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NontypeableHaemophilus influenzae (NTHi) is a major respiratory pathogen that

imposes a substantial disease burden, globally. Further amplifying the burden of

NTHi-associated infections is the rapidly expanding spectrum and prevalence of

antibiotic resistance, and the lack of an effective vaccination strategy. In 2017, the

World Health Organization list of “priority pathogens”, highlighted the urgent

need for new therapeutic agents against NTHi. Consequently, alternative

preventative or treatment approaches that do not rely on antibiotic

susceptibility or stable vaccine targets are becoming more attractive. The

nutritional dependency for haem/iron at all stages of NTHi pathogenesis

exposes a vulnerability that may be exploited for the development of such

therapies. This review explores the role of haem/iron in all facets of NTHi

pathogenesis, the host-bacterial competition for this vital nutrient, and the

therapeutic potential of strategies that interfere with its acquisition.
KEYWORDS
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1 NTHi is a major pathogen in the respiratory tract

Members of the Haemophilus genus are Gram-negative coccobacilli belonging to the

Pasteurellaceae family. Most infections associated with this genus are caused by H.

influenzae; other species such as H. aegyptius, H. parainfluenzae and H. ducreyi are

rarely isolated from clinical samples but have been documented to cause a variety of mild

respiratory or genitourinary tract infections (Nørskov-Lauritsen, 2014; Van Eldere et al.,

2014). H. influenzae can be subtyped into encapsulated strains, which express different

serotypes of capsular polysaccharide (designated types a–f), and nonencapsulated strains,

which are designated nontypeable H. influenzae or NTHi. Prior to widespread
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implementation of the Haemophilus influenzae type b (Hib)-

conjugate vaccination programs in the 1990s, Hib was the most

common cause of bacterial meningitis in children under the age of

five (Heath et al., 2001; Maguire et al., 2018; Soeters et al., 2018).

Concurrent with the decline in Hib disease, the prevalence of NTHi

in human carriage and disease has increased such that NTHi is now

the most common phenotype isolated from clinical infection sites

(Van Eldere et al., 2014).

NTHi must first colonise the nasopharynx before migrating to

other anatomical sites where it can cause a wide spectrum of disease;

however, the exact mechanisms that influence the behavioural shift

of NTHi from coloniser to pathogen are not understood (Van

Eldere et al., 2014). Asymptomatic nasopharyngeal NTHi

colonisation is common among adults (20-30%) and children

under the age of five (52-84%) (Mackenzie et al., 2010; Bajanca-

Lavado et al., 2022). Colonisation typically begins within two years

of birth and follows a dynamic and diverse course of rapid genotype

turnover and simultaneous carriage of multiple strains (Faden et al.,

1995; Van Kempen et al., 2001; Mukundan et al., 2007; Puig et al.,

2014). NTHi is a common cause of opportunistic mucosal

infections including sinusitis, paediatric conjunctivitis and

community-acquired pneumonia (Van Eldere et al., 2014;

Cerquetti and Giufrè, 2016). The post-Hib vaccine era has also

seen a steady global increase in the incidence of invasive infections

among young children and the elderly (from 10-17% in 1989 to 84-

90% in 2009-2015) caused by NTHi (Ladhani et al., 2010; Cheong

et al., 2015; Collins et al., 2015; Whittaker et al., 2017; Giufrè et al.,

2018; Soeters et al., 2018). The highest NTHi morbidity is seen in

two clinical settings: otitis media (middle ear infection) in children,

and individuals with chronic lung disease (Van Eldere et al., 2014;

Cerquetti and Giufrè, 2016).
1.1 Otitis media

OM is an important disease in early childhood globally - it is

one of the most common reasons for health care visits and

antibiotic prescription, and the leading cause of conductive

hearing loss in children (Monasta et al., 2012). OM incidence

varies geographically with recent global epidemiological estimates

reporting ~391–709 million cases of OM each year (Monasta et al.,

2012; Huang et al., 2025), with approximately 83% of children

experiencing at least one episode by the age of three (Teele et al.,

1989; Sierra et al., 2011). When taking into account recurrent

episodes and seasonal var iat ion, NTHi accounts for

approximately 60% of cases (Haggard, 2008; Barkai et al., 2009).

OM occurs when bacteria within the nasopharynx ascend the

eustachian tube and gain access to the middle ear space (Kaur

et al., 2011). Compared to other otopathogens, NTHi-associated

OM is associated with higher disease severity, treatment failure,

recurrence, persistence and need for repeat surgery (Barkai et al.,

2009; Seppanen et al., 2020). Recurrent episodes occur in 26-54% of

cases (Teele et al., 1989; Leibovitz, 2008; Arguedas et al., 2010) and

greatly increase a child’s risk of developing chronic suppurative

otitis media (CSOM); a complication characterised by chronic
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inflammation of the middle ear cavity with recurrent discharge

through tympanic perforation (Welp and Bomberger, 2020).

Hearing loss and consequential impairment of childhood

psychosocial and cognitive development are common

complications of CSOM in children (Monasta et al., 2012) and

although rare, neurological sequelae account for 21,000 deaths

annually (Monasta et al., 2012; Penido et al., 2016).
1.2 Chronic lung disease

NTHi is the leading bacterial cause of infectious exacerbations

in adults with chronic obstructive pulmonary disease (COPD) and

the second leading cause of infections in paediatric cystic fibrosis

(Finney et al., 2014; Marshall et al., 2022). Due to a combination of

host and microbial factors, NTHi persists in the lower airways of

these individuals which is associated with an increased frequency of

exacerbations, worsening symptoms, inflammation causing tissue

damage, compositional changes to the lung microbiome and overall

worse clinical prognosis (Sethi and Murphy, 2001; Sriram et al.,

2017; Welp and Bomberger, 2020; Dicker et al., 2021). Similarly,

children with protracted bacterial bronchitis (a disease caused by

chronic infection of the conducting airways) who are positive for

NTHi have reduced lung function (Craven and Everard, 2013) and

are 7-fold more likely to progress to bronchiectasis within 2 years

(Wurzel et al., 2016). Children with bronchiectasis experience

significant morbidity and, if untreated, have poorer clinical

outcomes in later life compared to patients with adult-onset

bronchiectasis (King et al., 2009). As such, NTHi is an important

contributor to the functional decline, disease progression, morbidity

and mortality in paediatric, and adult chronic airway diseases (Sethi

and Murphy, 2001).
2 Current management of NTHi
infections necessitates alternative
therapeutic strategies

2.1 Antibiotic therapy

NTHi-associated lower respiratory infections are typically

treated with moderate spectrum b-lactam (typically amoxicillin or

amoxicillin-clavulanic acid) antibiotics (Marchant et al., 2024). In

COPD patients where an infection is suspected, empiric amoxicillin

and doxycycline (in addition to oral corticosteroids depending on

disease severity) are recommended (Yang IA et al., 2024); however,

antibiotic selection may be based on local susceptibility patterns

(Wedzicha et al., 2017). Although macrolides (e.g. azithromycin)

have good efficacy against common respiratory pathogens and

desirable anti-inflammatory properties, their use is cautioned due

to potential significant adverse effects (Ni et al., 2015; Maddi et al.,

2017; Yang IA et al., 2024). Amoxicillin treatment is strongly

recommended for persistent OM (with or without effusion)

among high-risk children (Leach et al., 2021), with amoxicillin-

clavulanic acid or 2nd-3rd generation cephalosporins (e.g.
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cefuroxime, ceftriaxone, cefpodoxime) being recommended where

initial treatment fails (Siddiq and Grainger, 2015). Best practice

guidelines for Australian First Nations children recommend CSOM

is treated with ear cleaning plus topical ciprofloxacin 2–3 times per

day until the ear has no discharge for 3 consecutive days (Leach,

2020). Azithromycin is recommended for acute OM cases where

adherence is difficult or there is no access to refrigeration (Leach

et al., 2021), and cefdinir or co-trimoxazole have been

recommended for children allergic to penicillin (Siddiq and

Grainger, 2015; Leach et al., 2021).

There is a growing frequency of antibiotic treatment failure

among patients with NTHi-associated infections, largely owing to a

rapidly evolving resistance profile (Sriram et al., 2017). In 2017,

NTHi resistance was highlighted in the World Health

Organisation’s list of “priority pathogens” for which new

therapeutic/preventative agents are urgently needed (Organization

WH, 2017). However, there have since been no advances in NTHi-

targeted therapeutics and the bacterium remains on this list as of

2024 (Organization WH, 2024). The prevalence of amoxicillin/

ampicillin resistance varies markedly between regions and has

grown substantially over the past decade from 20-44% between

1997-2010 (Ito et al., 2010; Dabernat and Delmas, 2012; Resman

et al., 2012) to 19-74% in 2016-2021 (Wang et al., 2019; Li et al.,

2020; Zhou et al., 2022; El Nouwar et al., 2025). More recently,

studies have reported the emergence of treatment failure with

amoxicillin-clavulanic acid and cephalosporins used to treat

NTHi-associated OM and community-acquired pneumonia (Patel

et al., 1995; Dagan et al., 1997; Puig et al., 2015). Although global

isolation of these strains is currently low (12-17%) (Dabernat and

Delmas, 2012; Heliodoro et al., 2020; Li et al., 2020), their

prevalence is increasing, particularly in regions such as Japan and

Taiwan (Skaare et al., 2014; Honda et al., 2018; Yamada et al., 2020;

Abavisani et al., 2024). Additionally, mechanisms of acquired

resistance to macrolides and fluoroquinolones have also been

reported, and multidrug-resistant NTHi isolates have been

recovered from blood, middle ear, sputum, and nasopharyngeal

specimens (Pérez-Vázquez et al., 2004; Phaff et al., 2006; Pfeifer

et al., 2013; Ni et al., 2015; Puig et al., 2015; Su et al., 2020; Abavisani

et al., 2024). Although currently uncommon, these resistance

mechanisms have the potential to spread owing to the ability of

NTHi to transfer resistant genes on mobile genetic elements and by

chromosomal recombination (Hegstad et al., 2020).

The growing prevalence and spectrum of NTHi antibiotic

resistance necessitates changes to antibiotic treatment guidelines

that carefully balance intended clinical outcomes with the risk of

further promoting antibiotic resistance. Extremely high antibiotic

prescription rates are associated with the management of OM and

exacerbations of COPD, a high proportion of which are considered

unnecessary (Turnidge and Meleady, 2017). Antibiotic therapy may

reduce middle ear damage in some patients with acute OM

(Venekamp et al) but in 60% of cases, the infection spontaneously

clears without antibiotic intervention and without complications

(Venekamp et al]; Haggard, 2008). Similarly, antibiotic

management reduces exacerbation frequency in COPD patients

(Roede et al., 2009; Rothberg et al., 2010) but has no overall impact
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on airway destruction and disease progression (Dixit et al., 2016). In

addition, NTHi frequently evades antibiotic clearance through the

formation of biofilm communities or invasion of host cells (Garcıá-

Cobos et al., 2014; Duell et al., 2016). For these reasons, antibiotic

treatment is often insufficient to prevent relapse caused by

persistent bacterial communities and does not offer long-term

protection against reinfection with different strains, particularly in

COPD airways (Leibovitz, 2008; Garcı ́a-Cobos et al., 2014;

Miravitlles and Anzueto, 2015; Sriram et al., 2017).
2.2 Preventative strategies

In addition to the aforementioned treatment challenges, single

courses of antibiotics cannot prevent reinfection and there is

currently no effective NTHi vaccine. Despite the enormous

success of the Hib-conjugate vaccine in preventing invasive

infections caused by capsular type b H.influenzae, it has no effect

on NTHi because these strains lacks the type b capsule (the vaccine

target) (Hariadi et al., 2015). Although other vaccines comprising

different antigen targets have been developed, none have proven

effective in preventing infections caused by NTHi (Smith-Vaughan

et al., 2014). Challenges in developing an effective vaccine arise from

the enormous genetic heterogeneity among NTHi strains and the

high rates of phase-variable expression of many putative vaccine

targets (Murphy, 2015; Jalalvand and Riesbeck, 2018; Novotny et al.,

2019). The only vaccine that has shown any potential protection

against NTHi disease is the ten-valent pneumococcal conjugate

vaccine containing protein D (NTHi antigen) as a carrier protein

(PHiD-CV; Synflorix™, GSK Vaccines) licensed in 2008 by a

number of countries for active immunisation against acute OM

caused by NTHi (Clarke et al., 2017). However, randomised

controlled trials of PHiD-CV among infants in Finland and

Australian First Nations populations found no significant impact

on NTHi carriage rates or development of OM (Vesikari et al., 2016;

Beissbarth et al., 2021).
3 Host-NTHi competition for haem-
iron

Iron is an essential micronutrient for pathogen and host alike,

with critical roles in many vital cellular processes, both as an

inorganic ion and through incorporation into haem, which is a

molecule composed of a protoporphyrin IX (PPIX) ring and a single

central iron atom (Parrow et al., 2013; Barber and Elde, 2015).

Biochemical (White and Granick, 1963) and genomic studies

(Cavallaro et al., 2008) indicate that NTHi lack multiple enzymes

required for biosynthesis of PPIX. NTHi possesses a ferrochelatase

(encoded by hemH), allowing it to catalyse the insertion of iron into

PPIX (Schlör et al., 2000); however, there is no significant source of

free PPIX in host tissues and hemH is not required for host

colonisation or infection (Cavallaro et al., 2008), hence it appears

that the growth requirement for haem must be fulfilled by

acquisition of intact haem from the host. The redox potential of
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iron underpins both its catalytic utility in biological reactions, and

production of cell-damaging free radicals. The host must therefore

maintain tight regulation of systemic and cellular iron homeostasis

to simultaneously meet the body’s iron demand, prevent cellular

toxicity, and withhold nutrients from invading pathogens (Cassat

and Skaar, 2013).
3.1 Haem-iron regulation in the respiratory
tract

Sequestration of free iron is achieved by iron-binding proteins

(such as ferritin, transferrin and lactoferrin) and by capturing haem

within haemoproteins (Cassat and Skaar, 2013; Barber and Elde,

2015) (Figure 1). The majority of total iron in the body is found

complexed as haemoglobin within erythrocytes (~1.5–2 g iron),

whereas the major store of inorganic iron is ferritin, found within

hepatocytes (~1 g) and macrophages (~600 mg) (Szelestey et al.,

2013; Hariadi et al., 2015). Plasma iron concentrations are
Frontiers in Cellular and Infection Microbiology 04
maintained at a low level (as complexes with transferrin), and this

decreases substantially during the acute phase response to infection

or other inflammatory stimuli (Ganz, 2018; Saini et al., 2024). The

intracellular sequestration and the paucity of free extracellular

haem-iron ensures that there is scarce availability of this essential

nutrient for pathogens (Cassat and Skaar, 2013).

Iron levels are suspected to be low in the upper respiratory tract,

with an estimated daily exposure of approximately 10-25 mg or

around 1/1000th of that encountered by the gastrointestinal tract

(Ali et al., 2017; Cloonan et al., 2017). Iron may be sourced from the

pulmonary vasculature in free-, or transferrin/lactoferrin-bound

forms, or as a component of haemoprotein-bound haemoglobin/

haem. The high abundance of transferrin present in

bronchoalveolar lavage fluid indicates that iron regulation in the

lung may be primarily controlled by transferrin (Ali et al., 2017).

Both alveolar macrophages and the bronchial/alveolar epithelia are

able to sequester iron by various mechanisms including receptor-

mediated uptake of ferric haem-iron (followed by storage within

ferritin) and endocytosis of haemoglobin-haptoglobin complexes
FIGURE 1

NTHi sequestration of host-derived sources of haem and other iron-containing moieties. Haem-iron released into the plasma by erythrocyte (RBC)
senescence is quickly scavenged by haemoproteins such as, albumin (Alb) and hemopexin (Hpx). Any haemoglobin (Hb) released into the serum is
tightly bound by haptoglobin (Hapt) and subsequently cleared by tissue macrophages (Szelestey et al., 2013; Hariadi et al., 2015). Free-haem, free-
iron, transferrin-bound (Tf) iron, xenosiderophore-bound (XenoS) and haem-containing haemoproteins are readily available to NTHi as sources of
nutritional haem/iron. These iron-containing molecules are transported across the periplasmic space by specific TonB-dependent transporters
(TBDT) powered by a cytoplasmic transmembrane protein complex (TonB, ExbB and ExbD), followed by transport across the inner membrane by an
ATP-binding cassette transporter (ABC transporter). Haem/iron acquisition in NTHi is regulated in accordance with environmental cues by iron-
repressive regulators such as fur.
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(Smith and McCulloh, 2015; Cloonan et al., 2017). The upper

respiratory tract may also be exposed to inhaled atmospheric iron

and iron-containing particulate matter; however, little is known

about the bioavailability of this source to the host or upper

respiratory microbiota (Cloonan et al., 2017).
3.2 NTHi acquisition of host-derived haem-
iron sources

Despite the inherently low availability of haem-iron in the

respiratory tract, NTHi is adept at scavenging a variety of host-

derived haem-iron sources from intracellular and extracellular

reservoirs, using a highly complex and redundant repertoire of

haem acquisition systems (Table 1). These mechanisms capture

iron/haem molecules that are free in solution or complexed with

host proteins and shuttle the iron/haem moiety across the cell wall

and both bacterial membranes in a series of protein-ligand

interactions (Figure 1) (Cassat and Skaar, 2013). NTHi is also

capable of storing excess haem which creates an intracellular

surplus that can be donated to starved bacterial cells in haem-

iron deplete conditions; however, the mechanisms are currently

unknown (Rodrıǵuez-Arce et al., 2019).

Haemoprotein-mediated sequestration (as opposed to

acquisition of free iron) from the extracellular environment is the

most common mode of iron acquisition used by NTHi. Target-

specific surface-anchored proteins function by taking up free haem

or extracting it from haemoproteins in the extracellular medium

and delivering it to a TonB-dependent outer membrane receptor

(Hariadi et al., 2015). Quantitatively, haemoglobin and

haemoglobin-haptoglobin complexes are likely to be the most

significant extracellular sources of haem in vivo (Seale et al.,

2006). This is reflected by the sheer number of mechanisms

possessed by NTHi for uptake of these molecules and the

attenuated pathogenesis of strains unable to utilise them (Morton

et al., 2004). Although less common, NTHi (approximately 3% of

isolates) also express receptors that directly recognise and extract

iron from transferrin and/or lactoferrin (Barber and Elde, 2015). In

other bacterial species, the most common strategy for obtaining

iron from these molecules involves the secretion of siderophores;

small-molecule ferric chelators which sequester iron from host

transferrin (Bullen et al., 1999). Unlike most bacteria, NTHi does

not possess genes encoding proteins for siderophore synthesis;

however, an iron-repressible siderophore utilisation locus was

discovered in several NTHi strains that may enable utilisation of

xenosiderophores produced by other microorganisms in vivo

(Morton et al., 2010a). Such a tactic would further expand the

pool of iron sources available to NTHi, without the energy burden

associated with siderophore synthesis (Hariadi et al., 2015).

Once complexed by haem- ta rge t ing pro te ins or

xenosiderophores, a set of TonB-dependent transporters (TBDTs)

are required to transport the haem/iron into the periplasmic space,

followed by transport across the inner membrane by ATP-binding

cassette (ABC) transporters (Sgheiza et al., 2017). A cytoplasmic

transmembrane protein complex composed of three proteins,
Frontiers in Cellular and Infection Microbiology 05
TonB, ExbB and ExbD, spans the periplasm and interacts with

specific TBDTs. This TonB complex transduces the proton motive

force of the cytoplasmic membrane to energise transport of

substrates through a specific TBDT (Noinaj et al., 2010). Once

inside the cell, the expectation is that haem-bound iron can be

liberated through enzymatic cleavage of the porphyrin ring by haem

oxygenase enzymes that are present in many bacterial species

(Richard et al., 2019). Haem-iron acquisition in NTHi is

regulated in accordance with environmental iron-bioavailability

by iron-repressive transcriptional regulators such as fur, with the

result that iron uptake is coordinated with storage and efflux to

ensure iron homeostasis (Cassat and Skaar, 2013). Tight regulation

of haem-iron uptake is critical for balancing the metabolic

requirement with the potentially toxic consequences of excess

iron (Harrison et al., 2013).
3.3 Dysregulation of host haem-iron
homeostasis

High iron availability has been shown to increase the

pathogenic potential of many bacteria in tissue and animal

infection models by enhancing growth, cellular adhesion, invasion

and epithelial damage (Reid et al., 2009; Kortman et al., 2012; Nairz

et al., 2017). Thus, disorders that interfere with iron-restricting host

responses may predispose individuals to NTHi infections. High

susceptibility to infection with a variety of bacterial genera,

including Haemophilus, has been described in several iron

overload disorders, such as hereditary haemochromatosis, b-
thalassemia, sideroblastic anaemia, transfusion-dependence, or

chronic liver disease (Weinberg, 2000; Rahav et al., 2006;

Kontoghiorghes et al., 2010; Quenee et al., 2012). In these

conditions, the iron-binding capacity of serum transferrin is

exceeded, resulting in low affinity complexes of iron with other

plasma components (Cassat and Skaar, 2013), thus providing an

easily accessible iron source for microbes. Iron overload is also

associated with defective chemotaxis and phagocytosis by

neutrophils and macrophages, as well as decreased bactericidal

activity that contributes to decreased immune function (Porto

and De Sousa, 2007; Cherayil, 2010). Thus, a combination of

impaired immune function and increased iron availability may

contribute to the heightened susceptibility to infection in

conditions of iron-overload.

High levels of iron and/or ferritin have been detected in the

airways of individuals with COPD and cystic fibrosis, and in heavy

smokers, suggesting dysregulation of iron homeostasis in these

conditions (Stites et al., 1999; Ali et al., 2017). In these

conditions, excess iron appears to reside intracellularly in alveolar

macrophages and, to a lesser extent, within the epithelial lining fluid

of the lung (Mateos et al., 1998). While these findings suggest a role

of excess iron in the characteristically high predisposition to NTHi

infections observed in these patient groups (Fenker et al., 2018),

correlative studies are required to determine if this is the case.

Similarly, geogenic particles from remote regions of Australia

(communities with a disproportionate burden of respiratory
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TABLE 1 NTHi proteins and regulatory elements involved in the acquisition of host-derived haem-iron and non-haem iron sources in vivo, and
evidence for their potential roles in pathogenesis.

System/Protein
(Function, cell location)

Haem/Iron Sources Proposed Role in Pathogenesis

Haem acquisition systems

HxuCBA System
- HxuA (haemophore, OMP)
- HxuB (transporter, OMP)
- HxuC (receptor, PP)

Haem: free, hpx-, alb-
Hb: free, hapt-

Colonisation: Mediates adherence to cultured airway epithelia (Seale et al., 2006; Morton
et al., 2007)
Virulence: Higher prevalence in middle ear strains (Hariadi et al., 2015); establishment of
invasive disease and mortality in rats (Seale et al., 2006; Morton et al., 2007)
Persistence: Potentiates antibiotic resistance (Rodrıǵuez-Arce et al., 2019)

HgpBCD
- HgpB (receptor, OMP)
- HgpC (receptor, OMP)
- HgpD (receptor, OMP)

Hb: free, hapt-, mb-

Virulence: Higher prevalence in middle ear strains (Hariadi et al., 2015); establishment of
invasive disease and mortality in rats (Seale et al., 2006; Morton et al., 2007)
Survival: Required for bacterial proliferation during NTHi-induced OM in chinchillas
(Morton et al., 2004)

HemR (receptor, OMP) Haem: free
Virulence: Polymorphisms associated with OM isolates, compared to commensal isolates
(LaCross et al., 2014)

HhuA (receptor, OMP) Hb: hapt- Survival: Required for growth in vitro (Maciver et al., 1996)

TehB (unknown) Haem: free, alb-
Hb: free, hapt-

Virulence: required for establishment and persistence of bacteraemia in rat models of H.
influenzae invasive disease (Whitby et al., 2010)

Iron acquisition systems

TbpAB
- TbpA (iron sequestration, OMP)
- TbpB (co-receptor, OMP)

Iron: transferrin
Virulence: Conserved in all invasive NTHi isolates (Gray-Owen and Schryvers, 1995);
upregulated during lung infection (Polland et al., 2023)

FbpABC (HitABC)
- FbpA (ion-binding, PP)
- FbpB (transporter, IMP)
- FbpC (transporter, IMP)

Iron: transferrin
Colonisation: Adhesion molecule of Listeria monocytogenes (Osanai et al., 2013); no data
available for NTHi
Virulence: upregulated during lung infection (Polland et al., 2023)

Fhu
- FhuB (binding protein, PP)
- FhuCD (permease, IMP)

Xenosiderophore acquisition Survival: May utilise siderophores made by other bacteria (Morton et al., 2010a)

Haem-iron transport/storage proteins

Protein E (storage/donation, OMP) Haem: free Colonisation: Adherence to cultured and mouse lung epithelia (Singh et al., 2010; Duell et al.,
2016)
Survival/persistence: Invasion of cultured and mouse bronchial epithelia (Ikeda et al., 2015);
potentiates antibiotic resistance (Rodrıǵuez-Arce et al., 2019); inter-bacterial donation of
haem (Singh et al., 2010; Duell et al., 2016)

SapABCDFZ (transport, PP) Haem: free Colonisation/persistence: Adhesion, colonisation and biofilm formation in chinchilla middle
ear (Raffel et al., 2013; Clementi et al., 2014)
Virulence: Establishment of chinchilla OM (Raffel et al., 2013; Clementi et al., 2014)

HbpA-DppBCDF (transport, PP) Shuttles haem from any source Virulence: Establishing bacteraemia in a mouse model (Rosadini et al., 2008)
Persistence: Mediates glutathione import and antibiotic resistance (Vergauwen et al., 2010;
Rodrıǵuez-Arce et al., 2019)
Survival: Important for periplasmic transport of haem through other outer membrane
channels (Tanaka and Pinkett, 2019)

Hup (accessory/transport for Hgp
and Hxu systems, OMP)

Haem: free, hpx-, alb-
Hb: free, hapt-

No data available about role in pathogenesis

Haem-iron Regulatory Elements

fur
Master regulator of genes/proteins
involved in haem-iron utilisation

Virulence/persistence: Critical for bacterial virulence and persistence in a mammalian model
of OM (Harrison et al., 2013); upregulates IgA1 protease which mediates antibiotic resistance,
optimal invasion and long-term intracellular survival in human respiratory epithelial cells
(Clementi et al., 2014)
Colonisation: Additional regulatory management of molecules shown to mediate attachment
(Harrison et al., 2013)

icc
Stress response to transient haem/
iron limitation

Virulence/persistence: Mutations result in epigenetic and morphological adaptations that
contribute to persistence and disease severity in experimental models of OM (Szelestey et al.,
2013; Hardison et al., 2018b)

(Continued)
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disease and infection) with high iron oxide levels were shown to

increase NTHi invasion of bronchial epithelial cells in vitro

compared to low iron oxide particulate matter from other regions

(Williams et al., 2023). However, further studies are required to

determine whether there is a direct correlation between NTHi

disease prevalence and local geogenic iron oxide particulate levels

among the broader population.
4 Haem-iron is an important mediator
of NTHi pathogenesis and persistence

The success of NTHi as a pathogen is reliant on its ability to

perform interactions with the host, many of which are regulated

directly or indirectly by the bioavailability of haem or other iron-

containing moieties (Harrison et al., 2013). Haem-iron acquisition

is coordinated by the ferric uptake regulator fur; a master regulator

of genes involved in the uptake of iron and iron-containing moieties

in many bacterial species (Hassan and Troxell, 2013). Additional

regulatory management of NTHi-host cell interactions by fur have

been reported (Hassan and Troxell, 2013). Haem and iron

acquisition systems have also demonstrated a role in sensing host

environmental cues to mediate interactions with host epithelial

cells. As such, the regulatory feedback between haem/iron

sequestration and interactions with the host plays an important

role in all facets if NTHi pathogenesis (Harrison et al., 2013;

Rodrıǵuez-Arce et al., 2019). Haem/iron acquisition systems and

evidence for their role in NTHi pathogenesis are summarised in

Table 1, Figure 2.
4.1 Host attachment and colonisation

In all disease contexts, nasopharyngeal colonisation by NTHi is

a critical antecedent of subsequent ear and lower airway infections

(Hare et al., 2010; Duell et al., 2016). Additionally, a higher strain

turnover and density of NTHi colonisation has been linked with an

in increased risk of developing OM (Harabuchi et al., 1994; Smith-

Vaughan et al., 2006; Kirkham et al., 2010; Smith-Vaughan et al.,

2013), acute exacerbations in COPD (Van Kempen et al., 2001;

Sethi et al., 2002) and lower airway infections in children with

bronchiectasis (Hare et al., 2010). For this reason, populations with

high NTHi carriage rates experience the highest OM disease burden
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(Sun et al., 2012; Coleman et al., 2018). Likewise, among patients

with COPD, nasopharyngeal acquisition of a new NTHi strain is

frequently associated with the onset of an acute exacerbation (Sethi

et al., 2002). Furthermore, elevated nasopharyngeal NTHi bacterial

load can result in a clinically significant increase in COPD

symptoms, even in the absence of a clinical exacerbation

(Pettigrew et al., 2012).

Successful host colonisation is achieved by a suite of outer

membrane proteins that mediate attachment to the nasopharyngeal

epithelium (Atto et al., 2019). Upregulation of proteins involved in

host-cell adhesion has been demonstrated in iron depleted media

designed to replicate respiratory tract conditions (Pidcock et al.,

1988; Qu et al., 2010), suggesting that iron bioavailability influences

adhesin expression. Transcriptomic and proteomic analysis of fur

has revealed additional regulatory management of several molecules

that can mediate attachment and colonisation, such as the high-

molecular weight proteins (HMW) (Qu et al., 2010; Harrison et al.,

2013). HMW1 and HMW2 are major NTHi adhesins present in 75-

80% of isolates (Buscher et al., 2004). These glycopeptides bind to

integrin-receptors on epithelial cell surfaces and are vital to the

bacterium’s ability to adhere to cultured human respiratory

epithelial cells and to colonise the upper respiratory tract of

rhesus macaques in vivo (Rempe et al., 2016).

Interestingly, some proteins involved in host-cell colonisation

have demonstrated moonlighting functions directly involved in

haem or iron acquisition. The outer membrane adhesin, protein E

(PE), is ubiquitous among NTHi clinical isolates and hijacks host

vitronectin-integrin binding to promote cell adhesion (Ikeda et al.,

2015). The requirement for PE in the optimal adherence and

persistence of NTHi within the airways has been demonstrated in

mice immunised with anti-PE antibodies (Ronander et al., 2009).

More recently, PE was shown to form high affinity interactions with

haem and influence the ability of H. influenzae to acquire haem in

vitro. PE-bound haem was also donated to haem-starved

populations during co-culture, suggesting a secondary role for PE

as a haem storage site that could be later distributed to nearby

starved cells and promote survivability under conditions of

fluctuating haem availability (Al Jubair et al., 2014; Rodrıǵuez-

Arce et al., 2019). The Sap (sensitivity to antimicrobial peptide)

inner membrane ATP-binding-cassette (ABC) transport complex

also appears to be important in the ability of NTHi to acquire haem-

iron and colonise the host (Mason et al., 2011). Deletion of the Sap

structural ATPase protein, SapF, simultaneously inhibits recovery
TABLE 1 Continued

System/Protein
(Function, cell location)

Haem/Iron Sources Proposed Role in Pathogenesis

Haem-iron Regulatory Elements

modA
Downstream phase-variable
regulation of haem/iron
acquisition proteins

Virulence/persistence: Phase variation of antibiotic resistance, biofilm formation and
immunoevasion; biphasic switching during chinchilla OM (Atack et al., 2015a)
Hb, Haemoglobin; hapt-, haptoglobin-bound; alb-, albumin-bound; haemopexin-bound, hpx-; mb-, myoglobin-bound; hxu, haem/hemopexin utilisation protein; Tbp, transferrin-binding
proteins; Hgb, haemoglobin binding protein; HemR, haem receptor; Hup, haem-utilisation protein; Hhu, haemoglobin-haptoglobin binding protein; FbpA, ferric-binding protein; Fhu, ferric
hydroxamate uptake; Sap, sensitivity to antimicrobial peptide; IgA1, immunoglobulin A1; HbpA, haem-binding lipoprotein; fur, ferric uptake regulator; TehB, tellurite-resistance determinant;
OMP, outer membrane protein; PP, periplasmic protein; IMP, inner membrane protein.
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FIGURE 2

Schematic overview of NTHi haem/iron uptake systems and transporters, their cognate haem/iron sources, and role in pathogenesis. Known haem
acquisition systems include HxuABC, HgpBCD, HemR and HhuA. The Hxu system involves the HxuAB two-partner secretion system whereby HxuA
is exposed at the cell surface and leads to haem release and its capture by the HxuC receptor. The Hgp system involves haem sequestration by a
secreted haemophore which is transported across the outer membrane by the HgpBCD receptor. Outer membrane receptors HemR and HhuA bind
directly to host haem or haemoproteins. Iron uptake (free- or transferrin-bound) is coordinated by TbpAB, Fhu (xenosiderophores) and FbpABC
(HitABC). Once within the periplasm, haem/iron are transported across the inner membrane by ABC transporters (e.g. Fbp, DppBCDF, SapBCDFZ and
TehB) by their periplasmic proteins (e.g. SapA, HbpA, FbpA). PE is an outer membrane protein that binds haem as a dimer. Regulatory gene elements
are indicated and systems highlighted in yellow are TonB-dependant (opposed to blue TonB independent receptors). OM, outer membrane; IM,
inner membrane.
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of depleted internal haem-iron stores and reduces the ability of

NTHi to colonise the nasopharynx or cause acute infection in a

chinchilla model of acute OM (Vogel et al., 2012). The periplasmic

binding protein, SapA was also found to be essential for haem

transport and utilisation by haem-starved NTHi (Mason et al.,

2011) and adherence to polarised epithelial cells through host

environmental cues (Raffel et al., 2013). The shared host-cell

adhesion and haem-binding functionality of many NTHi proteins

suggests that bacterial haem-utilisation plays an important role in

its interplay with host epithelial cells and may provide an adaptive

advantage for colonisation in environments with low haem-iron

availability (Ghio, 2009).
4.2 Survivability and virulence in the
respiratory tract

Continued NTHi survival in the respiratory tract requires a

secure source of host-derived haem; accordingly, strains with a

reduced capacity to acquire haem were shown to have a

substantially shortened lifespan in broth culture and in chinchilla

airways (Maciver et al., 1996; Morton et al., 2004). The higher

prevalence of multiple haem-acquisition genes in disease-associated

isolates compared to throat colonising strains or the non-

pathogenic relative H. haemolyticus is consistent with the notion

that the ability to acquire diverse haem sources provides an adaptive

advantage in pathogenic isolates (Qu et al., 2010; Hariadi et al.,

2015). A conserved genetic island unique to disease-associated

NTHi features an overrepresentation of genes associated with

haem acquisition and transport (Zhang et al., 2012). Inactivation

of multiple genes associated with haem-utilisation was found to

attenuate NTHi virulence-determinants and disease severity/

duration in animal models of acute OM and lung infection

(Morton et al., 2004; Morton et al., 2009; Szelestey et al., 2013;

Rodrıǵuez-Arce et al., 2019). Similarly, an isogenic mutant of two

haem-acquisition pathways was unable to sustain bacteraemia or

produce meningitis in a rat model of invasive disease (Seale et al.,

2006). Collectively, these data indicate that iron-dependent fur-

regulated genes contribute to longer and more severe infections by

regulating iron within the cell (Ahearn et al., 2017).

The ability to acquire specific haem sources may also be linked

to the pathogenic potential of NTHi isolates. Capacity to utilise iron

from transferrin or from haptoglobin-bound haemoglobin has been

associated with invasive Haemophilus spp. isolates (Hardie et al.,

1993; Zhang et al., 2012) and is not an ability shared among non-

pathogenic members of the Haemophilus genus (Williams et al.,

1990). Additionally, NTHi strains deficient in the ability to acquire

haemoglobin-haptoglobin have an attenuated ability to cause

infection (Seale et al., 2006). Individual NTHi strains are capable

of producing up to four different haemoglobin/haemoglobin-

haptoglobin binding proteins (Hgp) that collectively display

affinity for all known human haptoglobin phenotypes (Morton

et al., 2006). The presence of multiple hgp genes may allow for
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selective expression of the Hgp with greatest affinity for the

predominant host haemoglobin-haptoglobin phenotype, or

alternatively as a strategy to evade the host immune response

mounted against a particular Hgp-expressing population

(Langlois and Delanghe, 1996). There are 2 major haptoglobin

alleles (hp1 and hp2), with each allele coding for a subunit capable

of binding one haemoglobin ab dimer. The Hp1/2 proteins form

different oligomers, such that a dimeric Hp1–1 molecule can bind

two haemoglobin ab dimers, while the polymeric Hp2–1 and Hp 2–

2 molecules have the capacity to bind greater numbers of

haemoglobin ab dimers (Morton et al., 2006). The prevalence of

expressed haptoglobin phenotypes varies between populations, with

the Hp2–2 phenotype predominating in Indian and Australian First

Nations populations (Langlois and Delanghe, 1996). A growth

preference for the Hp 1–1 phenotype has been demonstrated by

H. influenzae in vitro (Morton et al., 2006); however, the correlation

with susceptibility to infection in vivo has not been investigated.

This also highlights the need for consideration of haem source in in

vitromodels, where free haem is typically added as the sole source in

culture media: a condition which may not reflect predominant

sources in the respiratory and middle ear niches. For example, the

iron-containing moiety lactotransferrin was more than 10-fold

more abundant in middle ear effusions collected from children

with chronic OM than haemoglobin (Val et al., 2016).

There is also evidence to suggest that haem-iron accessibility

may influence adaptive transitions between commensal and

pathogenic states. For many opportunistic pathogens, iron

starvation not only triggers activation of genes involved in its

uptake, but also those involved in virulence determinants (Chen

et al., 2011; Hassan and Troxell, 2013; Jung and Do, 2013). In

Pseudomonas aeruginosa, positive selection for promotor mutations

that increase expression of the bacterial uptake system phu

(pyoverdine siderophore) occurs exclusively among isolates from

patients with cystic fibrosis that show enhanced bacterial growth

(Marvig et al., 2014). NTHi haem-iron acquisition proteins (along

with proteins associated with biofilm formation, antibiotic

resistance and immune evasion) are subject to changes in gene

expression, which are differentially regulated during experimental

OM (Atack et al., 2015a) and in isolates recovered from COPD

airways (Rao et al., 1999; Ren et al., 1999; Poole et al., 2013) by the

modA phase-variable regulon (phasevarion). Switching of modA

expression from OFF to ON state within the middle ear produces a

phenotypic switch in several genes during infection that increases

disease severity and permits bacterial persistence by increasing cell

adhesion, invasion and robust biofilm formation (Atack et al.,

2015a; Brockman et al., 2016; Brockman et al., 2017; Brockman

et al., 2018). Specifically, in a ModA16 ON state, NTHi upregulates

multiple iron-acquisition factors including an iron ABC transporter

substrate-binding protein, and haem/haemopexin-binding proteins

HxuC and HxuB (Tram et al., 2024). Independent phase-variable

expression has also been observed in genes involved in

haemoglobin-haptoglobin acquisition (Phillips et al., 2022) which

is hypothesised to provide an adaptive response to fluctuations in
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haem-iron availability/source influenced by the stage or site of

infection (Atack et al., 2015b). Additionally, strand slippage may

provide a mechanism to avoid the host immunological response by

expressing proteins that are functionally similar, but antigenically

distinct (Rao et al., 1999; Ren et al., 1999).
4.3 Persistence in the respiratory tract

NTHi persistence within the respiratory tract not only enables

the potential for disease recurrence/relapse but also induces

persistent airway inflammation and promotes disease progression

in COPD lungs (Murphy et al., 2004; Finney et al., 2014; Ahearn

et al., 2017). To persist within the airways, NTHi must subvert or

evade clearance by antibiotics or the innate host immune response.

This is achieved by a variety of mechanisms that include specific

neutralisation of antimicrobial agents, resistance to nutritional

immunity, invasion of host epithelial cells and formation of

protective biofilms (Morton et al., 2004; King, 2012; Vogel et al.,

2012). Haem-iron bioavailability has been shown to influence many

NTHi behaviours associated with persistence (Szelestey et al., 2013).

An important first-line defence by the host against microbial

growth is to further reduce circulating iron concentrations to limit

microbial survival; a process known as nutritional immunity.

Siderocalins contribute to this antimicrobial defence by

sequestration of microbial siderophores (Clifton et al., 2009).

NTHi uses siderophore-independent mechanisms, such as haem-

uptake, to acquire iron and so siderocalins are ineffective and this

may provide an adaptive advantage over competing bacteria in the

respiratory tract that rely on siderophore-mediated acquisition of

iron for survival (Nelson et al., 2005; Holden and Bachman, 2015).

The initial immune response against bacterial infection of mucosal

surfaces in the respiratory tract also involves recruitment of

immune cells and abundant production of antimicrobial peptides

(AMPs) (Geitani et al., 2020). IgA1 is the principal immunoglobulin

subclass produced by respiratory mucosal tissues and plays a major

role in host defence by inhibiting microbial adherence, inactivating

bacterial toxins, and promoting humoral immunity (Geitani et al.,

2020). NTHi counteracts this response by producing an IgA1

protease, an extracellular endopeptidase which specifically cleaves

IgA1 (Rao et al., 1999). IgA1 protease production appears to be

exclusive to pathogenic Haemophilus species and is upregulated by

fur in response to iron-restricted conditions (Rao et al., 1999).

Coordination between bacterial immune evasion and haem

homeostasis has been observed for several NTHi proteins

involved in the acquisition/utilisation of haem. HxuCBA, SapA,

and PE have been shown to confer resistance to AMP LL-37 and a

homologue of human b-defensin in a chinchilla model of acute OM

(Mason et al., 2005; Vogel et al., 2012; Rodrıǵuez-Arce et al., 2019).

The consequence of inhibiting AMP resistance was observed in a

sapA mutant which had an attenuated ability to survive in both the

nasopharynx and the chinchilla middle ear, compared to the parent

strain (Mason et al., 2005; Shelton et al., 2011). HbpA, the substrate

binding protein that transports haem within the periplasm, is

responsible for transport of glutathione, a thiol-containing
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tripeptide that confers protection against oxidative, xenobiotic,

and metal iron stresses (Vergauwen et al., 2010; Rodrıǵuez-Arce

et al., 2019). NTHi cannot synthesise glutathione and absence of

glutathione from the growth medium has been shown to reduce

survival of H. influenzae Rd in culture (Vergauwen et al., 2003).

Thus, NTHi may take advantage of the same import systems to both

obtain haem and confer resistance to the innate mucosal immune

response and oxidative stress (Mason et al., 2006; Rodrıǵuez-Arce

et al., 2019). This may contribute to a predisposition to NTHi

infections in CF and COPD patients who demonstrate

compromised lower airway AMP activity despite mounting an

inflammatory response (Persson et al., 2017; Geitani et al., 2020).

NTHi invasion of host epithelial cells may not only provide a

means of evading host immune pressures, but also provide an

alternative reservoir for nutrient acquisition when bacteria are

exposed to nutrient-limiting conditions (Harrison et al., 2013).

Chinchilla middle ears challenged with sapA mutants deficient in

haem-iron uptake demonstrated a tendency towards a more

persistent phenotype, favouring intracellular survival and a

dampened cytokine response compared to the parent strain

(Raffel et al., 2013). Similarly, expression of fur-regulated IgA1

protease (Harrison et al., 2013) was required for optimal invasion

and long-term intracellular survival in bronchial epithelial cells

(Clementi et al., 2014). While these observations suggest

environments restrictive of iron promote NTHi invasion and

persistence, other studies have demonstrated a more nuanced

relationship between haem/iron availability and NTHi phenotype.

NTHi mutants lacking hxuCBA, hbpA, hpe or sapA haem-

acquisition systems had an impaired ability to invade type II

pneumocytes (Rodrıǵuez-Arce et al., 2019). Similarly, mutants

lacking the conserved iron-regulon fur also exhibited reduced

persistence in middle ears of chinchillas (Harrison et al., 2013).

Two studies (Szelestey et al., 2013; Hardison et al., 2018a) have

attempted to understand this discrepancy through transient haem-

iron restriction of NTHi. Exposure to excess haem-iron was only

found to promote a persistent phenotype in experimental OM

models for NTHi strains previously starved of haem-iron,

compared to those continuously exposed to haem-replete

conditions (Szelestey et al., 2013; Hardison et al., 2018b). This

response was attributed to microevolutions through mutations in

icc which result in epigenetic and morphological adaptations that

contribute to persistence and disease severity (Hardison et al.,

2018a). Recurrent episodes in a separate pre-clinical OM model

also demonstrated continuous microevolution of a haemoglobin-

binding gene that resulted in a highly invasive NTHi phenotype that

persisted for at least one month following clinical resolution of the

infection (Harrison et al., 2020).

The ability to form sedentary communities or biofilms in

anatomical sites, such as the middle ear, has also been shown to

contribute to the in vivo persistence of NTHi (Garcıá-Cobos et al.,

2014). In addition to protection from immune- or antibiotic-

mediated killing, biofilm formation may also act as a mucosal

reservoir for NTHi following resolution of clinical disease, thus

promoting bacterial persistence and re-infection within the airways

(Jung and Do, 2013; Raffel et al., 2013). Biofilm-resident bacteria
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exhibit a reduced metabolism and an altered proteome compared to

their planktonic counterparts, features that contribute to their

reduced susceptibility to immune effectors and commonly used

antibiotic treatments (Novotny et al., 2019). This mechanism is

hypothesised to contribute to the chronic and recurrent nature of

NTHi-associated infections, including bronchitis, acute

exacerbations of COPD, conjunctivitis, sinusitis, and OM (Kaya

et al., 2013; Gu et al., 2014; Novotny et al., 2019; Welp and

Bomberger, 2020). Haem-iron restriction or loss of the utilisation

protein SapF results in morphological plasticity and enhanced

community development and biofilm architecture (Vogel et al.,

2012; Szelestey et al., 2013). Conversely, excess haem-iron

availability was shown to increase peak height and architectural

complexity of NTHi biofilms following a period of haem-iron

restriction (Szelestey et al., 2013).
5 Disruption of haem-iron
assimilation: an effective therapeutic
strategy against NTHi infection?

The diminishing effectiveness of current antibiotic treatments

and the challenges associated with vaccine development have

encouraged exploration of novel therapeutic strategies to prevent

and/or treat NTHi infections. The dependence for haem-iron at all

stages of NTHi pathogenesis exposes a vulnerability that provides

promising targets for the development of new therapies that may

disrupt iron uptake (Stites et al., 1999; Ahearn et al., 2017). In

animal models, extracellular iron restriction was shown to be

effective in preventing respiratory infection and dissemination of

pneumonia caused by a variety of Gram-negative bacteria,

including H. influenzae (Minandri et al., 2016; Michels et al.,

2017). Similarly, disruption of haem or iron acquisition

mechanisms significantly affects the ability of NTHi to cause

disease in animal models (Ahearn et al., 2017). Currently,

multiple host- and bacterial-targeted approaches in development

aim to disrupt haem and/or iron assimilation by a range of

pathogens and may have utility against NTHi (Table 2).
5.1 Antimicrobials that prevent haem/iron
assimilation

Several pharmaceutical agents in development target microbial

haem-iron acquisition. These agents can be broadly categorised by

their intended approach; either those that inhibit haem-iron

availability or bacterial acquisition pathways, or toxic haem/iron-

mimicking compounds that gain entry to bacterial cells through

existing uptake systems (Cassat and Skaar, 2013).

5.1.1 Siderophore synthesis inhibitors
One of the earliest antimicrobials used for tuberculosis

treatment, para-aminosalicylic acid, inhibits synthesis of the

bacterial siderophore, mycobactin (Brown and Ratledge, 1975).
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Subsequently, a large number of siderophore biosynthesis

inhibitors have been developed that have capacity to prevent

bacterial growth under iron-limiting conditions (Ribeiro and

Simões, 2019). Flucytosine, a synthetic fluorinated pyrimidine

used to treat fungal respiratory tract infections, has also been

shown to inhibit expression of the pyoverdine siderophore-

biosynthesis gene in Pseudomonas aeruginosa, and subsequently

suppress pathogenicity in a mouse model of pulmonary infection

(Imperi et al., 2013). Similarly, disruption of the function of the

pyoverdine protein also mitigated P. aeruginosa pathogenesis in a

nematode host (Kirienko et al., 2019). Although NTHi possess the

capacity to utilise siderophores, genes associated with siderophore

biosynthesis have not been identified (Holden and Bachman, 2015).

Therefore, the utility of these compounds in restricting NTHi access

to iron is limited and may only disrupt a minor iron source by proxy

of decreased xenosiderophore production by local microbial

communities. Additionally, local microbiota may have the

potential to develop adaptive resistance through production of

structurally modified siderophores (Abergel et al., 2006; Raffatellu

et al., 2009; Holden and Bachman, 2015).

5.1.2 Sideromycins
An alternative approach is the use of xenosiderophores

covalently linked to antibiotics, known as sideromycins, that

encourage antibiotic uptake through existing iron uptake systems.

Sideromycins have demonstrated bactericidal activity against b-
lactamase producing Enterobacterales, and other antibiotic-

resistant strains of P. aeruginosa, Stenotrophomonas maltophilia

and Acinetobacter baumannii, including producers of the class B

metallo-b-lactamases and class C serine-b-lactamases (Page et al.,

2010; Brown et al., 2013; Murphy-Benenato et al., 2015).

Sideromycins have also been used in vivo to successfully treat P.

aeruginosa infections and prevent systemic infection with S.

pneumoniae and Y. enterocolitica in mouse models (Pramanik

et al., 2007; McPherson et al., 2012). However, translation into

human use has historically faced diminished clinical utility due to

compound instability in vivo, emergence of adaptive resistance

during exposure, or side-effects accompanying treatment (Ji and

Miller, 2012; Page, 2013). As a result, only the novel catechol

siderophore-conjugated cephalosporin antibiotic, cefiderocol has

progressed beyond the first phase of human safety trials, owing to

a unique combination of structural features derived from cefepime

and ceftazidime that overcomes that stability problems associated

with earlier iterations (Page et al., 2010).

Cefiderocol has recently been approved as a last-line treatment

for complicated urinary tract infections and pneumonia caused by

antibiotic resistant Gram-negative bacteria, such as carbapenem-

resistant P. aeruginosa, A. baumannii, and K. pneumoniae

(Matsumoto et al., 2017; Ito et al., 2018). Recently, cefiderocol

was used to successfully treat ventilator-associated pneumonia

caused by Stenotrophomonas maltophilia in a preterm neonate

(Koirala et al., 2023). However, clinical studies have reported a

higher all-cause mortality among patients treated with cefiderocol

for hospital-acquired pneumonia, and thus treatment regimens

require close monitoring to avoid toxic side-effects, particularly
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TABLE 2 Strategies that target bacterial haem-iron assimilation and their potential application for the prevention or treatment of NTHi infections.

Strategies Example Antimicrobial activity Utility against NTHi? Challenges/
limitations

Pharmaceutical Approaches

Inhibitors of siderophore
biosynthesis/
function

Flucytosine: non-ribosomal
peptide synthetase (NRPS)
enzymes inhibitor

Suppresses P. aeruginosa
pathogenicity in a mouse
model of pulmonary infection
(Imperi et al., 2013)

Siderophore-inhibiting
molecules do not disrupt the
ability of H. influenzae to
acquire haem-iron in vivo
(Nelson et al., 2005)

Efficacy: adaptive resistance
through production of
structurally modified
siderophores has been
described (Abergel et al., 2006;
Raffatellu et al., 2009; Holden
and Bachman, 2015)

Baulamycins A and B: NRPS
independent siderophore
synthetase enzymes

In vitro antibacterial activity
against S. aureus
(staphyloferrin B) and B.
anthracis (petrobactin)
(Tripathi et al., 2014)

Small molecule inhibitors
Mitigates P.aeruginosa
pathogenesis in a nematode
host (Kirienko et al., 2019)

Sideromycins

Cefiderocol (Fetroja):
Siderophore-mimicking
compound conjugated to
a cephalosporin

Bactericidal activity against b-
lactamase producing and
multidrug-resistant Gram-
negative species in vivo
(Matsumoto et al., 2017)

Effectiveness has only been
demonstrated against NTHi in
vitro under conditions with
artificially restricted haem-iron
availability (Ito et al., 2018)

Safety profile: toxic side-effects
in the elderly; no safety data
for children
Efficacy: inhibition of
siderophore-mediated iron-
acquisition may be overcome
by acquisition of haem
Acquired resistance: has been
demonstrated in gram-negative
bacteria (Kohira et al., 2020)

Iron Chelators

Desferrioxamine B (DFO):
intravenous iron chelator

Some antibacterial and
antibiotic potentiating activity
observed in vitro (Hartzen
et al., 1994)

NTHi can utilise iron
sequestered within DFO as an
iron source (Williams
et al., 1990)

Safety profile: may increase
susceptibility to infection
(Rahav et al., 2006; Lal et al.,
2013)
Efficacy: can be used as an iron
source, which promotes growth
of some bacteria (Choon-Mee
et al., 2007; Thompson
et al., 2012)

Deferiprone (DFP): oral
iron chelator

Activity against common
Gram-negative nosocomial
pathogens (Thompson
et al., 2012)

Activity against NTHi has not
been tested.

Efficacy: may be subverted by
acquisition of haem-iron

Haem-Degradation inhibitors

Gallium-protoporphyrin IX:
haem analogue

In vitro activity against
multidrug-resistant Gram-
negative species, including
intracellular and biofilm
communities (Arivett et al.,
2015; Hijazi et al., 2017; Hijazi
et al., 2018; Choi et al., 2019)

NTHi is highly reliant on
exogenous haem-acquisition;
activity against NTHi has not
been tested Application: no in vivo

evidence; currently limited to
topical applications

Haem-oxygenase inhibitors
In vitro activity against
P.aeruginosa (Furci et al., 2007)

Not dependent on haem-
source; capable of blocking the
oxidation of haem at high
concentrations (Furci
et al., 2007)

Immune-based Approaches

Vaccine targets
Protein E: Outer-
membrane protein

Induces an antibody response
capable of blocking haem-
acquisition and
epithelial adhesion

Elicits potent bactericidal
immune response in mice
(Behrouzi et al., 2017); a PE-
PilA fusion protein protected
against NTHi colonisation and
biofilm integrity in the mouse
nasopharynx (Ysebaert
et al., 2019)

Efficacy: no protection against
H. influenzae in the lungs of
COPD patients (Wilkinson
et al., 2019); high mutability,
phase-variability and
redundancy of NTHi
-acquisition systems may
limit efficacy

(Continued)
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among elderly patients (El-Lababidi and Rizk, 2020). The uncertain

safety profile among elderly patients and a lack of data from

children lends poorly to routine treatment of NTHi infections

which primarily affects these age groups. Additionally, NTHi is

adept at scavenging iron from a variety of sources in vivo and

siderophore-mediated iron acquisition is a minor contributor to

total iron acquisition in NTHi (Morton et al., 2010b). This

characteristic has been implicated in the intrinsic resistance of

NTHi to siderophore-targeting compounds observed in vivo. In a

nasal colonisation model, production of lipocalin, an acute-phase

inhibitor of siderophore-mediated iron uptake, was upregulated but

did not affect the ability of H. influenzae to acquire host-derived

sources of haem-iron (Nelson et al., 2005; Cassat and Skaar, 2013;

Leal et al., 2013). Additionally, NTHi cannot utilise catechol-

containing siderophores (Williams et al., 1990; Page, 2019) and so

is unlikely to possess the necessary machinery to uptake cefiderocol.

Thus, it is unlikely that the activity of catechol sideromycins against

NTHi will be greater than that of the antibiotic alone. Additionally,

production of multiple b-lactamases has been shown to contribute

to the emergence of cefiderocol non-susceptibility in several Gram-

negative isolates (Kohira et al., 2020). Thus, sideromycins may be

vulnerable to the same antibiotic resistance mechanisms faced by

traditional antibiotic therapies.
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5.1.3 Chelating agents
An alternative approach that mitigates the potential for adaptive

resistance involves targeting multiple iron sources through chelating

agents (Kontoghiorghes et al., 2010). Chelation therapy prevents

accumulation of excess iron and reduces its availability to invading

pathogens (Mobarra et al., 2016). This approach has been effective in

protecting mice against K. pneumoniae pneumonia and

dissemination (Michels et al., 2017). However, as is the case with

xenosiderophores, iron-containing chelating molecules such as

desferrioxamine B (DFO), used in the treatment of iron-loading

disorders, can be utilised as an iron source by bacteria that harbour

the necessary receptor, including NTHi (Williams et al., 1990;

Choon-Mee et al., 2007; Arifin et al., 2014). Chelation therapy with

DFO may therefore increase iron availability and increase the risk of

infection. More severe infections, and higher liver and kidney

bacterial burdens have been demonstrated in DFO-treated mice

following intravenous challenge with S. aureus (Arifin et al., 2014).

A positive correlation between DFO use and higher rates of infection

with S. aureus and other opportunistic bacteria in patients suffering

from thalassemia-associated iron overload has also been reported

(Rahav et al., 2006; Lal et al., 2013). Research has therefore moved

towards synthetic iron chelators that can be taken orally, such as

Deferiprone (DFP) which does not promote bacterial growth (Kim
TABLE 2 Continued

Strategies Example Antimicrobial activity Utility against NTHi? Challenges/
limitations

Immune-based Approaches

Multiple haem/iron
epitope targets

Protects mice from infection
caused by uropthogenic E. coli
(Alteri et al., 2009; Mike et al.,
2016) and against intravenous
challenge with S. aureus (Kim
et al., 2010)

Interference of multiple haem-
utilisation systems attenuates
NTHi virulence and disease
severity/duration in animal
models of OM and lung
infection (Morton et al., 2004;
Morton et al., 2009; Szelestey
et al., 2013; Rodrıǵuez-Arce
et al., 2019)

Application: no candidates
currently available for NTHi

Na-APR-1;
hookworm haemoglobinase

Significantly reduced parasite
burden in experimentally-
infected canines (Cassat and
Skaar, 2013)

No antibacterial activity

Application: development of a
similar strategy requires full
elucidation of mechanisms
governing NTHi
haem-utilisation

Bacteriotherapy

Bacteriocin-
producing probiotics

Haemophilin-producing
H. haemolyticus

Inhibits NTHi growth (Latham
et al., 2017) and interactions
with host cells (Atto
et al., 2021a)

Blocks NTHi access to haem;
as a commensal of the same
family, Hh is likely to have
highly potent anti-
NTHi activity

Application: requires further
investigation of in vivo activity
against NTHi

Bacteriocin therapy Haemophilin

Inhibits NTHi growth (Latham
et al., 2017), interactions with
host cells (Atto et al., 2021a)
and prevents colonisation/
infection in a mouse model of
acute lower respiratory
infection (Fulte et al., 2024)

Blocks NTHi access to haem

Efficacy: use of a
bacteriocinogenic probiotic
may offer more consistent
protection due to added
bacterial interference for
pathogen host cell binding sites
Application: requires further
investigation in chronic
respiratory disease contexts
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and Shin, 2009). DFP has been found to not only reduce the growth

of some strains of common Gram-negative nosocomial pathogens,

but also reduce the minimum inhibitory concentrations of antibiotics

(Thompson et al., 2012). However, the activity of these compounds

against NTHi have not been tested and their effectiveness may be

subverted by acquisition of haem-iron.

The majority of NTHi iron requirement is fulfilled by

acquisition of haem therefore compounds that restrict haem-

assimilation may have higher therapeutic value than those solely

targeting iron acquisition. Haem assimilation was first targeted with

the analogue gallium-protoporphyrin IX (GaPP), a bactericidal

metalloporphyrin that uses existing haem uptake machinery to

gain entry to the bacterial cell (Stojiljkovic et al., 1999).

Incorporation of Ga(III) in place of iron disrupts the iron-

dependent redox process as Ga(III) cannot be reduced to Ga(II)

under physiological conditions, and thus cannot be liberated from

porphyrins by haem oxygenase (Choi et al., 2019). GaPP has

demonstrated inhibitory effects against A. baumanii and P.

aeruginosa in model respiratory cell lines, and other multidrug-

resistant Gram-positive and Gram-negative species in vitro (Arivett

et al., 2015; Hijazi et al., 2017; Hijazi et al., 2018). This compound is

also effective against biofilm and intracellular communities (Choi

et al., 2019). The activity of GaPP is enhanced when combined with

DFP which has been demonstrated by a topical hydrogel with anti-

biofilm and antibiotic-potentiating properties against S. aureus in

an artificial wound model (Richter et al., 2017a; Richter et al.,

2017b). Although GaPP has recently been shown to inhibit the

growth and intracellular viability of COPD NTHi isolates in limited

haemin conditions (Baker et al., 2022), it is limited to topical

applications in its current form and cannot be used to prevent

future infections. Beyond GaPP, exploration of haem-targeting

compounds is scarce. Additional haem-oxygenase inhibitors

against P. aeruginosa and Neisseria meningitidis have only been

identified through virtual screening and an in vitro growth assay,

which were capable of blocking the oxidation of haem at

concentrations in excess of that available to pathogens in the

respiratory tract (Furci et al., 2007).
5.2 Immunotherapies

Recently, vaccine strategies have exploited the haem-dependant

NTHi pathogenic mechanisms by incorporating the surface

haemoprotein receptor, PE as a vaccine antigen. As previously

discussed, PE is an adhesin of NTHi with functions involved in

haem binding, storage and inter-bacterial donation (Duell et al.,

2016). PE is expressed by 98% of NTHi strains, the epithelial cell-

binding region of which is highly conserved among strains (Singh

et al., 2010). Serum from mice immunised with recombinant

truncated PE demonstrated a strong bactericidal effect against

NTHi (Behrouzi et al., 2017). Incorporation of PE in a fusion

protein with PilA enhanced immunogenicity and protected against

NTHi colonisation and disrupted biofilm integrity in the mouse

nasopharynx (Ysebaert et al., 2019). More recently, the PE-PilA

fusion protein, combined with Protein D, has completed phase 2
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clinical trials, demonstrating an acceptable reactogenicity and safety

profile in adults with moderate/severe COPD (Leroux-Roels et al.,

2016). Despite these promising results, the isolation ofH. influenzae

from sputum samples did not differ between the vaccine and the

placebo group (Wilkinson et al., 2019).

The effectiveness of PE-based approaches may be undermined by

the same genetic heterogeneity and phase-variable expression of other

potential NTHi surface antigens (Murphy, 2015; Jalalvand and

Riesbeck, 2018; Novotny et al., 2019). A high degree of

polymorphisms within the gene encoding an NTHi haemoglobin-

binding protein has been reported, which alters the protein affinity for

iron capture/usage (Duell et al., 2016). This limitation is exacerbated by

the high level of redundancy and multi-functionality of NTHi proteins,

particularly those involved in the acquisition of haem-iron (Whitby

et al., 2009). Therefore, only an antibody response capable of blocking a

variety of epitopes may cause sufficient malnutrition to inhibit survival

and host-pathogen interactions (Hare, 2017). This approach has been

used against uropathogenic E. coli strains, where mucosal

immunisation with six outer membrane iron receptors or

siderophores protected against urinary tract infection in mice (Alteri

et al., 2009; Mike et al., 2016). Antibodies targeting the IsdA and IsdB

haem-acquisition systems of S. aureus protected mice against

intravenous challenge (Kim et al., 2010). In addition to targeting iron

acquisition proteins, some efficacy has been achieved with vaccines

targeting iron homeostasis in pathogens. The Na-APR-1 protease from

human hookworm, Necator americanus, is essential for enzymatic

activity to support blood feeding. Vaccination with a mutated form of

Na-APR-1 significantly reduced parasite burden in experimentally-

infected canines (Cassat and Skaar, 2013). A similar strategy that

targets multiple haem-iron acquisition systems, or their regulation may

offer similar protection against NTHi infection. Indeed, interference of

multiple NTHi haem-utilisation systems or disruption of the master

haem-regulon fur has proven effective in attenuating NTHi disease

severity/duration in animal models of OM and lung infection (Morton

et al., 2004; Morton et al., 2009; Harrison et al., 2013; Szelestey et al.,

2013; Rodrıǵuez-Arce et al., 2019).
5.3 Bacteriotherapies

The issues inherent to pharmacological- and immunological-

based approaches has necessitated the exploration of alternative

therapies against NTHi infections. The vital role of haem-iron in the

survival of NTHi and other bacteria in the upper respiratory tract

raises the stakes for evolutionary conflicts to arise in the struggle for

this limiting nutrient (Barber and Elde, 2015). Thus, a commensal

bacterium that can outcompete NTHi for haem-iron may have

potential as a probiotic therapy by making the environment

inhospitable for NTHi growth (De Boeck et al., 2021). A probiotic

is defined as a live microorganism that, when administered in

adequate amounts, confers a health benefit to the host (Martıń

and Langella, 2019). Probiotics that outcompete pathogens for iron

have demonstrated high levels of protection against infection in the

gastrointestinal tract. The Nissle 1917 strain of E. coli has been

applied as a probiotic treatment that supresses gastroenteritis by
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outcompeting for the siderophore-mediated iron assimilation of

Salmonella enterica serovar Typhimurium (Deriu et al., 2013;

Holden and Bachman, 2015). This inter-bacterial relationship

exposes the protective potential of beneficial microbes to combat

pathogens through iron sequestration.

Probiotics administered directly to the upper respiratory tract

have close proximity to pathobionts and may therefore interfere with

colonisation and development of disease by competing for host cell

binding sites and nutrients (e.g. iron) (Falagas et al., 2008). This

competitive inhibition appears to be highly effective in formulations

where the antagonising commensal bacterium belongs to the same

family and occupies the same niche as the pathogenic species. Nasal

and oral probiotic sprays containing a-haemolytic streptococcal

strains are effective in treating (Manti et al., 2020) and preventing

episodes of acute pharyngotonsillitis caused by b-haemolytic group A

streptococci, pneumococcal OM in children (Marchisio et al., 2015;

Andaloro et al., 2019) and pneumococcal pneumonia in mice

(Shekhar et al., 2019). Similarly, intranasal delivery of the closely

related commensal Neisseria lactamica prevented meningococcal

meningitis in mice (Li et al., 2006) and nasal delivery of a

commensal Pasteurellaceae species was able to delay onset of OM

in mice (Granland et al., 2020). Recently, a nasopharyngeal H.

haemolyticus isolate was discovered that has potent inhibitory

activity against NTHi and Hib isolates by outcompeting them for

haem (Latham et al., 2017). This ability was attributed to the

discovery of a novel haemophore-like protein (now named

haemophilin; Hpl) produced by H. haemolyticus (Latham et al.,

2020). Hpl-producing H. haemolyticus strains were shown to

outcompete NTHi in a broth co-culture system (Atto et al., 2020)

and treatments containing Hpl-producing H. haemolyticus (or Hpl

alone) protected model respiratory cell lines from NTHi attachment

and invasion (Atto et al., 2021a). Furthermore, a small-scale

epidemiological study of 257 healthy adults in Australia found a

strong correlation between pharyngeal carriage of H. haemolyticus

strains containing hpl and a reduced likelihood and density of NTHi

co-colonisation, compared to participants colonised with H.

haemolyticus strains incapable of producing Hpl (Atto et al.,

2021b). Recently, intranasal administration of Hpl or Hpl-

producing H. haemolyticus reduced respiratory tract colonisation

and infection with NTHi in a mouse model of acute lower airway

infection (Fulte et al., 2024). Hpl may therefore have potent clinical

utility in preventing NTHi infections; however, further studies are

needed to assess efficacy in chronic respiratory disease contexts.

Probiotic approaches (such as Hpl) that exploit NTHi haem-iron

dependency deliver several benefits over standard antibiotic therapy

which make them an asset to dampening emergent resistance. For

example, their narrow spectrum of activity does not provoke

collateral effects on the whole microbiota or promote enrichment

of resistant clones/strains (Rea et al., 2010; Hols et al., 2019).

Additionally, the presence of a competitive probiotic in the

nasopharynx may also provide additional inhibition of pathogen

colonisation, or prevent strain replacement through interference for

host cell binding sites (Drutz et al., 1966).
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6 Conclusion

The growing prevalence of resistance to first- and second-line

antibiotics, in the absence of an effective preventative strategy

necessitates the need for alternative therapies that can reduce the

enormous disease burden associated with NTHi infections. Strategies

that target haem-iron assimilation of NTHi have a potentially high

impact on the ability of NTHi to survive and cause disease within host

airways. Unlike pharmacological- and immunological-based

approaches, bacteriotherapy may provide an effective strategy that

both treats, and prevents NTHi infections, which is not

compromised by antigenic heterogeneity or bacterial resistance

mechanisms. However, targeting the haem-iron assimilation of

NTHi requires careful consideration and improved modelling of

haem-iron sources and fluctuations present in respiratory niches

during health and disease.
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Pérez-Vázquez, M., Román, F., Aracil, B., Cantón, R., and Campos, J. (2004).
Laboratory detection of Haemophilus influenzae with decreased susceptibility to
nalidixic acid, ciprofloxacin, levofloxacin, and moxifloxacin due to GyrA and ParC
mutations. J. Clin. Microbiol. 42, 1185–1191. doi: 10.1128/JCM.42.3.1185-
1191.2004

Persson, L. J., Aanerud, M., Hardie, J. A., Nilsen, R. M., Bakke, P. S., Eagan, T. M.,
et al. (2017). Antimicrobial peptide levels are linked to airway inflammation, bacterial
colonisation and exacerbations in chronic obstructive pulmonary disease. Eur. Respir. J.
49. doi: 10.1183/13993003.01328-2016

Pettigrew, M. M., Laufer, A. S., Gent, J. F., Kong, Y., Fennie, K. P., and Metlay, J. P.
(2012). Upper respiratory tract microbial communities, acute otitis media pathogens,
and antibiotic use in healthy and sick children. Appl. Environ. Microbiol. 78, 6262–
6270. doi: 10.1128/AEM.01051-12

Pfeifer, Y., Meisinger, I., Brechtel, K., and Gröbner, S. (2013). Emergence of a
multidrug-resistant Haemophilus influenzae strain causing chronic pneumonia in a
patient with common variable immunodeficiency. Microbial Drug Resistance. 19, 1–5.
doi: 10.1089/mdr.2012.0060

Phaff, S. J., Tiddens, H. A., Verbrugh, H. A., and Ott, A. (2006). Macrolide resistance
of Staphylococcus aureus and Haemophilus species associated with long-term
azithromycin use in cystic fibrosis. J. Antimicrobial Chemotherapy. 57, 741–746.
doi: 10.1093/jac/dkl014

Phillips, Z. N., Jennison, A. V., Whitby, P. W., Stull, T. L., Staples, M., and Atack, J.
M. (2022). Examination of phase-variable haemoglobin–haptoglobin binding proteins
in non-typeable Haemophilus influenzae reveals a diverse distribution of multiple
variants. FEMS Microbiol. Lett. 369, fnac064. doi: 10.1093/femsle/fnac064

Pidcock, K. A., Wooten, J. A., Daley, B. A., and Stull, T. L. (1988). Iron acquisition by
Haemophilus influenzae. Infection Immun. 56, 721–725. doi: 10.1128/iai.56.4.721-
725.1988
frontiersin.org

https://doi.org/10.1111/j.1365-2958.2006.05460.x
https://doi.org/10.1128/IAI.73.1.599-608.2005
https://doi.org/10.1128/IAI.73.1.599-608.2005
https://doi.org/10.1128/JB.01313-10
https://doi.org/10.1136/thx.53.7.594
https://doi.org/10.1128/AAC.00700-17
https://doi.org/10.1128/AAC.01345-12
https://doi.org/10.1128/AAC.01345-12
https://doi.org/10.1172/jci.insight.92002
https://doi.org/10.1073/pnas.1606324113
https://doi.org/10.1128/IAI.00098-16
https://doi.org/10.1016/j.pupt.2014.05.002
https://doi.org/10.1016/j.pupt.2014.05.002
https://doi.org/10.1371/journal.pone.0036226
https://doi.org/10.1016/j.micpath.2003.08.007
https://doi.org/10.1016/j.ijmm.2009.03.004
https://doi.org/10.1016/j.ijmm.2009.03.004
https://doi.org/10.1099/mic.0.2006/000190-0
https://doi.org/10.1099/mic.0.2006/000190-0
https://doi.org/10.1186/1471-2180-10-113
https://doi.org/10.1186/1471-2180-10-113
https://doi.org/10.1186/1471-2180-10-113
https://doi.org/10.1111/j.1574-695X.2006.00052.x
https://doi.org/10.1128/JCM.00492-07
https://doi.org/10.1128/CVI.00089-15
https://doi.org/10.1164/rccm.200403-354OC
https://doi.org/10.1021/jm501506f
https://doi.org/10.3389/fcimb.2017.00110
https://doi.org/10.3389/fcimb.2017.00110
https://doi.org/10.1111/j.1462-5822.2005.00566.x
https://doi.org/10.1111/j.1462-5822.2005.00566.x
https://doi.org/10.1371/journal.pone.0121257
https://doi.org/10.1371/journal.pone.0121257
https://doi.org/10.1146/annurev.micro.112408.134247
https://doi.org/10.1128/CMR.00103-13
https://doi.org/10.1055/s-0038-1660818
https://doi.org/10.1111/1348-0421.12030
https://doi.org/10.1111/1348-0421.12030
https://doi.org/10.1111/nyas.2013.1277.issue-1
https://doi.org/10.1093/cid/ciz825
https://doi.org/10.1128/AAC.01525-09
https://doi.org/10.1128/IAI.00602-13
https://doi.org/10.1128/IAI.00602-13
https://doi.org/10.1016/S0022-3476(95)70415-9
https://doi.org/10.1016/j.bjorl.2015.04.007
https://doi.org/10.1128/JCM.42.3.1185-1191.2004
https://doi.org/10.1128/JCM.42.3.1185-1191.2004
https://doi.org/10.1183/13993003.01328-2016
https://doi.org/10.1128/AEM.01051-12
https://doi.org/10.1089/mdr.2012.0060
https://doi.org/10.1093/jac/dkl014
https://doi.org/10.1093/femsle/fnac064
https://doi.org/10.1128/iai.56.4.721-725.1988
https://doi.org/10.1128/iai.56.4.721-725.1988
https://doi.org/10.3389/fcimb.2025.1548048
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Atto et al. 10.3389/fcimb.2025.1548048
Polland, L., Rydén, H., Su, Y., and Paulsson, M. (2023). In vivo gene expression
profile of Haemophilus influenzae during human pneumonia. Microbiol. spectrum. 11,
e01639–e01623. doi: 10.1128/spectrum.01639-23

Poole, J., Foster, E., Chaloner, K., Hunt, J., Jennings, M. P., Bair, T., et al. (2013).
Analysis of nontypeable Haemophilus influenzae phase-variable genes during
experimental human nasopharyngeal colonization. J. Infect. diseases. 208, 720–727.
doi: 10.1093/infdis/jit240

Porto, G., and De Sousa, M. (2007). Iron overload and immunity. World J.
gastroenterology: WJG. 13, 4707. doi: 10.3748/wjg.v13.i35.4707

Pramanik, A., Stroeher, U. H., Krejci, J., Standish, A. J., Bohn, E., Paton, J. C., et al.
(2007). Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica
and Streptococcus pneumoniae. Int. J. Med. Microbiol. 297, 459–469. doi: 10.1016/
j.ijmm.2007.03.002

Puig, C., Marti, S., Fleites, A., Trabazo, R., Calatayud, L., Linares, J., et al. (2014).
Oropharyngeal colonization by nontypeable Haemophilus influenzae among healthy
children attending day care centers. Microbial Drug Resistance. 20, 450–455.
doi: 10.1089/mdr.2013.0186
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