on COVID-19 outbreak. Appl. Intell. 51, 4162–4198. doi: 10.1007/s10489-
020-01938-3

Maier, B. F., and Brockmann, D. (2020). Effective containment explains
subexponential growth in recent confirmed COVID-19 cases in China. Science 368,
742–746. doi: 10.1126/science.abb4557

Marcel, S., Christian, A. L., Richard, N., Silvia, S., Emma, H., Jacques, F., et al. (2020).
COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and
isolation. Swiss Med. Wkly 150, w202205.

Perez, L., and Dragicevic, S. (2009). An agent-based approach for modeling dynamics
of contagious disease spread. Int. J. Health Geographics 8, 50. doi: 10.1186/1476-072X-
8-50
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